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Abstract: This paper examines the important issue of response sensitivities of dynamic models of structural systems to both materia
and (discretg loading parameters. Plasticity-based finite-element models of structural systems subjected to base excitation such a
earthquake loading are considered. The two methods for computing the response sensitivities,(badistygetizing in time the time
continuous-spatially discrete response equations and differentiating the resulting time discrete-spatially discrete response equations wi
respect to sensitivity parameters, afjl differentiating the time continuous-spatially discrete response equations with respect to sensi-
tivity parameters and discretizing in time the resulting time continuous-spatially discrete response sensitivity equations, are clearly
distinguished. The discontinuities in time of the response sensitivities arising due to material state transitions in the plasticity models, anc
their propagation from the quadrature point level to the global structural response level are discussed using a specific one-dimension
plasticity model. The procedure to obtain the exact sensitivities of the numerical nonlinear finite-element response, including proper
capture of their discontinuities, is formalized. Application examples illustrating the concepts are presented at the end.
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Introduction tion, finite-element model updating, structural health monitoring,
and even structural contrdin the context of semiactive control
In seismic reliability analysis of civil structures, the inherent ran- systems based on real-time modification of structural system pa-
dom variability and/or uncertainty associated with both the struc- rameters
ture.and earthquake dynamic loading must be taken into'(.:onsid- This paper focuses on the important issue of computing, using
eration. Furthermore, in order to evaluate the probability of consistent linearization, the exact sensitivities to both structural
structural failure or collapse, which occurs in domains of grossly gnd loading parameters of any computed response quéloiigl
nonlinear response behavior both materially and geometrically, or global, kinematic or staticof a plasticity-based nonlinear
nonlinear finite-element models of structures able to capture thefipite-element structural model. Focus is placed on materially
salient features of the actual ultimate structural behavior under yopjinear-only finite-element analysis, even though the consistent
strong earthquake shaking are needed. A key ingredient of stiuC+jpjte_element response sensitivity analysis method discussed
tural reliability methods is the sensitivities to both system and parein is general and can be extended to the case of nonlinear
loading parameters of the structural response/demand quantitiegyeometry without any conceptual difficulties. The material mod-

used in formulating the limit-state or performance functions de- els considered here are based on rate independent classical plas-

f'g!gg the varous phgcg\'ﬂ 't'L”'t'St‘t"’_‘tesl’l “trr‘]der Co_tr_‘s_'tder?“o“ ticity theory (i.e., definition of a yield surface within which the
(Ditlevsen and Madsen 19@Mathematically, the sensitivity of a material is supposed to be linear elastit contrast with general-

vector-ba_sed generic respon_s_e_quarrt(ty W'th. respectto a sca- oy plasticity theory(Lubliner 1990-Chapter 3, Miller 1987
lar material or loading sensitivity parameteris defined as the . . I .
which does not require the definition of a yield surface and ac-

partial derivative ofr(t) with respect tof. Beside their use in . L . . . .
structural reliability analysis, finite-element response sensitivities cording to which inelastic deformations/strains start developing
' from the start of loading. The methodology presented in this

represent an essential ingredient for gradient-based optimization

methods needed in structural optimization, structural identifica- Paper assumes spatlal dlscretlzatlor_l, using the f|n|te_-element
method, of the spatio-temporal governing response equations. The

resulting ordinary differential equations in time are integrated
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using a time-stepping scheme, the semi-discretized equations ofigid-soil excitation. Without loss of generality, a single compo-
motion to yield a set of nonlinear algebraic equations to be solved nent ground excitation is considered. The potential dependence of
using a Newton-Raphson iterative scheme, and then differentiat-each term of the equation of motion on the sensitivity paranteter
ing exactly, with respect to the sensitivity parameigthe time is shown explicitly in Eq(1).
discrete-spatially discrete response equations to obtain a linear Let r(t) denote a generic scalar response quantity such as
algebraic sensitivity equation once the response is known. Usingdisplacement, acceleration, local or resultant stress, local or re-
the two approaches defined above under the general tideeuft sultant strain, or local/global cumulative plastic deformation. By
differentiation method DDM), previous researcher&Choi and definition, the sensitivity of (t) with respect to the material or
Santos 1987; Arora and Cardoso 1989; Tsay and Arora 1990;loading parametef is mathematically expressed as the partial
Zhang and Der Kiureghian 1993; Kleiber et al. 198@ve devel- derivative ofr(t) with respect to the variablé. The response
oped finite-element response sensitivity analysis methods. How-sensitivity is both a function of timeand sensitivity parametér
ever, these references do not carefully distinguish between thesevhich takes a specific valug, during a sensitivity analysis. By
two approaches. This paper examines the distinction between the:iefinition,ar(t)/ae|9=60 is continuous in time at=t, if and only
two approaches and states the conditions under which they argf
equivalent. Herein, we refer to the second approach or Method I
as theconsistent DDMn order to highlight this distinction. lim m = lim M
Significant research has been dedicated to the general problem Atmo 00 tfffom Atmg 90
of design sensitivity analysis for path dependent problems in the 0
structural optimization communitge.g., Choi and Santos 1987; Algorithms for response sensitivity computation can be formu-
Arora and Cardoso 1989; Tsay and Arora 1990; Tsay et al.})1990 lated in two ways(Methods | and I} as sketched in Fig. 1. The
However, much of this work considers constéirg., stati¢ load- first method(represented by steps And A in Fig. 1) consists of
ing, sensitivities with respect to shape parametarsl not con- first obtaining the semi-discretizétime continuous-spatially dis-
stitutive material parametersand idealized/specialized problems cretg differential equations governing the exact response sensi-
not formulated within a general finite-element analysis framework tivity (herein,exact response sensitivitgfers to the exact sensi-
(e.g., Tsay et al. 1990which differs from the focus of this paper tivity, with respect to the sensitivity parametér of the exact
(response sensitivity analysis of general plasticity-based dynamicsolution of the time continuous-spatially discrete response equa-
structural models with respect to material and loading parameterstions) and then discretizing them in time, using a time-stepping
within a general finite-element analysis framework algorithm, to determine a numericapproximationof the exact
Models based on classical plasticity theory result in responseresponse sensitivity. Conversely, the second methepresented
sensitivities that are discontinuous in time. This is due to the by steps B and B, in Fig. 1) consists of first discretizing in time
material state transitions that occur at discrete times. These disthe semi-discretized equations of motion to obtain a numerical
continuities occur in various response quantities at both the estimate of the exact responéerein,exact responseefers to the
quadrature point level and the global structural level during their exact solution of the time continuous-spatially discrete response
numerical integration in time. The physical nature of these dis- equationy and then differentiating exactly the numerical scheme
continuities as well as their propagation from the quadrature point for the response with respect to the sensitivity parametar
to the global level are illustrated through a simple 1-D plasticity order to obtain the exact sensitivity of the numeri¢ahite-
model. elemen} response. An interesting question is whether the re-
The main motivation for examining and understanding the dis- sponse sensitivities computed from these two schemes are the
continuities in sensitivities comes from reliability analyses for same. As shown below, the answer to this question is that it de-
finding “design points” such as FORM and SORMirst-order pends on the discretization schemes used to determine numeri-
and second-order reliability method¢Ditlevsen and Madsen cally the response and response sensitivitieginkenschloss
1996, using gradient based optimization techniques. From the 1997 and how these numerical schemes handle the discontinui-
experience of the authors, these discontinuities in the sensitivitiesties exhibited by the response sensitivities.
crucially affect the rate of convergence of the optimization
schemes to the design poirSonte and Vijalapura 1998; Vijal-
apura et al. 1999

ar(t)
0=0, g9 |0=0, 2)
t=ty+ At t=t,

Exact Sensitivity of Numerical Response (Method 1)

In this section, the equations for calculating the response quanti-

Formulation ties for the dynamic case and a brief description of their numeri-
cal calculation are provided. Following this, the sensitivity equa-
tions are obtained by exactly differentiating, with respect to the
sensitivity paramete#, the numerical scheme for computing the
response.

We assume without loss of generality that the equation of mo-
M(0)u(t,0)+C(0)u(t,0)+R[u(t,0),0]=F(t,0) 1) tion (1) is integrated numerically in time using the well-known
Newmark$ method of structural dynamid€hopra 200}, i.e.

After spatial discretization using the finite-element method, the
spatio-temporal equation of motion of a materially nonlinear-only
structural system is given by the following nonlinear matrix dif-

ferential equation:

wheret=time; 6=scalar sensitivity parametématerial or load-

ing variable; u(t) =vector of nodal displacement§€=damping 1 1 1

matrix; M =mass matrixR(u,t) =history dependent interngin- Upiq= ( 1- 25 Up— X)) u,+ > (Upt+1—Up)
elastig resisting force vectorE(t) =dynamic load vector; and a B B B(AD (3)
superposed dot denotes one differentiation with respect to time. In _ o ol o

the case of earthquake ground excitation which is the focus of this  u, 1= (At)( 1- 26 u,+(1—- B u,+ W(UHH— un)

research, the dynamic load vector takes the foff(t)
=—ML U4(t) in which L is an influence coefficient vector and wherea andB=parameters controlling the accuracy and stability
Ug(t) denotes the input ground acceleration histéagsuming of the numerical integration algorithm. Special cases of the

JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2003 / 1381



Semi-discretized,

Method I

in time)

nonlinear matrix
differential equation of motion
(discretized in space and continuous

Method 11

Exact differentiation w.r.t. ©

l

Nonlinear matrix differential
equation governing the exact
sensitivity, ou(t)/00, of the
exact response, u(t).

(Ay)

Time discretization of both response
and sensitivity equations

!

Nonlinear matrix algebraic equa-
tion governing the numerical
estimate of the exact response
sensitivity, (au(t)/89)|t=ti, i=

1,2,..,n.
(A2)
Numerical approximation of
exact response sensitivity: ?

(Qu(t)/00)|,_,,i=1,2,..,n.

Time discretization of
response equation

{

Set of nonlinear, recursive alge-
braic equations governing the
numerically computed response,

w,i=1,2,..,n

(By)

Exact differentiation w.r.t. 6

l

Nonlinear, recursive, algebraic
equations governing the exact
sensitivity of the numerical

response, 0u;/90,i=1,2, .., n.

(B,)

Exact sensitivity of numerical

response: ow;/00,i=1,2,..,n

Fig. 1. Flow chart of the two approaches for computing response sensitivities

Newmarkf method are the conditionally stable linear accelera-
tion method(«=1/2, 3=1/6) and the unconditionally stable con-
stant average acceleration methed=1/2, B=1/4). Substitution

of Egs.(3) into equation of motior{1) expressed at discrete time
t=t,.1,=(n+1)At, in which At denotes the constant time in-
crement, yields the following nonlinear matrix algebraic equation
in the unknownal, ;1 =u(t,;1):

ll'(un+1):|:n+1_ Cun+l+R(un+l)

(¢4
B(At)ZMU””+ B(AD)

=0 4)
where
For=Foea b M| —— Uyt —(1—i)“
n+1= 'n+l B(At)zun B(Al) un ZB’Un
+C * 7(170L)'7At(17a)"
pray | 1) AU g

Eq. (4) represents the set of nonlinear algebraic equations for the
unknown response quantities, ; that has to be solved at each
time step[t,,t,.1]. In the displacement-based finite-element
methodology, the vector of internal resisting fordeéu, . ;) in

Eq. (4) is obtained by assembling, at the structure level, the vec-
tors of elemental internal resisting forces as

J BT(X)- oe€n11(X)]-dQe ®)

e

Nel
R(Ups1)= A [

e=1

where AN £, 1 denotes the direct stiffness assembly operator
from the element levdiin local element coordinatg$o the struc-
ture level in global reference coordinates=vector of spatial
coordinates; an@=strain-displacement transformation matrix.

We assume that a Newton-Raphs@r a modified Newton
type) iterative procedure is used to solve E4) over time step
[t,,ths1] through solving a sequence of linearized problems of
the form

(KPMhedUpii=Wh,y =012,

(6)
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Fig. 2. Graphic representation of iterative Newton-Raphson procedure used to integrate nonlinear equations of motion frpto time

where

. dUpig

CH (K11 |-

(KPMhi1= - M B(At)CJr(KStat)nH} 7 B(At)z B(At) e
BIAY _ 1 oM a dC

and =— B(At)2ﬁ+B(At)m Unt1
~ 1 _ -
wi | ———Mul,+ —Cu,,+R(u, IR(Up;1(6),6) oF,

L YUVl B(At) R (8) % I % (11)

The updated nodal displacement vectq+1, or displacement where

vector at the end of iteration numbei+1) of time step ~

[tn,the1], is Obtained as OFp+1 OFh41 M
90 a6 ' 96

1 1 (1 1)..
82 " By Ut 2p)

1 du, 1 au, ( 1)aun
Me@oz a0 "By a0 |28/ a0

1 1 1
Upt i =Unt AUt =up,, +3uty )

where AutY andsul’} denote the total incremental displace-

ment vector from the last converged step and the last incremental

displacement vector, respectively. In ET), K$-V" denotes the

tangent dynamic stiffness matrix and tbensistent or algorith- aCl « o o
mic (static) tangent stiffness matrpk$®), ., in Eq. (7) is ob- + =5 mun—(l— E)Un—(m)(l— £>Un
tained as
Nel o  duy a) au, aun
(K= A[ fﬂ BT(x)-Dr(x)-B(x)-dQe}  (10) Cean a0 |1 a0 (AT 23
e=1 e

whereD+(x) denotes the matrix of material consistent or algorith- (12)
mic tangent moduli obtained through consistent linearization of The second term on the right-hand-side of Eid) represents the
the numerical scheme used to integrate the rate constitutive equapartial derivative of the internal resisting force vect@(u, 1),
tions (Simo and Hughes 1998The above Netwon-Raphson pro-  with respect to sensitivity parameteunder the condition that the
cedure is represented schematically in Fig. 2. In the case of modi-displacement vectau,, ; remains fixed. From Eq5), this con-

fied Newton, K$®)!,,=(K$®?2,,, for all i=0,1,2. For ditional derivative term can be expressed as
Method Il considered in this section, this numerical scheme for

response calculation is then differentiated exactly with respectto ~ 9R(Un+1(6),0)] NAelf BT(x). 6
the sensitivity parametef. Note that the semi-discretéime a0 " e=1J 0. a0 ) €
continuous-spatially discretequations are not used at all in ob- n fe (13)

taining the sensitivity equations. Assuming thgt , is the con-

verged solutior(up to some iteration residuals satisfying a speci- Whereda(x)/96| . denotes the derivative of the stress vector
fied tolerance usually taken in the vicinity of the machine o(e,.1(0),0) with respect td for fixed strain vectok,, ;.
precision for the current time steft,,t,,, 1], and differentiating Analytical expressions for this history dependent conditional
Eq. (4) with respect tob using the chain rule, recognizing that derivative of the stress vector have been derived by Zhang and
o=0o(e(t,0),0) wheres ande denote the stress and strain tensors, Der Kiureghian(1993 and Conte and co-workefd995, 1998
respectively, we obtain for the constitutiveJ, (or Von Mises plasticity model and by
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Conte and Jagannati995 and Conte et al(1995 for the con- Both for Methods | and Il, from a numerical standpoint, it can
stitutive cap plasticity model in the case of a return map consti- be assumed that the changes of material state occur within time
tutive integration algorithniSimo and Hughes 1998Notice that steps and never exactly at the discrete time values considered by
once the numerical response of the systert), at is known, the the time stepping scheme. The justification is that the probability
matrix sensitivity Eq.(11) is linear and has the same left-hand- of a material state transition occurring exactly at a discretized
side matrix operator as the consistently linearized (Byfor the time valuet,, while performing the computations using double
response at the last iteration before convergence is achieved foprecision arithmetic is negligiblé<leiber et al. 199Y. This im-
the current time stept, ,t,,.,]. Therefore, only the right-hand- plies that at any discrete tintg, the material state and hence the
side of Eq.(6) needs to be recomputed and since the factorization tangent stiffness matrix are uniquely defined.
of the tangent dynamic stiffness matié”" is already available Furthermore, from a comparison of the two methods, one can
(stored in the computgat the converged time steép, ;, solution enumerate the assumptions on Method | to obtain Method II. As
of Eq. (11) is computationally cheagonly forward-backward mentioned in the Introduction, the lack of clear distinction be-
substitution phage This summarizes the steps for computing the tween these two methods has led some earlier works to adopt
response sensitivities using Method 1l. Some observations aboutMethod | but make the following assumptions, which exactly
Method Il are made below. leads one to Method II. These conditions can be listed as:
Method Il exactly differentiates the numerical time stepping 1. Integration of the semi-discretized governing sensitivity Eq.
scheme for computing the response sensitivities and, having made  (14) over time stefdt, ,t, ;1] using the same time stepping

this identification, there is absolutely no confusion as to which scheme, see Eq(3), as that for integrating the semi-
tangent moduli(consistent or continuujo use in building the discretized equation of motion given in EQ.);

static tangent stiffness matrix in E¢LO). Differentiation of the 2. Using the same constitutive law integration schene¢urn
numerical scheme for determining,, , from €., indeed pro- map algorithm for integrating the sensitivity equation as

vides the consistent tangent moduli. In this regard, some of the that used for integrating the response equation; and _
previous works mentioned earlier seem to be adopting Method | 3.  Replacing the continuuistatio tangent stiffness matrik

for arriving at the sensitivity equations which would naturally by the consistentstatig tangent stiffness matrik 3.

require using the continuum tangent as shown in the next section.  Although the above Conditions 1 and 2 are justifiable, Condi-
Instead, they use the consistent tangent moduli as required bytion 3 is very ad hoc simply because the consistent tangent stiff-
Method Il. This clear distinction between the two approaches and ness is purely an outcome of discretizing the response equations
the appropriateness of using either of the two tangent moduli in space and in time and then differentiating the resulting numeri-
seem to be lacking. Further, for viscoelastic and viscoplastic mod- cal scheme. These conditions establish the equivalence between
els (not considered in this papewhere the constitutive relations  the two methods and help clarify some of the earlier works.

are given in terms of convolution integrals for history dependence
(Simo and Hughes 1998the notion of a continuum tangent does
not even exist. For these cases, Method Il is probably the only
recourse. These situations make the distinction between the twoThe response sensitivity of an inelastic dynamic system,
methods all the more important. ar(t)/a8y=o,, is not continuous in time as illustrated in FigcB

for the case in which(t) is taken as a nodal displacement re-
sponsal(t). The discontinuities along the time axis arise due to a
finite number of switchings between material states, i.e., switch-
This section briefly discusses the alternative approach where theNd between elastic and plastic states and vice-véidaiber
semi-discrete(time continuous-spatially discrétequations are €t al. 1997; Conte and Vijalapura 1998; Conte 2000he gov-
used to obtain the response sensitivity equations. Differentiating €ning sensitivity Eq(11) involves the partial derivative/od of

Discontinuities due to Material State Transitions

Numerical Sensitivity of Exact Response (Method 1)

exactly the semi-discretized nonlinear equation of motiyrwith the internal resisting force vect®, which changes with change
respect td and changing the order of differentiation with respect in material state for a given deformation state, thus in general
to t and 0 yields producing discontinuities in the sensitivity of the nodal displace-
~ ment response&ee the section “Propagation of Discontinuities
M(0)V(t,0)+C(0)v(t,0)+K[u(t,0)]v(t,0) from Local to Global Response SensitivitigsThe exact instants
in time t’, t”, andt” in Fig. 3 depict these material switching
aF(t,0) aM(0) . aC(0) . times. At the material state transition points, the response sensi-
=——— ——U(t,0)— u(t,0) i - O E it
90 90 90 tivity is undefined as shown in Fig. 3, the values of the sensitivity

being different for the two material states immediately preceding

d and succeeding the exact transition time. Hence, numerical algo-
B @R[U(t’e)’e] (14) rithms used to compute response sensitivities must be able to
- ! capture these discontinuities.
wherev(t,0)=0u(t,0)/06 andK; denotes the continuulistatio In solving the nonlinear equations of motion using the
tangent stiffness matrix obtained from the continuum tangent Newton-Raphson(or even modified Newton incremental-
moduli (when the notion of continuum tangent moduli exisié iterative procedure in conjunction with a return map algorithm

the material. A sufficient condition for permuting the partial de- (Simo and Hughes 19980 integrate the rate constitutive equa-
rivatives with respect td and 6 is that the partial derivatives  tions, the exact timéwithin a time step at which a material state
au/ae, au/at, anda(au/at)/96 exist and be continuous in both transition occurs is not explicitly solved for. If it were the case,
andt at all points along the time axis &t=0,, the reference  this exact time would have to be differentiated with respect to the
value of the sensitivity parametéCourant 1988 However, in sensitivity paramete (Conte and Vijalapura 1998n order to

the case of inelastic system&)/06 and d(du/dt)/96 are only carry the discontinuity of the response sensitivity across the
piecewise continuous. change of material state. In the case of a return map constitutive
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u(t, 0) A

Stress

Change of material state

(@

(b) ©

Fig. 3. Sketch of discontinuities in displacement response sensitivity

integration algorithm and assuming that a material state transitionthe right-hand-side of the sensitivity E@.1) and solve the latter.
occurs at a Gauss quadrature point within the time [dief,, 11, This procedure was implemented in the general-purpose nonlinear
the corresponding discontinuities in the derivatives of the history/ finite-element analysis progrartREAP developed by Taylor
state variablege.g., plastic strain components, hardening param- (1998 (Zienkiewicz and Taylor 2000and validated through vari-
eter, etc. are captured by the differentiation algorithm outlined ous examples in which the exact sensitivities of the computed
above(i.e., Method I), although the exact occurrence time within hysteretic finite-element response are validated through finite dif-
a time step of the material state transition is not solved for. Thus, ference sensitivity calculatioi€onte and Jagannath 1995; Conte
the discontinuities in the derivatives with respect to material and et al. 1995; Conte and Vijalapura 1998; Conte 200he inter-
loading parameters of global response quantities are carried conested reader is referred to the above references for further details
sistently across material state transitions through the upwardon the development of the above proced(vkethod Il) for both
(from local/Gauss point level to global/structure levetopaga- the J, (von Mises and cap plasticity models, its software imple-
tion of the discontinuities in derivatives of history variables at the mentation and validation.

element(or Gauss pointlevel. All these ideas are made concrete

through anexample one-dimensiondlD) plasticity model Example of One-Dimensional J , (von Mises) Plasticity

below.
This section particularizes the various steps in Method Il to a

Finite-Element Implementation and Validation simple quz Plasticity model yvith .the von Mises vyield criterion..

of Method |1 'I_'he equfatlons for the numerical integration of the rate constitu-
tive relations of the 1D model, for both the response and response

The procedure for consistent finite element response sensitivitysensitivities are provided below. For the multidimensiopgilas-

analysis presented as Method (br consistent DDM requires ticity model as well as the more complicated cap plasticity model,

extensions of standard nonlinear finite-element analysis codes inthe reader is referred elsewhe(€onte and Jagannath 1995;

order to compute and assemble the finite-element contributions toConte et al. 1995; Conte and Vijalapura 1998; Conte 2001
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The plasticity model assumes that the 1D total steagan be
additively split into an elastic pag® and a plastic partP. The
1D stressr depends only om®. Plasticity is introduced through a
scalar yield functionf(o,a,eP) in the stress space. Here, the
scalara is called the back-stress and models the kinematic hard-
ening, whileeP is the cumulative plastic strain and is used as
isotropic hardening parameter. The elastic domain is defined by
states of stress such thatrfx,e)<0 and the yield function is
constrained to take on nonpositive values, ifdg,a,eP)<0.
When the state of stress is on the yield surface, ffer,o,eP)
=0, plastic flow(described by the flow rujeor elastic unloading
takes place depending on the total strain eatesither being de-
termined uniquely by the plastic consistency condition or the
Kuhn-Tucker conditions for loading/unloading and the plastic
consistency equatiofSimo and Hughes 1998The hardening of
the material during yielding is modeled by the hardening law. The
equations for the 10J, plasticity model with von Mises vyield
function and a linear hardening law are summarized below.

1. Additive decomposition of the total strain
e=g%+¢P (15)
2. Elastic stress-strain relations
o=E-&® (16)
where E=elastic Young’s modulus of the material;
3.  Flow rule
eP=\-sgno—a) (17)
where\=consistency parameter and $ghdenotes the sign
function;
4. Hardening lawglinear kinematic and linear isotropic hard-
ening
a=Hyj,- &P
EP=\ (18)
Uy:UyO+HiSO'y)
where £°=\/zP=|zP| denotes the rate of effective plastic
strain, eP= [P dt=effective or cumulative plastic strain;
ayo=initial yield stress;o,=current yield stress; antl,
andH;s,=kinematic and isotropic hardening moduli, respec-
tively;
5. Kuhn-Tucker conditions for loading/unloading
A=0, f(o,a,eP)<0 and\-f=0 (19)
6. Plastic consistency condition
A=0, f(o,a,eP)<0 and\-f=0 (20)
The yield function is of the form
f(O’,OL,y)):|O'_OL|_(0'yo+HiSOS_p) (21)

The 1DJ, plasticity model with pure linear kinematic hardening
(Hisc=0) corresponds to the well-known bilinear inelastic model
shown in Fig. 4. In the above, the flow rule and hardening laws
are given in rate form. The rate constitutive equations have to be
integrated numerically in order to obtain the stress history for a
given strain history. Using the implicit backward Euler scheme to
time-discretize the rate equations over the time $tept, 1]
(with step sizeAt=t, ., ;—t,), we obtain the following discretized
material constitutive equations:

1. Additive split of the total strain

(22)

_.e p
En+1=8nr1T €Nt

2. Elastic stress-strain relation
0'n+1:E’8ﬁ+1 (23)
3.  Flow rule
8ﬁ+_1:8ﬁ+_A)\'Sgr(o'n+l_0‘n+1) (24)

whereA)\=f§”“>\~ dt=\,. ;- At is the discrete consistency
n

parameter;
4. Hardening lawglinear kinematic and linear isotropic hard-
ening
Anr1=%+Hyin AN -SgMon 1~ y1)
&P =eP+ AN (25)
0'y,nJrlzcy,n""Hiso' AN
Kuhn-Tucker loading/unloading and plastic consistency con-
ditions
A)\BO’ f(0n+lran+1’;ﬁ+1)$o
and

AN (s 1,041,884 1) =0 (26)

The subscripf...),. ; denotes that the quantity to which the sub-
script is attached is evaluated at time ; .

As a particular one-dimensional application of the very effec-
tive elastic-plastic operator split method with a concept of return
map which is based on the notion of closest-point-projection in
the stress spacgimo and Hughes 1998the above discretized
constitutive equations are solved for stress compowognt in
two steps, namelyl) a trial elastic step an(®) a plastic corrector
step. In the trial elastic step, the plastic response is frozen and,
consequently, all of the current total strain incremenis(,
=epr1—€n) IS assumed to be elastic. If the stress computed
under this assumption satisfies the yield condition, then the cur-
rent step is elastic and the integration of the material constitutive
law over time stefdt,,t,, ] is complete. Otherwise, the above
discrete constitutive equations are solved for the discrete consis-
tency parameteA\ and finally foro .4, (by the return map al-
gorithm). The procedure is summarized below.

Trial Elastic State
AN Trial — 0

(SE+1)TnaI: sg

Trial _
0Lnr-:-al_ Qn (27)
(Eﬁ+ 1)Trlal :EE

Trial _

n+1_E(8n+l_SE)

Trial _
Oyn+1~Oyn
Trial Trial

IF {f(o7 e (2B, ) ™) <0} THEN

Update all the state/history variables at titpe, by assigning
the corresponding trial values to them, ife., ). 1= (...)/" and
EXIT.

ELSE

Plastic Corrector Step Using the Return Map Algorithm

The plastic corrector step is based upon satisfying the consistency
condition in discrete form
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Fig. 4. Return map algorithm for 103, (von Miseg plasticity model with pure kinematic hardening {,=0)

fn+1:|0n+1_an+1|_

where

On+1=

Trlal
On+1

Qn+1

E(ens1— 8n+1)

= E{8n+1_8ﬁ_[A)\ : Sgr(Un+1_04n+l)]}

0'y,n+1:0 (28) Onr1~@ne1=|0ni1—anpaf Noya

— Trial
- (Un+l

Iiai) (E+Hkln) AN- Nnyt (33)
By analyzing the signs of the three terms of the equation formed
by the second equal sign in E@3), it follows that

Trial Trlal

CE- AN SN0y 1— s 1) 29) SN o1~ Qne1) =SONO LT — ) =Npyg (34)
and
ot P BRSO 2™ 1) (o1 o2l =l T8~ ol (E+HgAN  (35)
=0+ Higns AN -SQM o1~ q) (30) Therefore, using Eq31), we can write the discrete consistency
Gyni1=0yntHigo AN (31) condition in Eq.(28) as
|o a4~ an ] = (E+Hygn) - AN =0y n—Hisr AN =0 (36)

Using the expressions far,.; anda,.; in Egs.(29) and (30)

and defining The discrete consistency paramefer can be obtained from the
Orr1—Qnit above equation as
nn+1:ﬁ =sgnop11— ®nt1) (32) Trial Trial | _
n+1— On+1 A)\f |0-n+1 n+l| O-yn (37)
we obtain E+Hisot Huin
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Giveneg, ., and onceA\ is known, the state/history variables at which is shown in Fig. 4 in the case of pure kinematic hardening
th1 (i€, 8P 1, Onity Anyts ERLq, 0y n+1) are obtained from (Hiso=0) and corresponds to the post-yield stiffness of the bilin-
Egs.(24), (25), and(29). The above discrete constitutive integra- ear inelastic model. Thus, in the present case, the consistent ma-
tion scheme for 10, plasticity is represented graphically in Fig. terial tangent modulus is identical to the continuum tangent
4 for a plastic step. modulus. It can be shown that for the one-dimensional case, the
consistent(or algorithmig tangent modulus coincides with the
o ) continuum elastoplastic tangent modulus irrespective of the con-
Response Sensitivity Calculations stitutive plasticity model. However, this result does not hold for
the multidimensional case in which strains, stresses, and material
tangent moduli are tensorial quantiti€dimo and Hughes 1998
In the multidimensional case, for large time steps, the consistent
tangent moduli may differ significantly from the “continuum”
ones (Conte and Jagannath 1995; Conte and Vijalapura 1998;
Simo and Hughes 1998

Consider the conditional derivative of a generic state/history
variable,d(...)/a0],. In displacement-based finite-element analy-
sis, fixing the displacemeni(t,, . ) =u,., is equivalent to fixing
the straine,,,. Therefore, the conditional derivatives of the
state/history variables are simply obtained by substituting with
zero all the occurrences of the derivative,  1/96 in the expres-
sions for the(unconditional derivatives of the state/history vari-
ables,d(...)/06.

If no plastic deformation takes place during the current time
step[t,,ty+1], the trial solutions for the state variables given by
the elastic predictor step are also the correct solutions, i.e., the
elastic predictor step is not followed by a plastic corrector step.
Hence, dropping the superscript “Trial” from Eq&7) and dif-
ferentiating them with respect to the sensitivity parameétewe

It was shown earlier that the formation of the response sensitivity
equation, Egq.(11), requires computation of the derivative
do,,1/de,, 1 in order to evaluate the consistgor algorithmig
tangent stiffnress matrix K;*<=oR/au. Also, the term
aan+1/66|gn+l needs to be computed in order to evaluate the

term 9R/90/|, in the right-hand-side of the response sensitivity
Eq. (11). In the context of Method Il, the derivative
do, ., /de, 4 relates the infinitesimal incremental change in the
stresso,, 1 computedalgorithmically (according to the return
map algorithm in our cage¢o an infinitesimal incremental change
in the value of the total strain,,; at timet, ., while keeping
fixed all other state/history variables at tipethat appear in the
material constitutive integration algorithm. We differentiate the
discrete constitutive integration algorithhe., here return map
algorithm to compute the derivativelo,,,,/de,.;. When the
current step is elastig?, ;= (P, )"@=¢P, and taking differ-
entials on both sides of EQR7) yieldsdo,,,=E-de, . When
the current step is plastic, we use the equations for the plastic
corrector step. Taking differentials on both sides of Eg8), and
(24), and using Eq(34) anddn,, ;=0 (since the sign function is

. e e . i obtain
either+1 or —1 and, in finite precision arithmetic, we are never
at the point of discontinuity of the sign functiprwe have 9
E(A)‘)ZO (44)
dop.1=E (deg g —del, ) (38)
oeP aeP
and nt1_ %%n
a0 a0 (45)
deb, ;=d(AN)-nNpyq (39)
. . . . . 60(n+1 a(xn
The discrete consistency paramefex is obtained from the dis- 0 - 90 (46)
crete consistency condition in E8). Thus, taking differentials
on both sides of the discrete consistency condition, using Egs. 9eP,, el
(294, (30)1, (31), and the identityn,,, ;- n,, ;=1 yields 0~ 30 47)
df, 1=d|loh 11—« —do =0
n+1 | n+1 n+1| y,n+1 30‘n+1_ 88n+1_8_8ﬁ +E B p) 4s
=d(ohr1—ani1)Npi1—doy pe1=0 90 a0 a0 a0 (en+1—en (48)
= E(d8n+l_d8ﬁ+1)nn+1_ Hiin- d(AN) —Hiso- d(AN) 90y n+1 B doy n
EET (49)

(40)

Multiplying last equation by, ; and using the expression in Eq.
(39 for deb, ;, we obtain

If plastic deformation takes place during the current step
[t,.th+1], the elastoplastic constitutive relations in the discrete
form are differentiated exactly with respect to the sensitivity pa-

_ rameterf in order to compute the derivatives of the state/history
d(An)= E+Hyint Hiso "densg Mg (41) variables at, . Differentiating Eq.(29), with respect td# pro-
duces
Substituting Egs(39) and(41) into Eqg. (38) yields
90+ dens1 O8hiq| OE
—E. —. _gP
don+1=E'(l_ E+Hg+Heg deniq (42) 90 ( 90 36 | T a0 (ensimenrn) (50)
n IS0,

The derivativedeh, /36 is obtained by differentiating Eq24)

which relates the infinitesimal incremental stress computed algo- . 1
P g with respect t®, using Eq.(32), as

rithmically to an infinitesimal incremental strain. Therefore, in the

case of the 10J, plasticity model, the consistefar algorithmig deb.. el a(AN)
elastoplastic material tangent modulus is given by I WJF 0 1 (51)
D=E.|1- E - Hiin T Hiso E (43) where agai_n the derivative_oin+l with respect to sensitivity
E+HuntHiso/ E+HiintHiso parametes is set to zero. Using Eq34), Eq. (37) takes the form
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AN= |0_1|;i—ai_a;l1'rj—a“ “Oyn _ (O.H_ai_agrj—ai) ‘Nyp1—Oyn
E+Hisot Hyin E+Hisot Hiin 52
Differentiating Eq.(52) with respect to® yields
60—?—1—61{ dap Jo
__n). y.n
a(AA)_(E"'Hlso'i'Hkm)' 90 90 Npt1 26
o0 (E+Higot Hign)?

6Hiso
a0

dH\in Trial
a0 '[(Un1a1_

(E+|—|iso+Hkin)2

+

JE
ap)- nn+l_0'y,n:|

90

(53)

where the derivative of ™ with respect tdf is obtained, using
Eqg. (27)5, as

- _Trial
do—n-%—l_ (

a0

densy
a0

deh| oE
o) T (env1en)  (54)
The derivatives of the remaining state/history variables, ; ,
Oyn+1, @ndap, g, With respect to the sensitivity parameteare
obtained by differentiating Eq$25) as

defiy  deh  A(AN)

a6 a0 a0 (55)
do oo aH; d(AN)
y,n+1 y,n iso o
90 a0 90 FHiso =5 (56)
dansy 0oy OHyin a(AN)
90 :ﬁ (")GI '(A)\)'nn+1+Hkin'T'nn+l
(57)

The conditional derivativeR/96|, in the response sensitivity Eq.
(112) at the structure level requires computation of the conditional
derivative do,, /36|, at each Gauss quadrature point of the

A =2581x10"[m?) u(t)
L = 5.080x10"' [m]

3% E = 2.068x10°[N/m2] gg

‘m’ p = 4.001x10°[kg/m?]
* Gy =6.894x10 [N/m?]
H;;, =0 [N/m?]
Hygp = 6.894x10°[N/m?]

Fig. 5. SDOF system: Elastoplastic truss element

either an elastic step or a plastic step depending on whether there
is plastic flow or not. Correspondingly, Eq44)—(49) are used to
compute sensitivities for an elastic step, while E§§)—(57) are
used for a plastic step. For this plasticity model, the discontinui-
ties propagate starting with discontinuitiesd@\\)/06. The de-
rivative d(AN)/06 is zero for an elastic step, is given by E§3)

for a plastic step, and it jumps from zero to a nonzero value and
vice-versa during elastic-to-plastic and plastic-to-elastic material
state transitions, respectively. These discontinuitieA\)/06 at

the local(Gauss quadrature pojnievel propagate into disconti-
nuities in the sensitivities of the stress plastic strains?, effec-

tive or cumulative plastic straiaP, current yield stress,, and
back-stress through Eqs(50)—(57). Then, these discontinuities

in response sensitivities at the lo¢&8lauss quadrature pojievel
propagate mathematically and physically upwards into disconti-
nuities in response sensitivities at the element I¢égg]., element
internal forces and deformationand finally at the structure level
(e.g., nodal displacement, base shear).etc.

The propagation of discontinuities from local to global re-
sponse sensitivities is illustrated through a simple application ex-
ample, namely, a single degree-of-freed@®DOP elastoplastic
system subjected to ground motion excitation as shown in Fig. 5.

finite-element model of the structure. As mentioned earlier, this is The input ground acceleration histamy(t) and displacement re-

achieved by substitutinge ., /06 with zero in Egs.(50), (51),
(53), and(54).

Propagation of Discontinuities from Local to Global
Response Sensitivities

We shall examine the propagation of discontinuities in the re-
sponse sensitivities for the simple 1 plasticity model consid-

sponse historyu(t) are shown in Figs. @& and b, respectively.
The reason why the input ground acceleration looks analytical
with some small irregularities is that it was retrieved as one of the
final iterations to find the design point during a time-variant reli-
ability analysis of this elastoplastic SDOF system subjected to
random ground motion excitatiofConte and Vijalapura 1998;
Vijalapura et al. 1990 The sensitivities of the cumulative plastic
strain, P(t), and displacemeni(t) response histories with re-

ered here. During the response computation, each time step isspect to the initial yield stress, are shown in Figs. 7 and @

0.4
@) 003t ®
_ 02 0.02
g ‘g 001
0 =
E = 0
.50
=02 -0.01
-0.02
_0.4 A A A -t S
0 03 06 09 12 15 18 0 03 06 09 12 15 18
Time [sec] Time [sec]

Fig. 6. (a) Input ground acceleration history afio) displacement response history
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Fig. 7. Discontinuities in sensitivity of cumulative plastic strain
response history to initial yield stress,,, due to material state
transitions

solid line), respectively. Method I(consistent direct differentia-
tion method is adopted for the response sensitivity calculations.
Figs. 7 and 8 also contain response sensitivity resiitslashed,
dashed-dot, and dotted linesbtained from forward finite differ-

Notice that the discontinuities in response sensitivities are very
visible/pronounced at the locdlGauss quadrature pojntevel
(Fig. 7), while they are not very apparent at the structure level
(Fig. 8 where they are relatively much smaller and hidden or
“smeared out” within the dynamicgtime variation of the re-
sponse. Indeed, the response sensitivity plots are obtained by lin-
early interpolating the sensitivity values obtained at discrete
times, and when a discontinuity within a time step is small, this
discontinuity is not clearly resolved as in Fig. 8. In quasistatic
elastoplastic problems, the discontinuities in response sensitivities
at the structure level are much more visi{gonte 2001

From the analysis provided here, material state transitions
cause discontinuities ind) the derivativeqconditional and un-
conditiona) of the internal resisting force vector, af®) the con-
sistent tangent stiffness matrix, in the response sensitivity Eq.
(11). Therefore, the question naturally arises whether the discon-
tinuity in the derivative of the internal resisting force vecfon
the right-hand side of the sensitivity equafjozan be counter-
acted by the discontinuity in the consistent tangent moduli from
which the consistent tangent stiffness matrix is bioh the left-
hand side of the sensitivity equatipmesulting in continuous de-
rivatives of the nodal displacements. From a mathematical point

ence analysis with decreasing values of the initial yield stress Of Viéw, a priori there is no reason to believe that there is a
variation A, . It is observed that the finite difference results counteracting effect which keeps the sensitivity of the nodal dis-

approach asymptotically the results obtained using the consistenPlacéments continuous in time. However, in some simple ex-

DDM as further evidenced by the zoom views of the discontinui-

amples involving truss elements and beam eleméwith mul-

ties shown in the insets of Figs. 7 and 8. As already mentioned, iPle Gauss-Lobatto integration points along the beam)axis
each discontinuity occurs somewhere within a time step and its modeled using the 10, plasticity model, it can be shown that,

exact time of occurrence is not explicitly solved for using the

under elastic unloading in quasistatic condition, there is an exact

direct differentiation method. However, the values of the response counteracting effect. But in general, in a complex inelastic mul-
sensitivities at both ends of the time step are in agreement withtiple degrees-of-freedorfMDOF) system subjected to static or

the finite difference results, thus indicating that the discontinuities dynamic loading, in which we could have simultaneously elasto-
in response sensitivities are consistently carried across the mateplastic loading and elastic unloading at different locations in the

rial state transitions.
In Fig. 7, the sensitivity of the cumulative plastic strain exhib-
its two discontinuities corresponding to a plastic loading in time

structure(due to internal stress redistributipm general statement
on the counteracting effect at elastic unloading events cannot be
made. From finite-element response sensitivity analysis results for

step 1.26—1.27 s and a second plastic loading in time step 1.63-quasi-static application examples not presented here, it was also

1.64 s. The first plastic loading is immediately followed by an
elastic unloading. The discontinuities in the sensitivity of the dis-
crete consistency parametan with respect too, —propagate

upward resulting in discontinuities in the sensitivity of the cumu-
lative plastic straingP(t), and other state/history variables and
finally in discontinuities in the sensitivity of the displacement
responseu(t) at the structure level, as seen in Figs. 7 and 8.

-10

x10
3 Lrecto
s
‘1otz
2F : /, 26 .-
! i 24 .7
— : af -
mZ 1 ! Pararsrarart
& T
S0
B|g - — — - ac,jo, = 001
————— Ao'y /o, = 0.0075
o' %o
el a0, /6, = 0.0005
o Yo
- Consi.stent DDM .
0 0.3 0.6 0.9 1.2 15 1.8
Time {sec]

Fig. 8. Discontinuities in sensitivity of displacement response
history to initial yield stressg o, due to material state transitions

observed that some yielding evenfsaterial state transitions
from elastic to plastic statgproduce negligiblgnot visually ob-
servable discontinuities in the nodal displacement response sen-
sitivities. This could be due to either a smearing effect from the
local to the global level or a counteracting effect between the
discontinuities in the internal resisting force vector and in the
consistent tangent stiffness matrix.

Ten Members Truss Subjected to Ground Motion
Excitation

A ten-member truss is chosen as an example to illustrate the ap-
plication of the consistent direct differentiation methiddethod

II) to multiple degree-of-freedoftMDOF) inelastic systems. This
truss structure is subjected to the 1940 N-S component of the El
Centro ground motion recordmperial Valley Earthquakeshown

in Fig. 9. The material of the truss members is modeled using the
1D J, (von Mises plasticity model considered above. The geom-
etry and material parametef@ssumed common to all truss mem-
berg of the truss are given in Fig. 10. The truss structure is
assumed to have mass proportional damping with a damping ratio
of 5% in the first mode and decreasing as the inverse of the
frequency for the higher modes. A constant time stepAof
=0.01s is used to integrate the equations of motion by means of
the constant average acceleration Newnfarkethod. The value
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Fig. 9. Imperial valley earthquake, May 18, 1940, El Centro site, g A=3x10%[m?)
component SOOEN-S) 2
of the ground acceleration at every 0.02 s, starting from time
=0, defines the vector of loading variabbes [X;,X,,...X,] .

The horizontal relative displacement response history of Node
2, uy(t), is plotted in Fig. 11a). The stress-strain hysteretic re-
sponse of truss Element 1 is given in Fig(l)1 The sensitivities
of th_e response histony,(t) to the m{:\teri_al Young's modulus E Fig. 10. Ten-member column truss structure
and initial yield stressr, are shown in Figs. 12 and 13, respec-
tively. In each figure, the response sensitivity computed using the
consistent DDMMethod I)) is given in solid line, while response  covers general finite-element implementations for the response
sensitivity obtained using forward finite difference analysis with prediction of a plasticity-based model of a structural system sub-
decreasing values of the parameter variation is given in dashedjected to static or dynamite.g., earthquakdoading. The exact
dashed-dot, and dotted lines. To illustrate response sensitivitysensitivity of any computed structural response quarlkityal or
analysis with respect to loading variables, Fig. 14 shows the sen-global, kinematic or staticcan be obtained using this approach.
sitivity of u,(t) to loading parametex,,s [value of the ground Here, focus is placed on materially nonlinear-only analysis using
acceleration at timé=(125—1)x0.02=2.48s] obtained using classical plasticity theorywhich assumes a yield surface within
the consistent DDM and forward finite difference analysis. As which the material is linear elasji@and the displacement-based
expected, loading parametey,s does not influence the response finite-element methodology. The response sensitivities of such
until time t=2.48 s, and hence the response sensitivity is zero up materially nonlinear systems exhibit discontinuities in time. It is
to this time. In Figs. 12, 13, and 14, it is verified that the finite shown that calculation of the consistent response sensitivity re-
difference results converge asymptotically to those obtained usingquires the use, at least in the last iteration of each load or time
the consistent DDM, thus validating the present implementation step before convergence is achieved, of the consistenalgo-
of the DDM in FEAP. rithmic) material tangent moduli at the Gauss point level, which
give rise to the consistent tangent stiffness matrix at the structure
level. These consistent tangent moduli are used extensively in
Conclusions computational plasticity; they arise from consistent linearization
of the numerical scheméhere return map algorithmused to
This paper formalizes the approa@kferred to herein as Method  integrate the material rate constitutive equations and may differ
Il or consistent direct differentiation methpdo compute the significantly from the continuum tangent moduli for finite incre-
exact (or consistent sensitivity of the computed structural re- mental displacements. Conditions of equivalence between the two
sponse to both material and loading parameters. This formalismfundamental approaches of computing the response sensitivity of

x 10

u, [m]
Stress [N/m2]

0 2 4 6 8 10 12 14 -1 05 0 05 1 15 2 25 3 35
Time [sec] Strain [-] x10

Fig. 11. (a) Horizontal relative displacement of Node 2 of ten-member truss(anstress-strain history of Element 1
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Fig. 12. Displacement response sensitivity to material Young’s modulus E

inelastic (i.e., history or path dependgndynamic systems,
namely(Method ) numerical time integration of the exact semi-

discretized(time continuous-spatially discreteesponse sensitiv-
ity equations andMethod 1l) exact differentiation of the numeri-
cal finite element response algorithire., time discrete-spatially

discrete response equatipnsave been established.
Insight is given into the nature of the discontinuities in time of

response, sensitivities of the numerically simulated response of a
system to material and loading parameters represent an essential
ingredient for gradient-based optimization methods needed in
structural reliability analysis, structural optimization, structural
identification, finite-element model updating, and structural health
monitoring. The method for consistent finite-element response
sensitivity analysis presented here for materially nonlinear-only

response sensitivities for plasticity-based models of structural sys-dynamic structural systems can of course be used directly for
tems and their physical interpretation in terms of material state nonlinear static analysis problerisy just ignoring the inertia and

transitions through the basic 1D (von Mise3 material plasticity

damping effectsand can be extended to nonlinear geometric and

model and two application examples. It is shown that these dis- material models of structural systems. Although not emphasized
continuities are consistently carried across material state transi-in this paper, computing analytical finite element response sensi-
tions through the exact differentiation of the time stepping tivities has two main advantaged) computational efficiency as

scheme used to integrate the semi-discretized equations of motiorcompared to finite difference methods for estimating sensitivities,
and the numerical algorithm used to integrate the material rate especially when dealing with a large number of sensitivity param-

constitutive equations.

Beside their intrinsic value in providing insight into system

x 10

—9

eters as in finite element reliability analysis, ai2)l overcoming
the step size dilemm@u and Conte 2003Regarding the latter,

0.5

[m*/N]

ou,(t)
acy()

o2 T 1 . Ao, /o, =0.001 1
Yo Yo
Consistent DDM
o2 . ) . A ) )
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Fig. 13. Displacement response sensitivity to material initial yield sttggs
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Fig. 14. Displacement response sensitivity to loading variaglg

if we select the perturbatiofor step sizg of the sensitivity pa-

rameter to be small so as to reduce the truncation error in esti-

Courant, R.(1988. Differential and integral calculus\Vol. I, Wiley,
New York.

mating a response sensitivity through finite difference, we may Ditlevsen, O., and Madsen, H. @1998. Structural reliability methods

have an excessive condition error. In some cases, there may not Wiley,

be any step size which yields an acceptable e(ktaftka and
Gurdal 1992.

Acknowledgments

New York.

Gu, Q., and Conte, J. R2003. “Convergence studies in nonlinear finite
element response sensitivity analysiBroc. 9th Int. Conf. on Appli-
cations of Statistics and Probability in Civil Engineerin§an Fran-
cisco, July 6-9, A. Der Kiureghian, S. Madanat, and J. M. Pestana,
eds., Millpress, Rotterdam, The Netherlands.

Haftka, R. T., and Gual, Z.(1992. Elements of structural optimization
Kluwer Academic, Dordrecht, The Netherlands.

Support for this research by the main Italian Electricity Company Heinkenschloss, M(1997. “Optimization methods for optimal control

(Enel—R&D Department—Centro di Ricerca Idraulica e Struttur-
ale) is gratefully acknowledged.

References

Arora, J. S., and Cardoso, J. BL989. “A design sensitivity analysis
principle and its implementation into ADINA.Comput. Struct.32,
691-705.

Choi, K. K., and Santos, J. L. T1987). “Design sensitivity analysis of
non-linear structural systems. Part 1: Theoint. J. Numer. Methods
Eng.,24, 2039-2055.

Chopra, A. K.(2001). Dynamics of structures: Theory and applications to
earthquake engineering2nd Ed., Prentice-Hall, Englewood Cliffs,
N.J.

Conte, J. P(200)). “Finite element response sensitivity analysis in earth-
guake engineering.Earthquake engineering frontiers in the new mil-

problems.” Lecture NotesSummer School in Continuous Optimiza-
tion, Technical Univ. Hamburg-Harburg, Germany, September.

Kleiber, M., Antunez, H., Hien, T. D., and Kowalczyk, ®997. Param-
eter sensitivity in nonlinear mechanics: Theory and finite element
computationsWiley, New York.

Lubliner, J.(1990. Plasticity theory Macmillan, London.

Miller, A. K., ed. (1987. Unified constitutive equations for creep and
plasticity. Elsevier Applied Science, London.

Simo, J. C., and Hughes, T. J. RL998. Computational inelasticity
Springer, Berlin.

Taylor, R. L.(1998. FEAP—A finite element analysis program—\Version
7.1 User Manual Dept. of Civil and Environmental Engineering,
Univ. of California at Berkeley, Berkeley, Calif., 94720-171Bttp://
www.ce.berkeley.edu/rlt/feap) (November 1998

Tsay, J. J., and Arora, J. 81990. “Nonlinear structural design sensitiv-
ity analysis for path dependent problems. Part 1: General theory.”
Comput. Methods Appl. Mech. Eng1, 183—-208.

lennium Spencer and Hu, eds., Swets and Zeitlinger, Lisse, The Neth- Tsay, J. J., Cardoso, J. E. B., and Arora, J(1990. “Nonlinear struc-

erlands, 395-401.

Conte, J. P., and Jagannath, M.(K995. “Seismic reliability analysis of
concrete gravity damsA Report on Research Sponsored by the Main
Italian Electricity Company (ENEL.Dept. of Civil Engineering, Rice
Univ., Houston.

Conte, J. P., Jagannath, M. K., and Meghella, (#095. “Earthquake
response sensitivity analysis of concrete gravity darRsdt., 7th Int.
Conf. on Applications of Statistics and Probability in Civil Engineer-

ing, Paris, July 10-13, M. Lemaire, J.-L. Favre, and A. Mebarki, eds.,

Balkema, Rotterdam, The Netherlands, 395—-402.
Conte, J. P., and Vijalapura, P. K1998. “Seismic safety analysis of

concrete gravity dams accounting for both system uncertainty and

excitation stochasticity.A Report on Research Sponsored by the Ital-
ian National Power Board (ENEL-CRISpept. of Civil Engineering,
Rice Univ., Houston.

tural design sensitivity analysis for path dependent problems. Part 2:
Analytical examples."Comput. Methods Appl. Mech. Eng1, 209—
228.

Vijalapura, P. K., Conte, J. P., and Meghella, M999. “Time-variant
reliability analysis of hysteretic SDOF systems with uncertain param-
eters and subjected to stochastic loadingroc., 8th Int. Conf. on
Applications of Statistics and Probability in Civil Engineerjrgyd-
ney, Australia, December 12-15, R. E. Melchers and M. G. Stewart,
eds., Balkema, Rotterdam, The Netherlands, 827—-834.

Zhang, Y., and Der Kiureghian, A1993. “Dynamic response sensitivity
of inelastic structures.Comput. Methods Appl. Mech. En08, 23—

36.

Zienkiewicz, O. C., and Taylor, R. L(2000. The finite element method,
\Vol. 2—Solid mechanicsth Ed., Butterworth Heinemann, Oxford,
U.K.

JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2003 / 1393



