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Finite element (FE) response sensitivity analysis is an essential tool for gradient-based optimization
methods used in various sub-fields of civil engineering such as structural optimization, reliability analy-
sis, system identification, and finite element model updating. Furthermore, stand-alone sensitivity anal-
ysis is invaluable for gaining insight into the effects and relative importance of various system and
loading parameters on system response. The direct differentiation method (DDM) is a general, accurate
and efficient method to compute FE response sensitivities to FE model parameters. In this paper, the
DDM-based response sensitivity analysis methodology is applied to a pressure independent multi-
yield-surface J2 plasticity material model, which has been used extensively to simulate the nonlinear
undrained shear behavior of cohesive soils subjected to static and dynamic loading conditions. The
complete derivation of the DDM-based response sensitivity algorithm is presented. This algorithm is
implemented in a general-purpose nonlinear finite element analysis program. The work presented in this
paper extends significantly the framework of DDM-based response sensitivity analysis, since it enables
numerous applications involving the use of the multi-yield-surface J2 plasticity material model. The
new algorithm and its software implementation are validated through two application examples, in
which DDM-based response sensitivities are compared with their counterparts obtained using forward
finite difference (FFD) analysis. The normalized response sensitivity analysis results are then used to
measure the relative importance of the soil constitutive parameters on the system response.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Finite element (FE) response sensitivities represent an essential
ingredient for gradient-based optimization methods required in
various sub-fields of structural and geotechnical engineering such
as structural optimization, reliability analysis, system identifica-
tion, and FE model updating [1,2]. In addition, FE response sensitiv-
ities are invaluable for gaining insight into the effects and relative
importance of system and loading parameters in regards to system
response.

Several methods are available for response sensitivity computa-
tion, including the finite difference method (FDM), the adjoint
method (AM), the perturbation method (PM), and the direct differ-
entiation method (DDM). These methods are described by Zhang
and Der Kiureghian [3], Kleiber et al. [2], Conte et al. [4–6], Gu
and Conte [7], Scott et al. [8], and Haukaas and Der Kiureghian
[9]. The FDM is the simplest method for response sensitivity com-
putation, but is computationally expensive and can be negatively
ll rights reserved.

: +1 858 822 2260.
affected by numerical noise (i.e., truncation and round-off errors).
The AM is extremely efficient for linear and nonlinear elastic sys-
tems, but is not a competitive method for path-dependent (i.e.,
inelastic) problems. The PM is computationally efficient, but gener-
ally not very accurate. The DDM, on the other hand, is general,
accurate and efficient and is applicable to any material constitutive
model (both path-independent and path-dependent). The compu-
tation of FE response sensitivities to system and loading parame-
ters based on the DDM requires extension of the FE algorithms
for response-only computation [5].

Based on DDM, this paper presents a derivation of response sen-
sitivities with respect to material parameters of an existing mate-
rial model, the multi-yield-surface J2 plasticity model. This model
was first developed by Iwan [10] and Mroz [11], then applied by
Prevost [12–14] to soil mechanics. It was later modified and imple-
mented in OpenSees [15–17] by Yang [18] and Elgamal et al. [19].
OpenSees is an open source software framework for advanced
modeling and simulation of structural and geotechnical systems
developed under the auspice of the Pacific Earthquake Engineering
Research (PEER) Center. In contrast to the classical J2 (or Von
Mises) elasto-plastic behavior with a single yield surface,
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Fig. 1. Yield surfaces of multi-yield-surface J2 plasticity model in principal
deviatoric stress space.
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multi-yield-surface J2 plasticity employs the concept of a field of
plastic moduli [12–14] to achieve a piecewise linear elasto-plastic
behavior under cyclic loading conditions. This field is defined by a
collection of nested yield surfaces of constant size (i.e., no isotropic
hardening) in the stress space, which define the regions of constant
plastic shear moduli (and therefore constant tangent shear mod-
uli). The stress sensitivity to material parameters is computed by
differentiating consistently the constitutive law integration algo-
rithm, adding the contributions from all yield surfaces that affect
the stress computation at the current time step.

The existing implementation in OpenSees [15] of the multi-
yield-surface J2 plasticity model [18,19] considered is then ex-
tended to enable response sensitivity computation using the
DDM-based algorithm developed in this paper. The DDM-based
algorithm was implemented in OpenSees by extending the existing
framework for sensitivity and reliability analysis developed by Der
Kiureghian et al. [20], Haukaas and Der Kiureghian [21], and Scott
and Haukaas [22].

The work presented in this paper extends significantly the
framework of DDM-based response sensitivity analysis, since it en-
ables numerous applications involving the use of the multi-yield-
surface J2 plasticity material model. Although this material model
is a rather old model, it remains an effective and robust model to
simulate the undrained response of cohesive materials under cyclic
and seismic loading conditions [12–14,16,18,19,23–26]. Also, it is
operational in OpenSees [18] through which soil–structure-inter-
action studies may be conducted by a large user community. Thus,
an area of application of the present DDM-based FE response sen-
sitivity analysis scheme is in earthquake loading (undrained) for
geotechnical cohesive soils, with applications to soil-foundation-
structure interaction scenarios [16,17]. Response sensitivity analy-
sis results are needed as input for reliability, optimization, and FE
model updating applications. Therefore, the contribution of this
paper potentially improves significantly the computational effi-
ciency of such applications to a wide class of geotechnical systems
[27–29] and soil-foundation-structure interaction systems involv-
ing the dynamic undrained shear response of cohesive soils.

The developments presented in this paper include new imple-
mentation details of the DDM that can carry over to other ad-
vanced constitutive models. (1) To the authors’ knowledge, in
past work, the DDM-based response sensitivity analysis methodol-
ogy has been implemented for uniaxial material constitutive mod-
els [2,5,6,8] and three-dimensional (3D) single surface J2 plasticity
models [2,3] with implicit constitutive law integration schemes. In
this paper, the DDM methodology is extended to a general 3D elas-
to-plastic material constitutive model, in which the multi-yield-
surface J2 plasticity approach is utilized. (2) In this plasticity model,
the stress state at the current load/time step is obtained through an
explicit corrective iteration scheme, which accumulates contribu-
tions from all yield surfaces involved, the number of which varies
from load/time step to load/ time step [30]. The DDM-based re-
sponse sensitivity algorithm follows exactly the corrective itera-
tion process for stress computation. (3) The computation of the
DDM-based FE response sensitivity requires the consistent and
not the continuum tangent material moduli [5]. The consistent tan-
gent moduli consist of an unsymmetrical fourth-order tensor
(exhibiting only minor symmetries, Dijkl = Djikl = Djilk = Djilk, but
Dijkl – Dklij). They are computed by differentiating the stress tensor
with respect to the strain tensor by following exactly the stress
computation algorithm as presented in [30]. (4) The sensitivities
of the kinematic hardening parameters defining the initial config-
uration of the multi-yield surfaces are required at the initiation
of the response and response sensitivity computation. Further-
more, the sensitivities of the kinematic hardening parameters
defining the active and inner yield surfaces must be updated at
each load/time step.
Two application examples are provided to validate the new re-
sponse sensitivity algorithm and its implementation using the fi-
nite difference method (FDM). As an application of response
sensitivity analysis, the response sensitivity results are used to
measure the relative importance of the soil material parameters
of different soil layers on the displacement response of the soil.

2. Constitutive formulation of multi-yield-surface J2 plasticity
model and numerical integration
2.1. Multi-yield surfaces

Each yield surface of this multi-yield-surface J2 plasticity model
is defined in the deviatoric stress space as [23]

f ¼ 3
2
ððs� aÞ : ðs� aÞÞ

� �1
2

� K ¼ 0; ð1Þ

where s denotes the deviatoric stress tensor and a, referred to as
back-stress tensor, denotes the center of the yield surface {f = 0}
in the deviatoric stress space. Parameter K represents the size
(
ffiffiffiffiffiffiffiffi
3=2

p
times the radius) of the yield surface which defines the re-

gion of constant plastic shear modulus. The dyadic tensor product
of tensors A and B is defined as A:B = AijBij (i, j = 1, 2, 3). The back-
stress a is initialized to zero at the start of loading.

In geotechnical engineering, the nonlinear shear behavior of soil
materials is described by a shear stress–strain backbone curve
[18,19] as shown in Fig. 1a. The experimentally determined back-
bone curve can be approximated by the hyperbolic formula [31] as

s ¼ Gc
1þ ðc=crÞ

; ð2Þ
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Fig. 2. Schematic of flow rule of multi-yield-surface J2 plasticity model.
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where s and c denote the octahedral shear stress and shear strain,
respectively, and G is the low-strain shear modulus. Parameter cr

is a reference shear strain defined as

cr ¼
cmaxsmax

Gcmax � smax
; ð3Þ

where smax, called shear strength, is the shear stress corresponding
to the shear strain c = cmax (selected sufficiently large so that
smax � s(c =1)) (see Fig. 1).

Within the framework of multi-yield-surface plasticity, the
hyperbolic backbone curve in Eq. (2) is replaced by a piecewise lin-
ear approximation as shown in Fig. 1a. Each line segment repre-
sents the domain of a yield surface {fi = 0} of size K(i)

characterized by an elasto-plastic shear modulus H(i) for i = 1,
2, . . . , NYS, where NYS denotes the total number of yield surfaces
[12–14]. Parameter H(i) (see Fig. 1a) is conveniently defined as
HðiÞ ¼ 2 siþ1�si

ciþ1�ci

� �
. A constant plastic shear modulus H0ðiÞ defined as

[32]

1

H0ðiÞ
¼ 1

HðiÞ
� 1

2G
ð4Þ

is associated with each yield surface {fi = 0}.
The stress–strain points (sj, cj) (subscript j denotes the point

number) used to define the piecewise linear approximation of
the shear stress–strain (s � c) backbone curve are defined such
that their projections on the s axis are uniformly spaced (see
Fig. 1). Thus,

sj ¼ smax
j

NYS
and cj ¼

sjcr

Gcr � sj
ðj ¼ 1;2; . . . ;NYS� 1Þ: ð5Þ

The j-th yield surface {fj = 0} is defined by the two points (sj, cj) and
(sj+1, cj+1) (see Fig. 1). For each yield surface j with 1 6 j 6 NYS � 1,

ðDcÞj ¼ cjþ1 � cj; ð6Þ
ðDsÞj ¼ sjþ1 � sj; ð7Þ

KðjÞ ¼ 3ffiffiffi
2
p sj; ð8Þ

HðjÞ ¼
2ðDsÞj
ðDcÞj

; ð9Þ

H0ðjÞ ¼ 2GHðjÞ

2G� HðjÞ
: ð10Þ

For the outermost yield surface (failure surface), set
H(NYS) = H0ðNYSÞ = 0. The yield surfaces in their initial positions (at
the start of loading) represent a set of concentric cylindrical sur-
faces whose axes coincide with the hydrostatic axis in the deviator-
ic stress space as shown in Fig. 1b. The outermost yield surface
{fNYS = 0} represents a failure surface and therefore defines a geo-
metrical boundary in the deviatoric stress space.

It is worth mentioning that the yield surfaces may initially be
configured any way suggested by experimental data and typically
would not be concentric if calibration is based on triaxial test data
for instance.

2.2. Flow rule

An associative flow rule is used to compute the plastic strain
increments. In the deviatoric stress space, the plastic strain incre-
ment vector lies along the exterior normal to the yield surface at
the stress point. In tensor notation, the plastic strain increment is
expressed as

d�p ¼ hLi
H0

Q ; ð11Þ

where the second-order unit tensor Q defined as
Q ¼ 1
Q

of
or

ð12Þ

in which Q ¼ of
or

: of
or

n o1
2
, represents the plastic flow direction normal

to the yield surface face {f = 0} at the current stress point. Parameter
L in Eq. (11), referred to as the plastic loading function, is defined as
the projection of the stress increment vector ds onto the direction
normal to the yield surface, i.e.,

L ¼ Q : ds: ð13Þ

The symbol h i in Eq. (11) denotes the MacCauley’s brackets defined
such that hLi = max(L, 0). The magnitude of the plastic strain incre-
ment, hLiH0 , is a non-negative function which obeys the Kuhn-Tucker
complementarity conditions expressed as hLi

H0 f ðs; aÞ ¼ 0, such that
the plastic strain increment is zero in the elastic case (i.e., when
f(s, a) < 0).

The flow rule defined above in differential (continuum) form is
integrated numerically over a trial time step (or load step) using an
elastic predictor-plastic corrector procedure illustrated in Fig. 2,
which shows, as an illustration, two corrective iterations before
convergence is achieved. In this figure, the first subscript n (or
n + 1) attached to a material response parameter denotes the last
(or current) converged load/time step, while the second subscript
i indicates the ith corrective iteration (not to be confused with
the iteration number of the Newton–Raphson scheme used to solve
the nonlinear equilibrium equations at each time step). Assuming
that the current active yield surface is the mth surface {fm = 0} with
its center at a

ðmÞ
n , the elastic trial (deviatoric) stress str

nþ1;0 is ob-
tained as

str
nþ1;0 ¼ sn þ 2GDenþ1; ð14Þ

where sn is the converged deviatoric stress at the last (nth) time
step, and Den+1 denotes the total (from last converged step) devia-
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toric strain increment in the current time step. If trial the trial stress
str

nþ1;0 falls inside the current yield surface {fm = 0}, then the iteration
process for the integration of the material constitutive law is con-
verged, otherwise a plastic correction (or corrective iteration) is ap-
plied as follows. The plastic stress correction tensor Pn+1,i for the
current active yield surface ({fm = 0}) is defined as (see Fig. 2 for
i = 1 and 2)

Pnþ1;i ¼ str
nþ1;i�1 � str

nþ1;i ði ¼ 1;2;3 . . .Þ: ð15Þ

An important stress quantity called the contact stress s*n+1,i is
defined as the intersection point of vector str

nþ1;i�1 � a
ðmÞ
n and the

current active yield surface {fm = 0}, and can be computed as (see
Fig. 2 for i = 1 and 2)

s�nþ1;i ¼
KðmÞ

Knþ1;i
ðstr

nþ1;i�1 � aðmÞn Þ þ aðmÞn ; ð16Þ

where Kn+1,i (different from K(i) =
ffiffiffiffiffiffiffiffi
3=2

p
times the radius of the i-th

yield surface) is defined as

Knþ1;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðstr

nþ1;i�1 � a
ðmÞ
n Þ : ðstr

nþ1;i�1 � a
ðmÞ
n Þ

r
; ð17Þ

which is
ffiffiffiffiffiffiffiffi
3=2

p
times the distance from str

nþ1;i�1 to a
ðmÞ
n . The unit ten-

sor normal to the current active yield surface {fm = 0} at s�nþ1;i is de-
rived from Eq. (12) or Fig. 2 as

Q nþ1;i ¼
ðs�nþ1;i � a

ðmÞ
n Þ

½ðs�nþ1;i � a
ðmÞ
n Þ : ðs�nþ1;i � a

ðmÞ
n Þ�

1
2
: ð18Þ

The plastic stress correction tensor Pn+1, i (i = 1, 2, 3, . . .) can be de-
rived as [32,33]

Pnþ1;1 ¼ 2G
Q nþ1;1 : ðstr

nþ1;0 � s�nþ1;1Þ
ðH0ðmÞ þ 2GÞ

Q nþ1;1 ð19Þ

and

Pnþ1;i ¼ 2G �
Q nþ1;i : ðstr

nþ1;i�1 � s�nþ1;iÞ
ðH0ðmÞ þ 2 � GÞ

� ðH
0ðm�1Þ � H0ðmÞÞ

H0ðm�1Þ � Q nþ1;i

ði ¼ 2;3;4; . . .Þ: ð20Þ

The trial stress after the plastic correction for the current active
yield surface is obtained using Eq. (15) as

str
nþ1;i ¼ str

nþ1;i�1 � Pnþ1;i ði ¼ 1;2;3; . . .Þ: ð21Þ

If the trial stress str
nþ1;i lies outside the next yield surface

{fm+1 = 0}, the active yield surface index is set to m = m + 1, the
corrective iteration number is set to i = i + 1 and the plastic correc-
tion process (Eqs. (16)–(21)) is repeated until the trial stress str

nþ1;i

falls inside the next outer yield surface. After ‘‘convergence” of
the deviatoric stress str

nþ1;i to str
nþ1 is achieved following the above

iterative algorithm, the volumetric stress rvol
nþ1 is updated to

rvol
nþ1 ¼ rvol

n þ BðD�nþ1 : IÞ; ð22Þ

where B = elastic bulk modulus, D�n+1 = total strain tensor
increment, and I = second order unit tensor. Then, the new total
stress (at the end of the integration of the material constitutive
law over a trial time/load step) referred to as the current stress
point is given by

rnþ1 ¼ snþ1 þ rvol
nþ1 � I: ð23Þ
Fig. 3. Hardening rule of multi-yield-surface J2 plasticity model where {fm = 0}
represents the current active yield surface, sn is the converged deviatoric stress at
the last time step, and sn+1 is the current stress at the end of the trial time/load step
(after [19]).
2.3. Hardening law

A pure deviatoric kinematic hardening rule is employed to cap-
ture the Masing-type hysteretic cyclic response behavior of clays
under undrained shear loading conditions [19]. Accordingly, all
yield surfaces may translate in the deviatoric stress space to the
current stress point without changing in size (i.e., no isotropic
hardening). In the context of multi-surface plasticity, translation
of the current active yield surface {fm = 0} is generally governed
by the consideration that no overlapping is allowed between the
current and next yield surfaces [11]. On this basis, the translation
direction ln+1 as shown in Fig. 3 is defined after [19] as

lnþ1 ¼ ½sT � aðmÞn � �
KðmÞ

Kðmþ1Þ ½sT � aðmþ1Þ
n �; ð24Þ

where sT is the deviatoric stress tensor defining the position of
stress point T, see Fig. 3, as the intersection of {fm+1 = 0} (the outer
yield surface next to the current active yield surface) with the vec-
tor connecting the center a

ðmÞ
n of the current yield surface and the

current stress state (sn+1) at the end of the trial time/load step.
The hardening rule defined in Eq. (24) is also based on Mroz conju-
gate-points concept [11], and guarantees no overlapping of yield
surfaces [19]. Once the translation direction ln+1 is computed from
Eq. (24), the current active yield surface {fm = 0} is translated (or up-
dated) in the direction ln+1 until it touches the current stress point
sn+1. After the active yield surface ({fm = 0}) is updated, all the inner
yield surfaces are updated based on the current active yield surface.
For the detailed updating process of the active and inner yield sur-
faces, the following two steps are performed.

2.3.1. Active yield surface update
Compute the deviatoric stress sT (see Fig. 3) as

sT ¼ aðmÞn þ nðsnþ1 � aðmÞn Þ; ð25Þ

where the unknown scalar parameter n is obtained from the condi-
tion that sT lies on the yield surface {fm+1 = 0}, i.e., sT has to satisfy
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ðsT � aðmþ1Þ
n Þ : ðsT � aðmþ1Þ

n Þ � 2
3
ðKðmþ1ÞÞ2 ¼ 0: ð26Þ

Substituting Eqs. (25) into (26) yields the following scalar quadratic
equation to be solved for parameter n:

An2 þ Bnþ C ¼ 0; ð27Þ

where the coefficients A, B, and C are given by

A ¼ ðsnþ1 � aðmÞn Þ : ðsnþ1 � aðmÞn Þ; ð28Þ
B ¼ 2ðaðmÞn � aðmþ1Þ

n Þ : ðsnþ1 � aðmÞn Þ; ð29Þ

C ¼ ðaðmÞn � aðmþ1Þ
n Þ : ðaðmÞn � aðmþ1Þ

n Þ � 2
3
ðKðmþ1ÞÞ2: ð30Þ

From the geometric interpretation of Eq. (25) (see Fig. 3), it follows
that Eq. (27) has two real roots of opposite signs. The positive root is
the solution retained for n. Once sT is known, the translation direc-
tion ln+1 (not necessarily a unit vector) can be computed from Eq.
(24). After ln+1 is obtained, the magnitude of the translation (i.e.,
fln+1 where f is a positive scalar to be determined) is computed
from the condition that the current stress sn+1 lies on the mth yield
surface {fm = 0} after it is translated. Thus,

½snþ1 � ðaðmÞn þ flnþ1Þ� : ½snþ1 � ðaðmÞn þ flnþ1Þ� �
2
3
ðKðmÞÞ2 ¼ 0; ð31Þ

which reduces to the following quadratic equation:

A0f2 þ B0fþ C 0 ¼ 0; ð32Þ

where the coefficients A0, B0, and C0 are given by

A0 ¼ lnþ1 : lnþ1; ð33Þ
B0 ¼ �2lnþ1 : ðsnþ1 � aðmÞn Þ; ð34Þ

C0 ¼ ðsnþ1 � aðmÞn Þ : ðsnþ1 � aðmÞn Þ �
2
3
ðKðmÞÞ2: ð35Þ

From the geometric interpretation of Eq. (31) (see Fig. 3), it follows
that Eq. (32) has two real positive roots. The smaller root is the solu-
tion to the problem. After parameter f is obtained, the center of the
active yield surface {fm = 0} is updated to

am
nþ1 ¼ am

n þ flnþ1: ð36Þ
2.3.2. Inner yield surface update
After the current active yield surface {fm = 0} is updated, all the

inner yield surfaces, {f1 = 0},{f2 = 0}, . . . , and {fm�1 = 0}, are updated
such that all yield surfaces {f1 = 0} to {fm = 0} are tangent to each
other at the current stress point s as shown in Fig. 4. The updating
of the inner yield surfaces is achieved through similarity as [12]

snþ1 � a
ðmÞ
nþ1

KðmÞ
¼

snþ1 � a
ðm�1Þ
nþ1

Kðm�1Þ ¼ � � � ¼
snþ1 � a

ð1Þ
nþ1

Kð1Þ
: ð37Þ

From Eq. (37), the updated center of each of the inner yield surfaces
is obtained as

a
ðiÞ
nþ1 ¼ snþ1 �

KðiÞðsnþ1 � a
ðmÞ
nþ1Þ

KðmÞ
ð1 6 i 6 m� 1Þ: ð38Þ
3. Derivation of response sensitivity algorithm for multi-yield-
surface J2 plasticity model

3.1. Introduction

If r denotes a generic scalar response quantity (e.g., displace-
ment, strain, stress), then by definition, the sensitivity of r with re-
spect to the (material or loading) parameter h is expressed
mathematically as the absolute partial derivative of r with respect
to the variable h; or

oh

��
h¼h0

, where h0 denotes the nominal value taken
by the sensitivity parameter h for the finite element response
analysis.

In this paper, following the notation proposed in Ref. [2], the
scalar response quantity r(#) = r(f(#), #) depends on the parameter
vector # (defined by n time-independent sensitivity parameters,
i.e., # = [h1 � � � hn]T) both explicitly and implicitly through the vector
function f(#). According to the notation adopted herein, dr

d# denotes
the gradient or total derivative of r with respect to #; dr

dhi
represents

the absolute partial derivative of the response quantity r with re-
spect to the scalar variable hi, i = 1, . . . ,n, (i.e., the derivative of r
with respect to parameter hi considering both explicit and implicit
dependencies of r on hi), and or

ohi

���
z

denotes the partial derivative of r

with respect to parameter hi when the vector of variables z is kept
constant (fixed). In the particular and important case in which

z = f(#), the expression or
ohi

���
z

reduces to the partial derivative of r

considering only the explicit dependency of r on parameter hi.
For # = h = h1 (case of a single sensitivity parameter), the adopted
notation reduces to the usual elementary calculus notation. The
derivations below consider the case of a single (scalar) sensitivity
(material or loading) parameter h without loss of generality, due
to the uncoupled nature of the sensitivity equations with respect
to different sensitivity parameters.

In the context of nonlinear finite element (FE) response analysis,
the consistent FE response sensitivities based on the direct differ-
entiation method (DDM) are computed at each time or load step,
after convergence is achieved for the response computation. This
requires consistent differentiation of the FE algorithm for the re-
sponse-only computation (including the numerical integration
schemes for the various material constitutive laws used in the FE
model) with respect to each sensitivity parameter h. Consequently,
the response sensitivity computation algorithm involves the vari-
ous hierarchical layers of FE response analysis, namely the: (1)
structure/system level, (2) element level, (3) Gauss point level (or
section level), and (4) material level. Details on the derivation of
the DDM-based sensitivity equations for classical displacement-
based, force-based and mixed finite elements can be found in a
number of Refs. [4,6–9,20–22,33,34].

3.2. Displacement-based FE response sensitivity analysis using DDM

After spatial discretization using the finite element method, the
equations of motion of a materially-nonlinear-only model of a
structural system take the form of the following nonlinear matrix
differential equation:
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MðhÞ€uðt; hÞ þ CðhÞ€uðt; hÞ þ Rðuðt; hÞ; hÞ ¼ Fðt; hÞ; ð39Þ

where t = time, h = scalar sensitivity parameter (material or
loading variable), u(t) = vector of nodal displacements, M = mass
matrix, C = damping matrix, R(u, t) = history dependent internal
(inelastic) resisting force vector, F(t) = applied dynamic load vec-
tor, and a superposed dot denotes one differentiation with respect
to time.

We assume without loss of generality that the time continuous
spatially discrete equation of motion (39) is integrated numerically
in time using the well-known Newmark-b time-stepping method
of structural dynamics [35], yielding the following nonlinear ma-
trix algebraic equation in the unknowns un+1 = u(tn+1):

Wðunþ1Þ ¼ eFnþ1 �
1

bðDtÞ2
Munþ1 þ

a
bðDtÞ2

Cunþ1 þ Rðunþ1Þ
" #

¼ 0; ð40Þ

where

eFnþ1 ¼ Fnþ1 þM
1

bðDtÞ2
un þ

1
bðDtÞ

_un � 1� 1
2b

� 	
€un

" #

þ C
a

bðDtÞun � 1� a
b

� 	
_un � ðDtÞ 1� a

2b

� 	
€un


 �
; ð41Þ

a and b are parameters controlling the accuracy and stability of the
numerical integration algorithm and Dt is the time integration step
assumed to be constant.

Eq. (40) represents the set of nonlinear algebraic equations that
have to be solved at each time step [tn, tn+1] for the unknown re-
sponse quantities un+1. In general, the subscript (. . .)n+1 indicates
that the quantity to which it is attached is evaluated at discrete
time tn+1. In the direct stiffness (finite element) method, the vector
of internal resisting forces R(un+1) in Eq. (40) is obtained by assem-
bling, at the structure level, the elemental internal resisting force
vectors, i.e.,

Rðunþ1Þ ¼ A
Nel

e¼1
fRðeÞðuðeÞnþ1Þg; ð42Þ

where ANel
e¼1f. . .g denotes the direct stiffness assembly operator from

the element level (in local elements coordinates) to the structure le-
vel in global reference coordinates, Nel represents the number of fi-
nite elements in the FE model, R(e) and uðeÞnþ1 denote the internal
resisting force vector and nodal displacement vector, respectively,
of element e.

Typically, Eq. (40) is solved using the Newton–Raphson itera-
tion procedure, which consists of solving a linearized system of
equations at each iteration. Assuming that un+1 is the converged
solution (up to some iteration residuals satisfying a specified toler-
ance usually taken in the vicinity of the machine precision) for the
current time step [tn, tn+1], and differentiating Eq. (40) with respect
to h using the chain rule, recognizing that R(un+1) = R(un+1(h), h)
(i.e., the structure inelastic resisting force vector depends on h both
implicitly, through un+1, and explicitly), we obtain the following re-
sponse sensitivity equation at the structure level:

1

bðDtÞ2
Mþ a

bðDtÞCþ ðK
stat
T Þnþ1

" #
dunþ1

dh

¼ � 1

bðDtÞ2
dM
dh
þ a

bðDtÞ
dC
dh

 !
unþ1 �

oRðunþ1ðhÞ; hÞ
oh

����
unþ1

þ deFnþ1

dh
;

ð43Þ

where
deFnþ1

dh
¼ dFnþ1

dh
þ dM

dh
1

bðDtÞ2
un þ

1
bðDtÞ

_un � 1� 1
2b

� 	
€un

 !

þM
1

bðDtÞ2
dun

dh
þ 1

bðDtÞ
d _un

dh
� 1� 1

2b

� 	
d €un

dh

" #

þ dC
dh

a
bðDtÞun � 1� a

b

� 	
_un � ðDtÞ 1� a

2b

� 	
€un


 �
þ C

a
bðDtÞ

dun

dh
� 1� a

b

� 	
d _un

dh
� ðDtÞ 1� a

2b

� 	
d€un

dh


 �
:

ð44Þ

In Eq. (43), ðKstat
T Þnþ1 denotes the consistent (or algorithmic) tangent

(static) stiffness matrix of the structure/system, which is defined
as the assembly of the element consistent tangent stiffness matrices
as

ðKstat
T Þnþ1 ¼

oRðunþ1Þ
ounþ1

¼ A
Nel

e¼1

oRðeÞðunþ1Þ
ouðeÞnþ1

( )
¼ A

Nel

e¼1

Z
XðeÞ

BTDnþ1BdXðeÞ
� �

;

ð45Þ

where B is the strain–displacement transformation matrix, and Dn+1

denotes the point-wise matrix of material consistent (or algorith-
mic) tangent moduli obtained through consistent linearization of
the constitutive law integration scheme [5,33,36], i.e.,

Dnþ1 ¼
ornþ1ðrn; �n; �� �n; . . .Þ

o�nþ1
: ð46Þ

The consistent tangent modulus for the presented multi-yield-sur-
face J2 plasticity material model is computed by differentiating
the stress tensor with strain tensor, following the explicit corrective
iteration process of the stress computation. This modulus is an
unsymmetrical fourth-order tensor (i.e., it exhibits only minor sym-
metry, kijkl = kjikl = kijlk = kjilk, but kijkl – kklij). The derivation and
implementation of the consistent tangent modulus was docu-
mented elsewhere in [30,33].

The second term on the right-hand-side (RHS) of Eq. (43) repre-
sents the partial derivative of the internal resisting force vector,
R(un+1), with respect to sensitivity parameter h under the condition
that the nodal displacement vector un+1 remains fixed. It is com-
puted through direct stiffness assembly of the element resisting
force derivatives as

oRðunþ1ðhÞ; hÞ
oh

����
unþ1

¼ A
Nel

e¼1

Z
XðeÞ

BTorð�nþ1ðhÞ; hÞ
oh

����
�nþ1

dXðeÞ
( )

: ð47Þ

In the following section, computation of the unconditional (i.e., un+1

is not fixed) stress sensitivities to parameters of the multi-yield-
surface material plasticity model is presented in detail. The condi-
tional (i.e., un+1 is fixed) stress sensitivities are obtained as a special
case of the unconditional ones.

3.3. Stress sensitivity for multi-yield-surface J2 material plasticity
model

Without loss of generality, the material sensitivity parameters
that are considered in this paper are: (1) the low-strain shear mod-
ulus G, (2) the bulk modulus B, and (3) the shear strength smax (see
Fig. 1).

3.3.1. Parameter sensitivity of initial configuration of multi-yield-
surface plasticity model

In this section, the sensitivities of the parameters (see Eqs. (3)–
(10)) defining the initial configuration of the material model to the
sensitivity parameter h are derived. Differentiating Eq. (3) with re-
spect to h yields
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dcr

dh
¼ 1

ðGcmax � smaxÞ2
� cmax �

dsmax

dh
� ðGcmax � smaxÞ



� cmax � smax �

dG
dh
� cmax �

dsmax

dh

� 	�
: ð48Þ

For each yield surface {fj = 0} (1 6 j 6 NYS � 1), Eq. (5) is differenti-
ated with respect to h as

dsj

dh
¼ dsmax

dh
� j
NYS

; ð49Þ

dcj

dh
¼ 1

ðGcr � sjÞ2
dsj

dh
� cr þ sj �

dcr

dh

� 	
� ðGcr � sjÞ



�sjcr �

dG
dh
� cr þ G � dcr

dh
� dsj

dh

� 	�
: ð50Þ

Differentiating Eqs. (6)–(10) with respect to h yields

dðDcÞj
dh

¼
dcjþ1

dh
�

dcj

dh
; ð51Þ

dðDsÞj
dh

¼ dsjþ1

dh
� dsj

dh
; ð52Þ

dKðjÞ

dh
¼ 3ffiffiffi

2
p dsj

dh
; ð53Þ

dHðjÞ

dh
¼ 2

ðDcÞ2j

dðDsÞj
dh

� ðDcÞj � ðDsÞj �
dðDcÞj

dh


 �
; ð54Þ

dH0ðjÞ

dh
¼ 2

ð2G� HðjÞÞ2
dG
dh

HðjÞ þ G
dHðjÞ

dh

" #(

� ð2G� HðjÞÞ � GHðjÞ 2
dG
dh
� dHðjÞ

dh

 ! !)
: ð55Þ

The outermost yield surface (failure surface) is characterized by
H(NYS) = H0ðNYSÞ = 0. from which it follows that dHðNYSÞ

dh ¼ 0 and
dH0ðNYSÞ

dh ¼ 0. Furthermore, for each yield surface, the sensitivity to h
of the initial back-stress a(j) = 0 (initial center of the yield surface)
is zero, i.e., daðjÞ

dh ¼ 0 ð1 6 j 6 NYSÞ.

3.3.2. Stress response sensitivity
At each time or load step, once convergence is achieved for the

response computation (at the structure level), the RHS of the re-
sponse sensitivity equation (at the structure level), Eq. (43), is
formed which includes the computation of the term
oRðunþ1ðhÞ;hÞ

oh

���
unþ1

. The latter requires computation of the conditional

(i.e., un+1 is fixed case sensitives, orð�nþ1ðhÞ;hÞ
oh j�nþ1

, at each integration

(Gauss) point. Eq. (43) is solved for the displacement response sen-
sitivity dunþ1

dh . From the relationship between nodal displacements
and strains at the element level, the strain and deviatoric strain re-
sponse sensitivities (d�nþ1

dh and denþ1
dh , respectively) can be readily ob-

tained. Then, the unconditional (i.e., un+1 is not fixed) stress
response sensitivities at each integration (Gauss) point are com-
puted as they are needed to form the RHS of the structural re-
sponse sensitivity equation at the next time step. The conditional
(i.e., un+1 is fixed) stress response sensitivities are evaluated using
the same equations as the unconditional ones, but imposing the
constraint that un+1 is fixed, which implies that the strain �n+1 is
fixed for displacement-based finite elements.

Next, the stress response sensitivity to material constitutive
parameters (G, B, and smax) is derived through consistent differen-
tiation of the algorithm for stress response computation presented
in Section 2. From Eq. (14), it follows that

dstr
nþ1;0

dh
¼ dsn

dh
þ 2

dG
dh

Denþ1 þ 2G
dDenþ1

dh
ð56Þ

where Den+1 = en+1 � en and thus dDenþ1
dh ¼ denþ1

dh �
den
dh . When comput-

ing the conditional stress sensitivity (see Eq. (47)) for which the
strain �n+1 and therefore the deviatoric strain en+1 remain fixed,
denþ1

dh ¼ 0 and dDenþ1
dh ¼ � den

dh . This represents the only difference be-
tween conditional and unconditional stress response sensitivity
computations. All the formulas for unconditional sensitivity compu-
tations derived in the sequel of Section 3.3 apply equally to condi-
tional stress sensitivity computation.

The sensitivity of the contact stress s�nþ1;i to parameter h is ob-
tained by differentiating Eq. (16) with respect to h as

ds�nþ1;i

dh
¼ 1

K2
nþ1;i

dKðmÞ

dh
ðstr

nþ1;i�1 � aðmÞn Þ þ KðmÞ
dstr

nþ1;i�1

dh
� da

ðmÞ
n

dh

 !" #(

� Knþ1;i � KðmÞðstr
nþ1;i�1 � aðmÞn Þ

dKnþ1;i

dh

�
þ da

ðmÞ
n

dh
; ð57Þ

where the sensitivity of Kn+1, i to h is obtained from Eq. (17) as

dKnþ1;i

dh
¼ 3

2Knþ1;i

dstr
nþ1;i�1

dh
� da

ðmÞ
n

dh

 !
: ðstr

nþ1;i�1 � aðmÞn Þ: ð58Þ

Eq. (18) yields the following sensitivity to h of the unit tensor nor-
mal to the yield surface at s�nþ1;i:

dQ nþ1;i

dh
¼

ds�
nþ1;i
dh �

da
ðmÞ
n

dh

� �
½ðs�nþ1;i � a

ðmÞ
n Þ : ðs�nþ1;i � a

ðmÞ
n Þ�1=2

�
ds�

nþ1;i
dh �

da
ðmÞ
n

dh

� �
: ðs�nþ1;i � a

ðmÞ
n Þ

ððs�nþ1;i � a
ðmÞ
n Þ : ðs�nþ1;i � a

ðmÞ
n ÞÞ3=2 � ðs

�
nþ1;i � aðmÞn Þ: ð59Þ

Then, the sensitivity of the plastic stress correction tensor is derived
from Eq. (19) as

dPnþ1;1

dh
¼ 2

dG
dh

Q nþ1;1 : ðstr
nþ1;0 � s�nþ1;1Þ

ðH0ðmÞ þ 2GÞ
Q nþ1;1

þ 2G
Q nþ1;1 : ðstr

nþ1;0 � s�nþ1;1Þ
ðH0ðmÞ þ 2GÞ

�
dQ nþ1;1

dh

þ 2G

ðH0ðmÞ þ 2GÞ2
dQ nþ1;1

dh
: ðstr

nþ1;0 � s�nþ1;1Þ

�

þ Q nþ1;1 :
dstr

nþ1;0

dh
�

ds�nþ1;1

dh

� 	�
ðH0ðmÞ þ 2GÞ

� Q nþ1;1 : ðstr
nþ1;0 � s�nþ1;1Þ:

dH0ðmÞ

dh
þ 2

dG
dh

 !)
Q nþ1;1 ð60Þ

for the first corrective iteration (subscript i = 1) and from Eq. (20) as

dPnþ1;i

dh
¼ 2

dG
dh

Q nþ1;i : ðstr
nþ1;i�1 � s�nþ1;iÞ

ðH0ðmÞ þ 2GÞ
Q nþ1;i

"

þ 2G
Q nþ1;i : ðstr

nþ1;i�1 � s�nþ1;iÞ
ðH0ðmÞ þ 2GÞ

dQ nþ1;i

dh

#
ðH0ðm�1Þ � H0ðmÞÞ

H0ðm�1Þ

þ 2GðH0ðm�1Þ � H0ðmÞÞ
ðH0ðmÞ þ 2GÞ2 � H0ðm�1Þ

dQ nþ1;i

dh
: ðstr

nþ1;i�1 � s�nþ1;iÞ

�

þ Q nþ1;i :
dstr

nþ1;i�1

dh
�

ds�nþ1;i

dh

� 	�
ðH0ðmÞ þ 2GÞ

� Q nþ1;i : ðstr
nþ1;i�1 � s�nþ1;iÞ

dH0ðmÞ

dh
þ 2

dG
dh

 !)
Q nþ1;i

þ 2G
Q nþ1;i : ðstr

nþ1;i�1 � s�nþ1;iÞ
ðH0ðmÞ þ 2GÞ

� H0ðmÞ

½H0ðm�1Þ�2
dH0ðm�1Þ

dh
� 1

H0
ðm�1Þ

dH0ðmÞ

dh

" #
Q nþ1;i ð61Þ
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for the second and subsequent corrective iterations (i = 2, 3, 4, . . .).
The sensitivity to h of the trial stress tensor after the ith plastic cor-
rection is obtained from Eq. (21) as

dstr
nþ1;i

dh
¼

dstr
nþ1;i�1

dh
þ dPnþ1;i

dh
ði ¼ 1;2; . . .Þ: ð62Þ

If the trial stress str
nþ1;i lies outside the next outer yield surface

{fm+1 = 0}, the active yield surface index is set to m = m + 1, the cor-
rective iteration number is set to i = i + 1, the plastic correction pro-
cess and its sensitivity (Eqs. (57)–(62)) is repeated until the trial
stress falls inside the next outer yield surface.

After ‘‘convergence” of the deviatoric stress str
nþ1;i is achieved,

the sensitivity to h of the updated volumetric stress rvol
nþ1 is com-

puted from Eq. (22) as

drvol
nþ1

dh
¼ drvol

n

dh
þ dB

dh
� ðD�nþ1Þii þ B � dðD�nþ1Þii

dh
; ð63Þ

where dðD�nþ1Þii
dh ¼ dD�nþ1;11

dh þ dD�nþ1;22
dh þ dD�nþ1;33

dh . It is worth noting that in
the process of computing the conditional stress sensitivities, the
quantity dðD�nþ1Þii

dh ¼ 0, since un+1 is considered fixed. Finally, the sen-
sitivity to h of the total stress is obtained from Eq. (23) as

drnþ1

dh
¼ dsnþ1

dh
þ

drvol
nþ1

dh
� I: ð64Þ

After the sensitivity to h of the current stress rn+1 is computed, the
sensitivity of the hardening parameters, namely the back-stress
(center of the yield surface) (1 6 i 6m) for the current active and
each of the inner yield surfaces ðaðiÞn ;1 6 i 6 mÞ, must be computed
and updated (in the case of unconditional stress sensitivity only),
which is the object of the next section. The sensitivities of the
hardening parameters are needed for computing the conditional
and unconditional stress sensitivities at the next time step (i.e.,
at tn+2).

3.3.3. Sensitivity of hardening parameters of active and inner yield
surfaces

In this section, the sensitivity to h of the kinematic hardening
parameters of the active and inner yield surfaces are derived by
differentiating with respect to h the updating equations for these
hardening parameters presented in Section 2.3 (Eqs. (24)–(38)).

From Eq. (25), it follows that the sensitivity to h of the deviatoric
stress tensor sT at point T of the m-th yield surface (see Fig. 3), is
given by

dsT

dh
¼ da

ðmÞ
n

dh
þ dn

dh
ðsnþ1 � aðmÞn Þ þ n

dsnþ1

dh
� da

ðmÞ
n

dh

 !
; ð65Þ

where dn
dh is obtained from Eq. (27) as

dn
dh
¼
� dA

dh n2 � dB
dh n� dC

dh

2Anþ B
ð66Þ

and where dA
dh,

dB
dh, and dC

dh are obtained in turn from Eqs. (28)–(30) as

dA
dh
¼ 2

dsnþ1

dh
� da

ðmÞ
n

dh

 !
: ðsnþ1 � aðmÞn Þ; ð67Þ

dB
dh
¼ 2

da
ðmÞ
n

dh
� da

ðmþ1Þ
n

dh

 !
: ðsnþ1 � aðmÞn Þ

þ 2ðaðmÞn � aðmþ1Þ
n Þ :

dsnþ1

dh
� da

ðmÞ
n

dh

 !
; ð68Þ

dC
dh
¼ 2

da
ðmÞ
n

dh
� da

ðmþ1Þ
n

dh

 !
: ðaðmÞn � aðmþ1Þ

n Þ � 4
3

Kðmþ1Þ:
dKðmþ1Þ

dh
: ð69Þ

Then, the sensitivity to h of the translation direction ln+1 is
computed by differentiating Eq. (24) with respect to h as
dlnþ1

dh
¼ dsT

dh
� da

ðmÞ
n

dh

" #
�

dKðmÞ

dh Kðmþ1Þ � KðmÞ dKðmþ1Þ

dh

½Kðmþ1Þ�2

 !
½sT � aðmþ1Þ

n �

� KðmÞ

Kðmþ1Þ
dsT

dh
� da

ðmþ1Þ
n

dh

" #
: ð70Þ

After dlnþ1
dh is obtained, the sensitivity to h of the translation param-

eter f is derived from Eq. (32) as

df
dh
¼
� dA0

dh f2 � dB0

dh f� dC0

dh

2A0fþ B0
; ð71Þ

where dA0

dh , dB0

dh , and dC0

dh are obtained from Eqs. (33)–(35) as

dA0

dh
¼ 2

dlnþ1

dh
: lnþ1; ð72Þ

dB0

dh
¼ �2

dlnþ1

dh
: ðsnþ1 � aðmÞn Þ � 2lnþ1 :

dsnþ1

dh
� da

ðmÞ
n

dh

 !
; ð73Þ

dC0

dh
¼ 2

dsnþ1

dh
� da

ðmÞ
n

dh

 !
: ðsnþ1 � aðmÞn Þ �

4
3

KðmÞ � dKðmÞ

dh
: ð74Þ

Finally, from Eq. (36) the sensitivity to h of the updated back-stress
(center of yield surface) of the current active yield surface is given
by

da
ðmÞ
nþ1

dh
¼ da

ðmÞ
n

dh
þ df

dh
lnþ1 þ f

dlnþ1

dh
: ð75Þ

The sensitivity to h of the updated back-stress of each of the inner
yield surfaces are obtained from Eq. (38) as

da
ðiÞ
nþ1

dh
¼dsnþ1

dh

�
KðmÞ dKðiÞ

dh ðsnþ1�a
ðmÞ
nþ1ÞþKðmÞKðiÞ dsnþ1

dh �
da
ðmÞ
nþ1

dh

� 	
�dKðmÞ

dh KðiÞðsnþ1�a
ðmÞ
nþ1Þ

ðKðmÞÞ2
;

ð76Þ

where 1 6 i 6m � 1.

4. Application examples

4.1. Three-dimensional block of clay subjected to quasi-static cyclic
loading

In this section, a three-dimensional (3D) solid block of dimen-
sions 1 m � 1 m � 1 m subjected to quasi-static cyclic loading in
both horizontal directions simultaneously, see Fig. 5, is used as first
application and validation example. The block is discretized into 8
brick elements defined as displacement-based eight-noded, trilin-
ear isoparametric finite elements with eight integration points
each. The block material consists of a medium clay with the follow-
ing material constitutive parameters [19]: low-strain shear modu-
lus G = 6.0 � 104 kPa, elastic bulk modulus B = 2.4 � 105 kPa,
() Poisson’s ratio = 0.38), and maximum shear stress smax = 30 k-
Pa. The bottom nodes of the finite element (FE) model are fixed
and top nodes {A, B, C} and {A, D, E} are subjected to five cycles
of harmonic, 90 degrees out-of-phase, concentrated horizontal
forces Fx1 ðtÞ ¼ 2:0 sinð0:2ptÞ½kN� and Fx2 ðtÞ ¼ 2:0 sinð0:2ptþ
0:5pÞ½kN�, respectively. The number of yield surfaces is set to 20.
A time increment of Dt = 0.01 s is used to integrate the equations
of quasi-static equilibrium (i.e., without inertia and damping
effects).

The displacement response of node A (see Fig. 5) in the x1-direc-
tion is shown in Fig. 6 as a function of the force Fx1 ðtÞ, while the
hysteretic shear stress–strain response (r31 � e31) at Gauss point
G (see Fig. 5) is plotted in Fig. 7. These figures indicate that signif-
icant yielding of the clay is observed during the cyclic loading
considered.
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The sensitivities of the displacement response u(t) of node A in
the x1-direction to the shear modulus G, bulk modulus B and shear
strength smax computed using the DDM are compared in Figs. 8, 10
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and 11, respectively, with the corresponding sensitivities esti-
mated using the forward finite difference (FFD) method with
increasingly small perturbations Dh of the sensitivity parameter
h. Fig. 9 shows a zoom view from Fig. 8 that allows to better appre-
ciate the convergence trend of the FFD results to the DDM one. In
all cases, it is observed that the FFD results converge asympotically
to the DDM results as Dh/h becomes increasingly small. In each
case, particular attention was given to the choice of the lower value
of the parameter perturbation so as to avoid numerical problems
related to round-off errors. A perfect match between DDM and
FFD results was achieved with relative perturbation Dh/h of
1.0e�5, 1.0e�5 and 1.0e�4, respectively, for the shear modulus
G, bulk modulus B, and shear strength smax.

4.2. Multi-layered soil column subjected to earthquake base excitation

The second benchmark problem consists of a multi-layered soil
column subjected to earthquake base excitation. This soil column
is representative of the local soil condition at the site of the Hum-
boldt Bay Middle Channel Bridge near Eureka in northern Califor-
nia [16]. A Multi-yield-surface J2 plasticity model with 20 yield
surfaces and different parameter sets given in Table 1 is used to
represent the various soil layers. The soil column is discretized into
a 2D plane-strain finite element model consisting of 28 four-node
quadratic bilinear isoparametric elements with four Gauss points
each as shown in Fig. 12. The soil column is assumed to be under
simple shear condition, and the corresponding nodes at the same
depth on the left and right boundaries are tied together for both
horizontal and vertical displacements. First, gravity is applied qua-
si-statically and then base excitation is applied dynamically. The
total horizontal acceleration at the base of the soil column, see
Fig. 13, was obtained from another study [16] through deconvolu-
Table 1
Material properties of various layers of soil column (from ground surface to base of
soil column).

Material # G (kPa) B (kPa) smax (kPa)

1 54450 1.6 � 105 33
2 33800 1.0 � 105 26
3 96800 2.9 � 105 44
4 61250 1.8 � 105 35
5 180000 5.4 � 105 60
6 369800 1.1 � 106 86
tion of a ground surface free field motion. The Newmark-beta di-
rect step-by-step integration method with parameters b = 0.2756
and c = 0.55 is used with a constant time step Dt = 0.01 s for inte-
grating the equations of motion of the soil column. The horizontal
displacement response of the soil column (relative to the base) at
the top of each soil layer is shown in Fig. 14. The shear stress–strain
(rxz,exz) hysteretic response at Gauss points C, D, E, F (see Fig. 12) of
the soil column is shown in Fig. 15. The response simulation results
in Figs. 14 and 15 indicate that the soil material undergoes signif-
icant nonlinear behavior.

Response sensitivity analysis is performed with the low-strain
shear modulus Gi, the bulk modulus Bi, and the shear strength
smax, i of the various soil layers (subscript i denotes the soil layer
number, see Fig. 12) selected as sensitivity parameters. The
DDM-based response sensitivity results are verified using the FFD
method. Representative comparisons between response sensitivi-
ties obtained using DDM and FFD with increasingly smaller pertur-
bations of the sensitivity parameters are shown in Figs. 16–21.
From these figures and closeups, the FFD results are shown to con-
verge asymptotically to the corresponding DDM results as the per-
turbation of the sensitivity parameter becomes increasingly small.

Finite element response sensitivity analysis can be used as a
tool to investigate the relative importance of various system
parameters in regards to the system response. Normalized
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response sensitivities (obtained through scaling each response sen-
sitivity by the nominal value of the corresponding sensitivity
parameter) can be used to quantify the relative importance of sys-
tem parameters. Each normalized sensitivity can be interpreted as
‘‘100 times the change in the considered response quantity due to
one percent change in the corresponding sensitivity parameter”. As
a first illustration, Fig. 22 shows the normalized sensitivities of the
horizontal displacement response of the soil column top (ground
surface) to the six most sensitive material parameters based on
the peak (absolute) value of the normalized response sensitivity
time history. These results indicate that the ground surface hori-
zontal displacement response is most sensitive to, in order of
decreasing importance: (1) smax, 4, (2) smax, 5, (3) smax, 6, (4) G4,
(5) G5, (6) G6. Thus, the shear strength parameters of the bottom
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soil layers are very important in controlling the ground surface dis-
placement response, since the soil undergoes significant nonlinear-
ities when responding the earthquake excitation considered. This
type of information may be extremely useful to geotechnical engi-
neers seeking an optimum strategy (for example among various
ground improvement techniques) to reduce the maximum ground
surface displacement response during an earthquake. FE response
sensitivities to material parameters are also invaluable to engi-
neers when performing FE model updating, since they point to
the most sensitive parameters which should be adjusted or
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at Gauss points C, D, E, and F (see Fig. 12).
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calibrated with the highest priority. In a second illustration of the
use of response sensitivity analysis, the effects of the low-strain
shear modulus G6 (of bottom soil layer) on the relative horizontal
displacement response of the soil column at various soil layers
are investigated. Fig. 23 shows the normalized sensitivities to G6

of the horizontal displacement response of the soil column at var-
ious soil layers (u1 through u6). From these results, it follows that
the ranking of the displacement responses u1 through u6, in
decreasing order of their sensitivity to G6, is: (1) u1 and u2, (2) u3

and u4, (3) u5, (4) u6. These results indicate that the low-strain
shear stiffness of the deepest soil layer affects most the soil re-
sponse at the ground surface level.

For the two application examples presented above, convergence
of the FFD response sensitivity results to the ones based on DDM
validates the DDM-based algorithms for response sensitivity com-
putation presented in this paper as well as their computer imple-
mentation. Regarding response sensitivity computation using the
FFD, it is worth mentioning the ”step-size dilemma” [7,37]: if the
parameter perturbation Dh is selected to be small, so as to reduce
the truncation error, the condition error (due to round-off errors)
may be excessive. In some cases, there may not be any value of
the parameter perturbation Dh which yields an acceptable error.

5. Conclusions

The direct differentiation method (DDM) is a general, accurate
and efficient method to compute finite element (FE) response
sensitivities to FE model parameters, especially in the case on
nonlinear materials. This paper applies the DDM-based response
sensitivity analysis methodology to a pressure independent
multi-yield-surface J2 plasticity material model, which has been
used extensively to simulate the behavior of nonlinear clay soil
material subjected to static and dynamic loading conditions. The
algorithm developed is implemented in a software framework for
finite element analysis of structural and/or geotechnical systems.
Two application examples are presented to validate, using forward
finite difference analysis, the response sensitivity results obtained
from the proposed DDM-based algorithm. The second application
example is also employed to illustrate the use of finite element re-
sponse sensitivity analysis to investigate the relative importance of
material parameters on system response.

The algorithm developed herein for nonlinear finite element re-
sponse sensitivity analysis of geotechnical systems modeled using
the multi-yield-surface J2 plasticity model has direct applications
in optimization, reliability analysis, and nonlinear FE model
updating.
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