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Consistent Finite-Element Response Sensitivity Analysis
J. P. Conte, M.ASCE1; P. K. Vijalapura2; and M. Meghella3

Abstract: This paper examines the important issue of response sensitivities of dynamic models of structural systems to both m
and ~discrete! loading parameters. Plasticity-based finite-element models of structural systems subjected to base excitation su
earthquake loading are considered. The two methods for computing the response sensitivities, namely,~1! discretizing in time the time
continuous-spatially discrete response equations and differentiating the resulting time discrete-spatially discrete response equatio
respect to sensitivity parameters, and~2! differentiating the time continuous-spatially discrete response equations with respect to se
tivity parameters and discretizing in time the resulting time continuous-spatially discrete response sensitivity equations, are c
distinguished. The discontinuities in time of the response sensitivities arising due to material state transitions in the plasticity mode
their propagation from the quadrature point level to the global structural response level are discussed using a specific one-dime
plasticity model. The procedure to obtain the exact sensitivities of the numerical nonlinear finite-element response, including p
capture of their discontinuities, is formalized. Application examples illustrating the concepts are presented at the end.
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Introduction

In seismic reliability analysis of civil structures, the inherent ran
dom variability and/or uncertainty associated with both the stru
ture and earthquake dynamic loading must be taken into cons
eration. Furthermore, in order to evaluate the probability o
structural failure or collapse, which occurs in domains of gross
nonlinear response behavior both materially and geometrical
nonlinear finite-element models of structures able to capture t
salient features of the actual ultimate structural behavior und
strong earthquake shaking are needed. A key ingredient of stru
tural reliability methods is the sensitivities to both system an
loading parameters of the structural response/demand quanti
used in formulating the limit-state or performance functions de
fining the various physical limit-states under consideratio
~Ditlevsen and Madsen 1996!. Mathematically, the sensitivity of a
vector-based generic response quantityr (t) with respect to a sca-
lar material or loading sensitivity parameteru is defined as the
partial derivative ofr (t) with respect tou. Beside their use in
structural reliability analysis, finite-element response sensitivitie
represent an essential ingredient for gradient-based optimizat
methods needed in structural optimization, structural identifica
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tion, finite-element model updating, structural health monitoring,
and even structural control~in the context of semiactive control
systems based on real-time modification of structural system pa-
rameters!.

This paper focuses on the important issue of computing, using
consistent linearization, the exact sensitivities to both structural
and loading parameters of any computed response quantity~local
or global, kinematic or static! of a plasticity-based nonlinear
finite-element structural model. Focus is placed on materially
nonlinear-only finite-element analysis, even though the consistent
finite-element response sensitivity analysis method discussed
herein is general and can be extended to the case of nonlinear
geometry without any conceptual difficulties. The material mod-
els considered here are based on rate independent classical plas
ticity theory ~i.e., definition of a yield surface within which the
material is supposed to be linear elastic! in contrast with general-
ized plasticity theory~Lubliner 1990-Chapter 3, Miller 1987!
which does not require the definition of a yield surface and ac-
cording to which inelastic deformations/strains start developing
from the start of loading. The methodology presented in this
paper assumes spatial discretization, using the finite-element
method, of the spatio-temporal governing response equations. The
resulting ordinary differential equations in time are integrated
using a suitable time stepping scheme. The present methodology
assumes a displacement-based finite-element formulation and a
general-purpose nonlinear analysis finite-element program based
on the direct stiffness method.

Two fundamental approaches to compute the response sensi-
tivities of such spatially discretized inelastic dynamic systems are
described and compared. The first approach consists of directly
differentiating, with respect to the sensitivity parameteru in ques-
tion, the semi-discretized~time continuous-spatially discrete!
equations of motion governing the dynamic response of the sys-
tem to yield the differential response sensitivity equations, and
then integrating the latter numerically using a time-stepping algo-
rithm. The second approach consists of integrating numerically,
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using a time-stepping scheme, the semi-discretized equations
motion to yield a set of nonlinear algebraic equations to be solve
using a Newton-Raphson iterative scheme, and then differenti
ing exactly, with respect to the sensitivity parameteru, the time
discrete-spatially discrete response equations to obtain a line
algebraic sensitivity equation once the response is known. Usi
the two approaches defined above under the general title ofdirect
differentiation method~DDM!, previous researchers~Choi and
Santos 1987; Arora and Cardoso 1989; Tsay and Arora 199
Zhang and Der Kiureghian 1993; Kleiber et al. 1997! have devel-
oped finite-element response sensitivity analysis methods. Ho
ever, these references do not carefully distinguish between the
two approaches. This paper examines the distinction between
two approaches and states the conditions under which they
equivalent. Herein, we refer to the second approach or Method
as theconsistent DDMin order to highlight this distinction.

Significant research has been dedicated to the general probl
of design sensitivity analysis for path dependent problems in th
structural optimization community~e.g., Choi and Santos 1987;
Arora and Cardoso 1989; Tsay and Arora 1990; Tsay et al. 199!.
However, much of this work considers constant~i.e., static! load-
ing, sensitivities with respect to shape parameters~and not con-
stitutive material parameters!, and idealized/specialized problems
not formulated within a general finite-element analysis framewor
~e.g., Tsay et al. 1990!, which differs from the focus of this paper
~response sensitivity analysis of general plasticity-based dynam
structural models with respect to material and loading paramete
within a general finite-element analysis framework!.

Models based on classical plasticity theory result in respon
sensitivities that are discontinuous in time. This is due to th
material state transitions that occur at discrete times. These d
continuities occur in various response quantities at both th
quadrature point level and the global structural level during the
numerical integration in time. The physical nature of these dis
continuities as well as their propagation from the quadrature poi
to the global level are illustrated through a simple 1-D plasticit
model.

The main motivation for examining and understanding the dis
continuities in sensitivities comes from reliability analyses fo
finding ‘‘design points’’ such as FORM and SORM~first-order
and second-order reliability methods! ~Ditlevsen and Madsen
1996!, using gradient based optimization techniques. From th
experience of the authors, these discontinuities in the sensitiviti
crucially affect the rate of convergence of the optimization
schemes to the design points~Conte and Vijalapura 1998; Vijal-
apura et al. 1999!.

Formulation

After spatial discretization using the finite-element method, th
spatio-temporal equation of motion of a materially nonlinear-onl
structural system is given by the following nonlinear matrix dif-
ferential equation:

M ~u!ü~ t,u!1C~u!u̇~ t,u!1R@u~ t,u!,u#5F~ t,u! (1)

where t5time; u5scalar sensitivity parameter~material or load-
ing variable!; u(t)5vector of nodal displacements;C5damping
matrix; M5mass matrix,R(u,t)5history dependent internal~in-
elastic! resisting force vector;F(t)5dynamic load vector; and a
superposed dot denotes one differentiation with respect to time.
the case of earthquake ground excitation which is the focus of th
research, the dynamic load vector takes the formF(t)
52ML üg(t) in which L is an influence coefficient vector and
üg(t) denotes the input ground acceleration history~assuming
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rigid-soil excitation!. Without loss of generality, a single compo-
nent ground excitation is considered. The potential dependence
each term of the equation of motion on the sensitivity parameteru
is shown explicitly in Eq.~1!.

Let r (t) denote a generic scalar response quantity such
displacement, acceleration, local or resultant stress, local or
sultant strain, or local/global cumulative plastic deformation. B
definition, the sensitivity ofr (t) with respect to the material or
loading parameteru is mathematically expressed as the partia
derivative of r (t) with respect to the variableu. The response
sensitivity is both a function of timet and sensitivity parameteru
which takes a specific valueu0 during a sensitivity analysis. By
definition,]r (t)/]uuu5u0

is continuous in time att5t0 if and only
if

lim
Dt→0

]r ~ t !

]u U u5u0
t5t02Dt

5 lim
Dt→0

]r ~ t !

]u U u5u0
t5t01Dt

5
]r ~ t !

]u Uu5u0
t5t0

(2)

Algorithms for response sensitivity computation can be formu
lated in two ways~Methods I and II! as sketched in Fig. 1. The
first method~represented by steps A1 and A2 in Fig. 1! consists of
first obtaining the semi-discretized~time continuous-spatially dis-
crete! differential equations governing the exact response sen
tivity ~herein,exact response sensitivityrefers to the exact sensi-
tivity, with respect to the sensitivity parameteru, of the exact
solution of the time continuous-spatially discrete response equ
tions! and then discretizing them in time, using a time-steppin
algorithm, to determine a numericalapproximationof the exact
response sensitivity. Conversely, the second method~represented
by steps B1 and B2 in Fig. 1! consists of first discretizing in time
the semi-discretized equations of motion to obtain a numeric
estimate of the exact response~herein,exact responserefers to the
exact solution of the time continuous-spatially discrete respon
equations! and then differentiating exactly the numerical schem
for the response with respect to the sensitivity parameteru in
order to obtain the exact sensitivity of the numerical~finite-
element! response. An interesting question is whether the re
sponse sensitivities computed from these two schemes are
same. As shown below, the answer to this question is that it d
pends on the discretization schemes used to determine num
cally the response and response sensitivities~Heinkenschloss
1997! and how these numerical schemes handle the discontin
ties exhibited by the response sensitivities.

Exact Sensitivity of Numerical Response (Method II)

In this section, the equations for calculating the response quan
ties for the dynamic case and a brief description of their numer
cal calculation are provided. Following this, the sensitivity equa
tions are obtained by exactly differentiating, with respect to th
sensitivity parameteru, the numerical scheme for computing the
response.

We assume without loss of generality that the equation of m
tion ~1! is integrated numerically in time using the well-known
Newmark-b method of structural dynamics~Chopra 2001!, i.e.

ün115S 12
1

2b D ün2
1

b~Dt!
u̇n1

1

b~Dt!2
~un112un!

(3)

u̇n115~Dt !S 12
a

2b D ün1S 12
a

b D u̇n1
a

b~Dt !
~un112un!

wherea andb5parameters controlling the accuracy and stabilit
of the numerical integration algorithm. Special cases of th
OF ENGINEERING MECHANICS © ASCE / DECEMBER 2003 / 1381



Fig. 1. Flow chart of the two approaches for computing response sensitivities
e

-

Newmark-b method are the conditionally stable linear accelera-
tion method~a51/2, b51/6! and the unconditionally stable con-
stant average acceleration method~a51/2, b51/4!. Substitution
of Eqs.~3! into equation of motion~1! expressed at discrete time
t5tn115(n11) Dt, in which Dt denotes the constant time in-
crement, yields the following nonlinear matrix algebraic equation
in the unknownsun115u(tn11):

C~un11!5F̃n112F 1

b~Dt !2
Mun111

a

b~Dt !
Cun111R~un11!G

50 (4)

where

F̃n115Fn111MF 1

b~Dt !2
un1

1

b~Dt !
u̇n2S 12

1

2b D ünG
1CF a

b~Dt !
un2S 12

a

b D u̇n2~Dt !S 12
a

2b D ünG

1382 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2
Eq. ~4! represents the set of nonlinear algebraic equations for th
unknown response quantitiesun11 that has to be solved at each
time step @ tn ,tn11#. In the displacement-based finite-element
methodology, the vector of internal resisting forcesR(un11) in
Eq. ~4! is obtained by assembling, at the structure level, the vec
tors of elemental internal resisting forces as

R~un11!5 A
e51

Nel H E
Ve

BT~x!•s@en11~x!#•dVeJ (5)

where Ae51
Nel $...% denotes the direct stiffness assembly operator

from the element level~in local element coordinates! to the struc-
ture level in global reference coordinates;x5vector of spatial
coordinates; andB5strain-displacement transformation matrix.

We assume that a Newton-Raphson~or a modified Newton
type! iterative procedure is used to solve Eq.~4! over time step
@ tn ,tn11# through solving a sequence of linearized problems of
the form

~KT
dyn!n11

i dun11
i 11 5Cn11

i i 50,1,2, . . . (6)
003



Fig. 2. Graphic representation of iterative Newton-Raphson procedure used to integrate nonlinear equations of motion from timetn to tn11
l
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for the constitutiveJ2 ~or Von Mises! plasticity model and by
where

~KT
dyn!n11

i 5F 1

b~Dt !2
M1

a

b~Dt !
C1~KT

stat!n11
i G (7)

and

Cn11
i 5F̃n112F 1

b~Dt !2
Mun11

i 1
a

b~Dt !
Cun11

i 1R~un11
i !G

(8)
The updated nodal displacement vectorun11

i 11 , or displacement
vector at the end of iteration number (i 11) of time step
@ tn ,tn11#, is obtained as

un11
i 11 5un1Dun11

i 11 5un11
i 1dun11

i 11 (9)

where Dun11
i 11 and dun11

i 11 denote the total incremental displace-
ment vector from the last converged step and the last incrementa
displacement vector, respectively. In Eq.~7!, KT

dyn denotes the
tangent dynamic stiffness matrix and theconsistent or algorith-
mic (static) tangent stiffness matrix(KT

stat)n11
i in Eq. ~7! is ob-

tained as

~KT
stat!n11

i 5 A
e51

Nel H E
Ve

BT~x!•DT~x!•B~x!•dVeJ (10)

whereDT(x) denotes the matrix of material consistent or algorith-
mic tangent moduli obtained through consistent linearization of
the numerical scheme used to integrate the rate constitutive equa
tions ~Simo and Hughes 1998!. The above Netwon-Raphson pro-
cedure is represented schematically in Fig. 2. In the case of modi
fied Newton, (KT

stat)n11
i 5(KT

stat)n11
0 , for all i 50,1,2, . . . . For

Method II considered in this section, this numerical scheme for
response calculation is then differentiated exactly with respect to
the sensitivity parameteru. Note that the semi-discrete~time
continuous-spatially discrete! equations are not used at all in ob-
taining the sensitivity equations. Assuming thatun11 is the con-
verged solution~up to some iteration residuals satisfying a speci-
fied tolerance usually taken in the vicinity of the machine
precision! for the current time step@ tn ,tn11#, and differentiating
Eq. ~4! with respect tou using the chain rule, recognizing that
s5s~e~t,u!,u! wheres ande denote the stress and strain tensors,
respectively, we obtain
JOURNAL
-

F 1

b~Dt !2
M1

a

b~Dt !
C1~KT

stat!n11G ]un11

]u

52S 1

b~Dt !2

]M
]u

1
a

b~Dt !

]C
]u D un11

2
]R~un11~u!,u!

]u U
un11

1
]F̃n11

]u
(11)

where

]F̃n11

]u
5

]Fn11

]u
1

]M
]u F 1

b~Dt !2
un1

1

b~Dt !
u̇n2S 12

1

2b D ünG
1MF 1

b~Dt !2

]un

]u
1

1

b~Dt!

]u̇n

]u
2S 12

1

2b D ]ün

]u G
1

]C
]u F a

b~Dt !
un2S 12

a

b D u̇n2~Dt !S 12
a

2b D ünG
1CF a

b~Dt !

]un

]u
2S 12

a

b D ]u̇n

]u
2~Dt !S 12

a

2b D ]ün

]u G
(12)

The second term on the right-hand-side of Eq.~11! represents the
partial derivative of the internal resisting force vector,R(un11),
with respect to sensitivity parameteru under the condition that the
displacement vectorun11 remains fixed. From Eq.~5!, this con-
ditional derivative term can be expressed as

]R~un11~u!,u!

]u U
un11

5 A
e51

Nel E
Ve

BT~x!•
]s~x!

]u U
en11~x!

•dVe

(13)

where]s(x)/]uuen11(x) denotes the derivative of the stress vector
s(en11(u),u) with respect tou for fixed strain vectoren11 .

Analytical expressions for this history dependent conditional
derivative of the stress vector have been derived by Zhang and
Der Kiureghian~1993! and Conte and co-workers~1995, 1998!
OF ENGINEERING MECHANICS © ASCE / DECEMBER 2003 / 1383
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Conte and Jagannath~1995! and Conte et al.~1995! for the con-
stitutive cap plasticity model in the case of a return map con
tutive integration algorithm~Simo and Hughes 1998!. Notice that
once the numerical response of the system attn11 is known, the
matrix sensitivity Eq.~11! is linear and has the same left-han
side matrix operator as the consistently linearized Eq.~6! for the
response at the last iteration before convergence is achieve
the current time step@ tn ,tn11#. Therefore, only the right-hand
side of Eq.~6! needs to be recomputed and since the factoriza
of the tangent dynamic stiffness matrixKT

dyn is already available
~stored in the computer! at the converged time steptn11 , solution
of Eq. ~11! is computationally cheap~only forward-backward
substitution phase!. This summarizes the steps for computing t
response sensitivities using Method II. Some observations a
Method II are made below.

Method II exactly differentiates the numerical time steppi
scheme for computing the response sensitivities and, having m
this identification, there is absolutely no confusion as to wh
tangent moduli~consistent or continuum! to use in building the
static tangent stiffness matrix in Eq.~10!. Differentiation of the
numerical scheme for determiningsn11 from en11 indeed pro-
vides the consistent tangent moduli. In this regard, some of
previous works mentioned earlier seem to be adopting Meth
for arriving at the sensitivity equations which would natura
require using the continuum tangent as shown in the next sec
Instead, they use the consistent tangent moduli as require
Method II. This clear distinction between the two approaches
the appropriateness of using either of the two tangent mo
seem to be lacking. Further, for viscoelastic and viscoplastic m
els ~not considered in this paper! where the constitutive relation
are given in terms of convolution integrals for history depende
~Simo and Hughes 1998!, the notion of a continuum tangent do
not even exist. For these cases, Method II is probably the o
recourse. These situations make the distinction between the
methods all the more important.

Numerical Sensitivity of Exact Response (Method I)

This section briefly discusses the alternative approach where
semi-discrete~time continuous-spatially discrete! equations are
used to obtain the response sensitivity equations. Differentia
exactly the semi-discretized nonlinear equation of motion~1! with
respect tou and changing the order of differentiation with respe
to t andu yields

M ~u!v̈~ t,u!1C~u!v̇~ t,u!1K̃T@u~ t,u!#v~ t,u!

5
]F~ t,u!

]u
2

]M ~u!

]u
ü~ t,u!2

]C~u!

]u
u̇~ t,u!

2
]

]u
R@u~ t,u!,u#U

u

(14)

wherev(t,u)5]u(t,u)/]u andK̃T denotes the continuum~static!
tangent stiffness matrix obtained from the continuum tang
moduli ~when the notion of continuum tangent moduli exists! of
the material. A sufficient condition for permuting the partial d
rivatives with respect tot and u is that the partial derivatives
]u/]u, ]u/]t, and](]u/]t)/]u exist and be continuous in bothu
and t at all points along the time axis atu5u0 , the reference
value of the sensitivity parameter~Courant 1988!. However, in
the case of inelastic systems,]u/]u and ](]u/]t)/]u are only
piecewise continuous.
1384 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER
-

or

n

ut

de

e
I

n.
y

d
li
-

e

y
o

e

g

t

Both for Methods I and II, from a numerical standpoint, it can
be assumed that the changes of material state occur within time
steps and never exactly at the discrete time values considered by
the time stepping scheme. The justification is that the probability
of a material state transition occurring exactly at a discretized
time valuetn , while performing the computations using double
precision arithmetic is negligible~Kleiber et al. 1997!. This im-
plies that at any discrete timetn , the material state and hence the
tangent stiffness matrix are uniquely defined.

Furthermore, from a comparison of the two methods, one can
enumerate the assumptions on Method I to obtain Method II. As
mentioned in the Introduction, the lack of clear distinction be-
tween these two methods has led some earlier works to adopt
Method I but make the following assumptions, which exactly
leads one to Method II. These conditions can be listed as:
1. Integration of the semi-discretized governing sensitivity Eq.

~14! over time step@ tn ,tn11# using the same time stepping
scheme, see Eq.~3!, as that for integrating the semi-
discretized equation of motion given in Eq.~1!;

2. Using the same constitutive law integration scheme~return
map algorithm! for integrating the sensitivity equation as
that used for integrating the response equation; and

3. Replacing the continuum~static! tangent stiffness matrixK̃T

by the consistent~static! tangent stiffness matrixKT
stat.

Although the above Conditions 1 and 2 are justifiable, Condi-
tion 3 is very ad hoc simply because the consistent tangent stiff-
ness is purely an outcome of discretizing the response equations
in space and in time and then differentiating the resulting numeri-
cal scheme. These conditions establish the equivalence between
the two methods and help clarify some of the earlier works.

Discontinuities due to Material State Transitions

The response sensitivity of an inelastic dynamic system,
]r (t)/]uuu5u0

, is not continuous in time as illustrated in Fig. 3~c!

for the case in whichr (t) is taken as a nodal displacement re-
sponseu(t). The discontinuities along the time axis arise due to a
finite number of switchings between material states, i.e., switch-
ing between elastic and plastic states and vice-versa~Kleiber
et al. 1997; Conte and Vijalapura 1998; Conte 2001!. The gov-
erning sensitivity Eq.~11! involves the partial derivative]/]u of
the internal resisting force vectorR, which changes with change
in material state for a given deformation state, thus in general
producing discontinuities in the sensitivity of the nodal displace-
ment responses~see the section ‘‘Propagation of Discontinuities
from Local to Global Response Sensitivities’’!. The exact instants
in time t8, t9, and t- in Fig. 3 depict these material switching
times. At the material state transition points, the response sensi-
tivity is undefined as shown in Fig. 3, the values of the sensitivity
being different for the two material states immediately preceding
and succeeding the exact transition time. Hence, numerical algo-
rithms used to compute response sensitivities must be able to
capture these discontinuities.

In solving the nonlinear equations of motion using the
Newton-Raphson ~or even modified Newton! incremental-
iterative procedure in conjunction with a return map algorithm
~Simo and Hughes 1998! to integrate the rate constitutive equa-
tions, the exact time~within a time step! at which a material state
transition occurs is not explicitly solved for. If it were the case,
this exact time would have to be differentiated with respect to the
sensitivity parameteru ~Conte and Vijalapura 1998! in order to
carry the discontinuity of the response sensitivity across the
change of material state. In the case of a return map constitutive
2003



Fig. 3. Sketch of discontinuities in displacement response sensitivity
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integration algorithm and assuming that a material state transit
occurs at a Gauss quadrature point within the time step@ tn ,tn11#,
the corresponding discontinuities in the derivatives of the histor
state variables~e.g., plastic strain components, hardening param
eter, etc.! are captured by the differentiation algorithm outlined
above~i.e., Method II!, although the exact occurrence time within
a time step of the material state transition is not solved for. Thu
the discontinuities in the derivatives with respect to material an
loading parameters of global response quantities are carried c
sistently across material state transitions through the upwa
~from local/Gauss point level to global/structure level! propaga-
tion of the discontinuities in derivatives of history variables at th
element~or Gauss point! level. All these ideas are made concret
through an example one-dimensional~1D! plasticity model
below.

Finite-Element Implementation and Validation
of Method II

The procedure for consistent finite element response sensitiv
analysis presented as Method II~or consistent DDM! requires
extensions of standard nonlinear finite-element analysis codes

order to compute and assemble the finite-element contributions
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the right-hand-side of the sensitivity Eq.~11! and solve the latter.
This procedure was implemented in the general-purpose nonline
finite-element analysis programFEAP developed by Taylor
~1998! ~Zienkiewicz and Taylor 2000! and validated through vari-
ous examples in which the exact sensitivities of the compute
hysteretic finite-element response are validated through finite d
ference sensitivity calculations~Conte and Jagannath 1995; Conte
et al. 1995; Conte and Vijalapura 1998; Conte 2001!. The inter-
ested reader is referred to the above references for further det
on the development of the above procedure~Method II! for both
the J2 ~von Mises! and cap plasticity models, its software imple-
mentation and validation.

Example of One-Dimensional J 2 (von Mises) Plasticity

This section particularizes the various steps in Method II to
simple 1DJ2 Plasticity model with the von Mises yield criterion.
The equations for the numerical integration of the rate constit
tive relations of the 1D model, for both the response and respon
sensitivities are provided below. For the multidimensional J2 plas-
ticity model as well as the more complicated cap plasticity mode
the reader is referred elsewhere~Conte and Jagannath 1995;
Conte et al. 1995; Conte and Vijalapura 1998; Conte 2001!.
L OF ENGINEERING MECHANICS © ASCE / DECEMBER 2003 / 1385
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The plasticity model assumes that the 1D total strain« can be
additively split into an elastic part«e and a plastic part«p. The
1D stresss depends only on«e. Plasticity is introduced through a
scalar yield functionf (s,a,«̄p) in the stress space. Here, th
scalara is called the back-stress and models the kinematic ha
ening, while «̄p is the cumulative plastic strain and is used a
isotropic hardening parameter. The elastic domain is defined
states of stress such that f(s,a,«̄p),0 and the yield function is
constrained to take on nonpositive values, i.e.,f (s,a,«̄p)<0.
When the state of stress is on the yield surface, i.e.,f (s,a,«̄p)
50, plastic flow~described by the flow rule!, or elastic unloading
takes place depending on the total strain rate«̇, either being de-
termined uniquely by the plastic consistency condition or t
Kuhn-Tucker conditions for loading/unloading and the plast
consistency equation~Simo and Hughes 1998!. The hardening of
the material during yielding is modeled by the hardening law. T
equations for the 1DJ2 plasticity model with von Mises yield
function and a linear hardening law are summarized below.
1. Additive decomposition of the total strain

«5«e1«p (15)
2. Elastic stress-strain relations

s5E•«e (16)
where E5elastic Young’s modulus of the material;

3. Flow rule

«̇p5l̇•sgn~s2a! (17)

wherel̇5consistency parameter and sgn~...! denotes the sign
function;

4. Hardening laws~linear kinematic and linear isotropic hard
ening!

ȧ5Hkin• «̇p

«G p5l̇ (18)

sy5sy01Hiso• «̄p

where «G p5A«̇p5u«̇pu denotes the rate of effective plastic
strain, «̄p5*0

t «G p
•dt5effective or cumulative plastic strain;

sy05initial yield stress;sy5current yield stress; andHkin

andH iso5kinematic and isotropic hardening moduli, respe
tively;

5. Kuhn-Tucker conditions for loading/unloading

l̇>0, f ~s,a,«̄p!<0 and l̇• f 50 (19)
6. Plastic consistency condition

l̇>0, ḟ ~s,a,«̄p!<0 and l̇• ḟ 50 (20)

The yield function is of the form

f ~s,a,«̄p!5us2au2~sy01H iso«̄
p! (21)

The 1DJ2 plasticity model with pure linear kinematic hardenin
(H iso50) corresponds to the well-known bilinear inelastic mod
shown in Fig. 4. In the above, the flow rule and hardening la
are given in rate form. The rate constitutive equations have to
integrated numerically in order to obtain the stress history for
given strain history. Using the implicit backward Euler scheme
time-discretize the rate equations over the time step@ tn ,tn11#
~with step sizeDt5tn112tn), we obtain the following discretized
material constitutive equations:
1. Additive split of the total strain

«n115«n11
e 1«n11

p (22)
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2. Elastic stress-strain relation

sn115E•«n11
e (23)

3. Flow rule

«n11
p 5«n

p1Dl•sgn~sn112an11! (24)

whereDl5* tn

tn11l̇•dt>l̇n11•Dt is the discrete consistency

parameter;
4. Hardening laws~linear kinematic and linear isotropic hard-

ening!

an115an1Hkin•Dl•sgn~sn112an11!

«̄n11
p 5«̄n

p1Dl (25)

sy,n115sy,n1Hiso•Dl
5. Kuhn-Tucker loading/unloading and plastic consistency con-

ditions

Dl>0, f ~sn11 ,an11 ,«̄n11
p !<0

and

Dl• f ~sn11 ,an11 ,«̄n11
p !50 (26)

The subscript(...)n11 denotes that the quantity to which the sub-
script is attached is evaluated at timetn11 .

As a particular one-dimensional application of the very effec-
tive elastic-plastic operator split method with a concept of return
map which is based on the notion of closest-point-projection in
the stress space~Simo and Hughes 1998!, the above discretized
constitutive equations are solved for stress componentsn11 in
two steps, namely~1! a trial elastic step and~2! a plastic corrector
step. In the trial elastic step, the plastic response is frozen and,
consequently, all of the current total strain increment (D«n11

5«n112«n) is assumed to be elastic. If the stress computed
under this assumption satisfies the yield condition, then the cur-
rent step is elastic and the integration of the material constitutive
law over time step@ tn ,tn11# is complete. Otherwise, the above
discrete constitutive equations are solved for the discrete consis-
tency parameterDl and finally for sn11 ~by the return map al-
gorithm!. The procedure is summarized below.

Trial Elastic State

DlTrial50

~«n11
p !Trial5«n

p

an11
Trial 5an (27)

~ «̄n11
p !Trial5 «̄n

p

sn11
Trial 5E~«n112«n

p!

sy,n11
Trial 5sy,n

IF $ f (sn11
Trial ,an11

Trial ,(«̄n11
p )Trial)<0% THEN

Update all the state/history variables at timetn11 by assigning
the corresponding trial values to them, i.e.,(...)n115(...)n11

Trial and
EXIT.

ELSE

Plastic Corrector Step Using the Return Map Algorithm

The plastic corrector step is based upon satisfying the consistency
condition in discrete form
2003



Fig. 4. Return map algorithm for 1DJ2 ~von Mises! plasticity model with pure kinematic hardening (H iso50)
f n115usn112an11u2sy,n1150 (28)

where

sn115E~«n112«n11
p !

5E$«n112«n
p2@Dl•sgn~sn112an11!#%

5sn11
Trial 2E•Dl•sgn~sn112an11! (29)

an115an1Hkin•Dl•sgn~sn112an11!

5an11
Trial 1Hkin•Dl•sgn~sn112an11! (30)

sy,n115sy,n1H iso•Dl (31)

Using the expressions forsn11 and an11 in Eqs. ~29! and ~30!
and defining

nn115
sn112an11

usn112an11u 5sgn~sn112an11! (32)
we obtain

JOURNAL
sn112an115usn112an11u•nn11

5~sn11
Trial 2an11

Trial !2~E1Hkin!•Dl•nn11 (33)

By analyzing the signs of the three terms of the equation formed
by the second equal sign in Eq.~33!, it follows that

sgn~sn112an11!5sgn~sn11
Trial 2an11

Trial !5nn11 (34)

and

usn112an11u5usn11
Trial 2an11

Trial u2~E1Hkin!Dl (35)

Therefore, using Eq.~31!, we can write the discrete consistency
condition in Eq.~28! as

usn11
Trial 2an11

Trial u2~E1Hkin!•Dl2sy,n2H iso•Dl50 (36)

The discrete consistency parameterDl can be obtained from the
above equation as

Dl5
usn11

Trial 2an11
Trial u2sy,n

E1H 1H
(37)
iso kin
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parameteru is set to zero. Using Eq.~34!, Eq. ~37! takes the form
Given «n11 and onceDl is known, the state/history variables at
tn11 ~i.e., «n11

p , sn11 , an11 , «̄n11
p , sy,n11) are obtained from

Eqs.~24!, ~25!, and~29!. The above discrete constitutive integra-
tion scheme for 1DJ2 plasticity is represented graphically in Fig.
4 for a plastic step.

Response Sensitivity Calculations

It was shown earlier that the formation of the response sensitivi
equation, Eq. ~11!, requires computation of the derivative
dsn11 /d«n11 in order to evaluate the consistent~or algorithmic!
tangent stiffness matrix KT

stat5]R/]u. Also, the term
]sn11 /]uu«n11

needs to be computed in order to evaluate th
term ]R/]uuu in the right-hand-side of the response sensitivity
Eq. ~11!. In the context of Method II, the derivative
dsn11 /d«n11 relates the infinitesimal incremental change in th
stresssn11 computedalgorithmically ~according to the return
map algorithm in our case! to an infinitesimal incremental change
in the value of the total strain«n11 at time tn11 , while keeping
fixed all other state/history variables at timetn that appear in the
material constitutive integration algorithm. We differentiate the
discrete constitutive integration algorithm~i.e., here return map
algorithm! to compute the derivativedsn11 /d«n11 . When the
current step is elastic,«n11

p 5(«n11
p )Trial5«n

p , and taking differ-
entials on both sides of Eq.~27! yieldsdsn115E•d«n11 . When
the current step is plastic, we use the equations for the plas
corrector step. Taking differentials on both sides of Eqs.~29!1 and
~24!, and using Eq.~34! anddnn1150 ~since the sign function is
either11 or 21 and, in finite precision arithmetic, we are neve
at the point of discontinuity of the sign function!, we have

dsn115E•~d«n112d«n11
p ! (38)

and

d«n11
p 5d~Dl!•nn11 (39)

The discrete consistency parameterDl is obtained from the dis-
crete consistency condition in Eq.~28!. Thus, taking differentials
on both sides of the discrete consistency condition, using Eq
~29!1 , ~30!1 , ~31!, and the identitynn11•nn1151 yields

d fn115dusn112an11u2dsy,n1150

5d~sn112an11!nn112dsy,n1150

5E~d«n112d«n11
p !nn112Hkin•d~Dl!2H iso•d~Dl!

(40)

Multiplying last equation bynn11 and using the expression in Eq.
~39! for d«n11

p , we obtain

d~Dl!5S E

E1Hkin1H iso
D •d«n11•nn11 (41)

Substituting Eqs.~39! and ~41! into Eq. ~38! yields

dsn115E•S 12
E

E1Hkin1H iso
D •d«n11 (42)

which relates the infinitesimal incremental stress computed alg
rithmically to an infinitesimal incremental strain. Therefore, in the
case of the 1DJ2 plasticity model, the consistent~or algorithmic!
elastoplastic material tangent modulus is given by

DT5E•S 12
E

E1Hkin1H iso
D5

Hkin1H iso

E1Hkin1H iso
•E (43)
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which is shown in Fig. 4 in the case of pure kinematic hardening
(H iso50) and corresponds to the post-yield stiffness of the bilin-
ear inelastic model. Thus, in the present case, the consistent m
terial tangent modulus is identical to the continuum tangen
modulus. It can be shown that for the one-dimensional case, th
consistent~or algorithmic! tangent modulus coincides with the
continuum elastoplastic tangent modulus irrespective of the con
stitutive plasticity model. However, this result does not hold for
the multidimensional case in which strains, stresses, and materi
tangent moduli are tensorial quantities~Simo and Hughes 1998!.
In the multidimensional case, for large time steps, the consisten
tangent moduli may differ significantly from the ‘‘continuum’’
ones ~Conte and Jagannath 1995; Conte and Vijalapura 1998
Simo and Hughes 1998!.

Consider the conditional derivative of a generic state/history
variable,](...)/]uuu . In displacement-based finite-element analy-
sis, fixing the displacementu(tn11)5un11 is equivalent to fixing
the strain «n11 . Therefore, the conditional derivatives of the
state/history variables are simply obtained by substituting with
zero all the occurrences of the derivative]«n11 /]u in the expres-
sions for the~unconditional! derivatives of the state/history vari-
ables,]~...!/]u.

If no plastic deformation takes place during the current time
step@ tn ,tn11#, the trial solutions for the state variables given by
the elastic predictor step are also the correct solutions, i.e., th
elastic predictor step is not followed by a plastic corrector step
Hence, dropping the superscript ‘‘Trial’’ from Eqs.~27! and dif-
ferentiating them with respect to the sensitivity parameteru, we
obtain

]

]u
~Dl!50 (44)

]«n11
p

]u
5

]«n
p

]u
(45)

]an11

]u
5

]an

]u
(46)

]«̄n11
p

]u
5

]«̄n
p

]u
(47)

]sn11

]u
5ES ]«n11

]u
2

]«n
p

]u D 1
]E

]u
~«n112«n

p! (48)

]sy,n11

]u
5

]sy,n

]u
(49)

If plastic deformation takes place during the current step
@ tn ,tn11#, the elastoplastic constitutive relations in the discrete
form are differentiated exactly with respect to the sensitivity pa-
rameteru in order to compute the derivatives of the state/history
variables attn11 . Differentiating Eq.~29!1 with respect tou pro-
duces

]sn11

]u
5E•S ]«n11

]u
2

]«n11
p

]u D 1
]E

]u
•~«n112«n11

p ! (50)

The derivative]«n11
p /]u is obtained by differentiating Eq.~24!

with respect tou, using Eq.~32!, as

]«n11
p

]u
5

]«n
p

]u
1

]~Dl!

]u
•nn11 (51)

where again the derivative ofnn11 with respect to sensitivity
2003
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Dl5
usn11

Trial 2an11
Trial u2sy,n

E1H iso1Hkin
5

~sn11
Trial 2an11

Trial !•nn112sy,n

E1H iso1Hkin
(52)

Differentiating Eq.~52! with respect tou yields

]~Dl!

]u
5

~E1H iso1Hkin!•F S ]sn11
Trial

]u
2

]an

]u D •nn112
]sy,n

]u G
~E1H iso1Hkin!2

2

S ]E

]u
1

]H iso

]u
1

]Hkin

]u D •@~sn11
Trial 2an!•nn112sy,n#

~E1H iso1Hkin!2

(53)

where the derivative ofsn11
Trial with respect tou is obtained, using

Eq. ~27!5 , as

]sn11
Trial

]u
5E•S ]«n11

]u
2

]«n
p

]u D 1
]E

]u
•~«n112«n

p! (54)

The derivatives of the remaining state/history variables,«̄n11
p ,

sy,n11 , andan11 , with respect to the sensitivity parameteru are
obtained by differentiating Eqs.~25! as

]«̄n11
p

]u
5

]«̄n
p

]u
1

]~Dl!

]u
(55)

]sy,n11

]u
5

]sy,n

]u
1

]H iso

]u
•Dl1H iso•

]~Dl!

]u
(56)

]an11

]u
5

]an

]u
1

]Hkin

]u
•~Dl!•nn111Hkin•

]~Dl!

]u
•nn11

(57)

The conditional derivative]R/]uuu in the response sensitivity Eq.
~11! at the structure level requires computation of the condition
derivative ]sn11 /]uuu at each Gauss quadrature point of the
finite-element model of the structure. As mentioned earlier, this
achieved by substituting]«n11 /]u with zero in Eqs.~50!, ~51!,
~53!, and~54!.

Propagation of Discontinuities from Local to Global
Response Sensitivities

We shall examine the propagation of discontinuities in the re
sponse sensitivities for the simple 1DJ2 plasticity model consid-

ered here. During the response computation, each time step

JOURNA
l

s

-

is

either an elastic step or a plastic step depending on whether
is plastic flow or not. Correspondingly, Eqs.~44!–~49! are used to
compute sensitivities for an elastic step, while Eqs.~50!–~57! are
used for a plastic step. For this plasticity model, the discontin
ties propagate starting with discontinuities in]~Dl!/]u. The de-
rivative ]~Dl!/]u is zero for an elastic step, is given by Eq.~53!
for a plastic step, and it jumps from zero to a nonzero value
vice-versa during elastic-to-plastic and plastic-to-elastic mate
state transitions, respectively. These discontinuities in]~Dl!/]u at
the local~Gauss quadrature point! level propagate into disconti
nuities in the sensitivities of the stresss, plastic strain«p, effec-
tive or cumulative plastic strain«̄p, current yield stresssy , and
back-stressa through Eqs.~50!–~57!. Then, these discontinuitie
in response sensitivities at the local~Gauss quadrature point! level
propagate mathematically and physically upwards into disco
nuities in response sensitivities at the element level~e.g., element
internal forces and deformations! and finally at the structure leve
~e.g., nodal displacement, base shear, etc.!.

The propagation of discontinuities from local to global r
sponse sensitivities is illustrated through a simple application
ample, namely, a single degree-of-freedom~SDOF! elastoplastic
system subjected to ground motion excitation as shown in Fig
The input ground acceleration historyüg(t) and displacement re
sponse historyu(t) are shown in Figs. 6~a and b!, respectively.
The reason why the input ground acceleration looks analyt
with some small irregularities is that it was retrieved as one of
final iterations to find the design point during a time-variant re
ability analysis of this elastoplastic SDOF system subjected
random ground motion excitation~Conte and Vijalapura 1998
Vijalapura et al. 1999!. The sensitivities of the cumulative plast
strain, «̄p(t), and displacementu(t) response histories with re
spect to the initial yield stresssy0

are shown in Figs. 7 and 8~in

Fig. 5. SDOF system: Elastoplastic truss element
Fig. 6. ~a! Input ground acceleration history and~b! displacement response history
L OF ENGINEERING MECHANICS © ASCE / DECEMBER 2003 / 1389
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solid line!, respectively. Method II~consistent direct differentia-
tion method! is adopted for the response sensitivity calculations
Figs. 7 and 8 also contain response sensitivity results~in dashed,
dashed-dot, and dotted lines! obtained from forward finite differ-
ence analysis with decreasing values of the initial yield stres
variation Dsy . It is observed that the finite difference results
approach asymptotically the results obtained using the consiste
DDM as further evidenced by the zoom views of the discontinui
ties shown in the insets of Figs. 7 and 8. As already mentione
each discontinuity occurs somewhere within a time step and i
exact time of occurrence is not explicitly solved for using the
direct differentiation method. However, the values of the respons
sensitivities at both ends of the time step are in agreement wi
the finite difference results, thus indicating that the discontinuitie
in response sensitivities are consistently carried across the ma
rial state transitions.

In Fig. 7, the sensitivity of the cumulative plastic strain exhib-
its two discontinuities corresponding to a plastic loading in time
step 1.26–1.27 s and a second plastic loading in time step 1.63
1.64 s. The first plastic loading is immediately followed by an
elastic unloading. The discontinuities in the sensitivity of the dis
crete consistency parameterDl with respect tosy0

propagate
upward resulting in discontinuities in the sensitivity of the cumu-
lative plastic strain,«̄p(t), and other state/history variables and
finally in discontinuities in the sensitivity of the displacement
responseu(t) at the structure level, as seen in Figs. 7 and 8

Fig. 7. Discontinuities in sensitivity of cumulative plastic strain
response history to initial yield stress,sy0 , due to material state
transitions

Fig. 8. Discontinuities in sensitivity of displacement response
history to initial yield stress,sy0, due to material state transitions
1390 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER
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Notice that the discontinuities in response sensitivities are very
visible/pronounced at the local~Gauss quadrature point! level
~Fig. 7!, while they are not very apparent at the structure level
~Fig. 8! where they are relatively much smaller and hidden or
‘‘smeared out’’ within the dynamics~time variation! of the re-
sponse. Indeed, the response sensitivity plots are obtained by lin-
early interpolating the sensitivity values obtained at discrete
times, and when a discontinuity within a time step is small, this
discontinuity is not clearly resolved as in Fig. 8. In quasistatic
elastoplastic problems, the discontinuities in response sensitivities
at the structure level are much more visible~Conte 2001!.

From the analysis provided here, material state transitions
cause discontinuities in:~1! the derivatives~conditional and un-
conditional! of the internal resisting force vector, and~2! the con-
sistent tangent stiffness matrix, in the response sensitivity Eq.
~11!. Therefore, the question naturally arises whether the discon-
tinuity in the derivative of the internal resisting force vector@on
the right-hand side of the sensitivity equation# can be counter-
acted by the discontinuity in the consistent tangent moduli from
which the consistent tangent stiffness matrix is built@on the left-
hand side of the sensitivity equation#, resulting in continuous de-
rivatives of the nodal displacements. From a mathematical point
of view, a priori there is no reason to believe that there is a
counteracting effect which keeps the sensitivity of the nodal dis-
placements continuous in time. However, in some simple ex-
amples involving truss elements and beam elements~with mul-
tiple Gauss-Lobatto integration points along the beam axis!
modeled using the 1DJ2 plasticity model, it can be shown that,
under elastic unloading in quasistatic condition, there is an exact
counteracting effect. But in general, in a complex inelastic mul-
tiple degrees-of-freedom~MDOF! system subjected to static or
dynamic loading, in which we could have simultaneously elasto-
plastic loading and elastic unloading at different locations in the
structure~due to internal stress redistribution!, a general statement
on the counteracting effect at elastic unloading events cannot be
made. From finite-element response sensitivity analysis results for
quasi-static application examples not presented here, it was also
observed that some yielding events~material state transitions
from elastic to plastic state! produce negligible~not visually ob-
servable! discontinuities in the nodal displacement response sen-
sitivities. This could be due to either a smearing effect from the
local to the global level or a counteracting effect between the
discontinuities in the internal resisting force vector and in the
consistent tangent stiffness matrix.

Ten Members Truss Subjected to Ground Motion
Excitation

A ten-member truss is chosen as an example to illustrate the ap-
plication of the consistent direct differentiation method~Method
II ! to multiple degree-of-freedom~MDOF! inelastic systems. This
truss structure is subjected to the 1940 N-S component of the El
Centro ground motion record~Imperial Valley Earthquake! shown
in Fig. 9. The material of the truss members is modeled using the
1D J2 ~von Mises! plasticity model considered above. The geom-
etry and material parameters~assumed common to all truss mem-
bers! of the truss are given in Fig. 10. The truss structure is
assumed to have mass proportional damping with a damping ratio
of 5% in the first mode and decreasing as the inverse of the
frequency for the higher modes. A constant time step ofDt
50.01 s is used to integrate the equations of motion by means of
the constant average acceleration Newmark-b method. The value
2003
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of the ground acceleration at every 0.02 s, starting from timet
50, defines the vector of loading variablesx5@x1 ,x2 ,...,xn#T.

The horizontal relative displacement response history of Nod
2, u2(t), is plotted in Fig. 11~a!. The stress-strain hysteretic re-
sponse of truss Element 1 is given in Fig. 11~b!. The sensitivities
of the response historyu2(t) to the material Young’s modulus E
and initial yield stresssy0

are shown in Figs. 12 and 13, respec
tively. In each figure, the response sensitivity computed using t
consistent DDM~Method II! is given in solid line, while response
sensitivity obtained using forward finite difference analysis with
decreasing values of the parameter variation is given in dashe
dashed-dot, and dotted lines. To illustrate response sensitiv
analysis with respect to loading variables, Fig. 14 shows the se
sitivity of u2(t) to loading parameterx125 @value of the ground
acceleration at timet5(12521)30.0252.48 s] obtained using
the consistent DDM and forward finite difference analysis. A
expected, loading parameterx125 does not influence the response
until time t52.48 s, and hence the response sensitivity is zero u
to this time. In Figs. 12, 13, and 14, it is verified that the finite
difference results converge asymptotically to those obtained usi
the consistent DDM, thus validating the present implementatio
of the DDM in FEAP.

Conclusions

This paper formalizes the approach~referred to herein as Method
II or consistent direct differentiation method! to compute the
exact ~or consistent! sensitivity of the computed structural re-
sponse to both material and loading parameters. This formalis

Fig. 9. Imperial valley earthquake, May 18, 1940, El Centro site
component S00E~N-S!
JOURNAL
,

covers general finite-element implementations for the resp
prediction of a plasticity-based model of a structural system
jected to static or dynamic~e.g., earthquake! loading. The exa
sensitivity of any computed structural response quantity~local or
global, kinematic or static! can be obtained using this approa
Here, focus is placed on materially nonlinear-only analysis u
classical plasticity theory~which assumes a yield surface wit
which the material is linear elastic! and the displacement-bas
finite-element methodology. The response sensitivities of
materially nonlinear systems exhibit discontinuities in time.
shown that calculation of the consistent response sensitivi
quires the use, at least in the last iteration of each load or
step before convergence is achieved, of the consistent~or algo-
rithmic! material tangent moduli at the Gauss point level, w
give rise to the consistent tangent stiffness matrix at the stru
level. These consistent tangent moduli are used extensiv
computational plasticity; they arise from consistent lineariza
of the numerical scheme~here return map algorithm! used to
integrate the material rate constitutive equations and may
significantly from the continuum tangent moduli for finite inc
mental displacements. Conditions of equivalence between th
fundamental approaches of computing the response sensiti

Fig. 10. Ten-member column truss structure
Fig. 11. ~a! Horizontal relative displacement of Node 2 of ten-member truss and~b! stress-strain history of Element 1
OF ENGINEERING MECHANICS © ASCE / DECEMBER 2003 / 1391



Fig. 12. Displacement response sensitivity to material Young’s modulus E
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inelastic ~i.e., history or path dependent! dynamic systems,
namely~Method I! numerical time integration of the exact semi
discretized~time continuous-spatially discrete! response sensitiv-
ity equations and~Method II! exact differentiation of the numeri-
cal finite element response algorithm~i.e., time discrete-spatially
discrete response equations!, have been established.

Insight is given into the nature of the discontinuities in time o
response sensitivities for plasticity-based models of structural s
tems and their physical interpretation in terms of material sta
transitions through the basic 1DJ2 ~von Mises! material plasticity
model and two application examples. It is shown that these d
continuities are consistently carried across material state tran
tions through the exact differentiation of the time steppin
scheme used to integrate the semi-discretized equations of mo
and the numerical algorithm used to integrate the material ra
constitutive equations.

Beside their intrinsic value in providing insight into system
1392 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER
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response, sensitivities of the numerically simulated response of
system to material and loading parameters represent an essen
ingredient for gradient-based optimization methods needed i
structural reliability analysis, structural optimization, structural
identification, finite-element model updating, and structural health
monitoring. The method for consistent finite-element respons
sensitivity analysis presented here for materially nonlinear-only
dynamic structural systems can of course be used directly fo
nonlinear static analysis problems~by just ignoring the inertia and
damping effects! and can be extended to nonlinear geometric and
material models of structural systems. Although not emphasize
in this paper, computing analytical finite element response sens
tivities has two main advantages:~1! computational efficiency as
compared to finite difference methods for estimating sensitivities
especially when dealing with a large number of sensitivity param
eters as in finite element reliability analysis, and~2! overcoming
the step size dilemma~Gu and Conte 2003!. Regarding the latter,
Fig. 13. Displacement response sensitivity to material initial yield stresssy0
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Fig. 14. Displacement response sensitivity to loading variablex125
est
ay

y n

any
tur-

f

to
s,

th-
il-
eth

ain

er-
ds.

f
an

tal-
if we select the perturbation~or step size! of the sensitivity pa-
rameter to be small so as to reduce the truncation error in
mating a response sensitivity through finite difference, we m
have an excessive condition error. In some cases, there ma
be any step size which yields an acceptable error~Haftka and
Gürdal 1992!.
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