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Performance-based earthquake engineering (PBEE) has emerged as a powerful method of

analysis and design philosophy in earthquake engineering and is leading the way to a new

generation of seismic design guidelines. PBEE requires a comprehensive understanding of

the earthquake response of Soil-Foundation-Structure-Interaction (SFSI) systems when

damage occurs in the structural system during the earthquake. In the context of PBEE, this

research combines finite element (FE) modeling and seismic response analysis of SFSI
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systems with state-of-the-art methods in response sensitivity and reliability analysis. New

analytical and numerical methods are developed and existing algorithms adopted for

studying the propagation of uncertainties in nonlinear static and dynamic analyses of SFSI

systems and for probabilistic performance assessment of these systems.

This research makes several contributions to reliability analysis of structural and SFSI

systems. For the purpose of accurately and efficiently computing the response gradients,

an ‘exact’ FE response sensitivity computation algorithm based on the Direct Differentia-

tion Method (DDM) and available in the widely used FE analysis software framework

OpenSees is further extended to various types of material models, finite elements and

multi-point constraint equations used in modeling large-scale realistic SFSI systems. As a

main contribution to this research, this sensitivity algorithm is extended to a multi-yield

surface J2 plasticity model used extensively to model clay soil materials in seismic

response analysis. Related to response sensitivity analysis of SFSI systems, several issues

are studied, such as discontinuities in response sensitivities, the relative importance of var-

ious soil and structural material parameters in regards to a specified aspect of the system

response (i.e., response parameters). 

As contributions to the reliability analysis of structural and SFSI systems, several

existing solution tools such as first-order reliability method (FORM), second-order

reliability method (SORM), and various sampling techniques, such as importance

sampling (IS) and orthogonal plane sampling (OPS), are implemented in OpenSees and/or

further improved to solving reliability analysis problems of structural and SFSI systems. A

powerful general-purpose optimization toolbox SNOPT, developed by Professor Philip
xxxviii



Gill at UCSD, is integrated into the reliability analysis framework in OpenSees and

customized for efficiently finding the design point(s) of structural and SFSI systems. For

time variant reliability analysis, an existing mean upcrossing rate analysis algorithm is

implemented in OpenSees and improved. It is found that the FORM approximation for

mean upcrossing rate is significantly inaccurate, especially in cases of highly nonlinear

response behavior of the system analyzed. In such case, the OPS method based on the

design point(s) of the reliability problem significantly improves the FORM approximation

of the mean upcrossing rate and therefore of the upper bound of the failure probability. 

In order to study the topology of limit-state surfaces (LSS) for reliability problems, a

new visualization method called Multi-dimensional Visualization in Principal Plane

(MVPP) is developed and implemented in OpenSees. The geometrical insight gained from

the MVPP has led to the development of a new hybrid computational reliability method,

called the DP-RS-Sim method, which combines the design point (DP) search, the response

surface methodology (RS), and simulation techniques (Sim). This method is applied for

the time invariant reliability analysis of a realistic nonlinear structural system.

Several other closely related topics are studied. A simplified probabilistic response

analysis method is developed taking advantage of DDM-based response sensitivity

analysis. This method is then applied to a nonlinear structural and SFSI system. It is much

more efficient than the crude Monte Carlo Simulation method and provides, at low

computational cost, good estimates of the mean and standard deviation of the response for

low to moderate level of material nonlinearity in the response. A general-purpose

OpenSees-SNOPT based optimization framework was developed and applied to soil
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model updating problems using numerically simulated data. It is found that the

optimization process is significantly more efficient when using the DDM-based over the

FDM-based sensitivities. Additionally, nonlinear FE model updating is performed for an

actual site, the Lotung downhole array in Taiwan, and based on data recorded during a

1986 earthquake. 
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 CHAPTER 1

INTRODUCTION

1.1   Background

Earthquakes cause damage to buildings, bridges, dams, and people. There can be a

great loss of lives. It can also create landslides, floods and tsunamis. In the last decade

earthquakes around the world killed almost 100,000 people, affected 14 million people,

and produced losses estimated at more than $215 billion. In 1999 alone, two strong earth-

quakes in western Turkey caused the deaths of over 16,000 people, the destruction of more

than 60,000 homes and economic losses of about $40 billion (over one quarter of the

country’s GDP). Between 2004 and 2005, the Sumatra-Andaman and Sumatra earth-

quakes in the Indian Ocean caused a worldwide death toll of nearly 280,000 with thou-

sands of others missing. The economic losses were estimated at over $10 Billion. 

During the past quarter century, fewer than 200 lives have been lost in the United

States as a result of earthquakes. In 1994, the Northridge earthquake in the Los Angeles

area resulted in 61 fatalities, over 8,000 injuries, and direct capital losses of nearly $50 bil-

lion. There is an awareness that similar if not larger events are likely. Fortunately, over the

past 40 years considerable progress has been made in understanding the nature of earth-

quakes and how they damage structures, and in improving the seismic performance of the
1
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built environment. However, much remains unknown regarding the prevention or mitiga-

tion of earthquake damage in the US and worldwide, leaving room for further studies. 

During an earthquake, the soil-structure interaction (SSI) effects play an important

role in determining the behavior of structures like buildings, bridges, etc. The seismic

excitation experienced can be considered a function of the fault rupture mechanism, travel

path effects, local site effects, and SSI effects (Stewart et al. 1999a; Stewart et al. 1999b).

Irrespective of the structure, the local soil conditions can dramatically influence the earth-

quake motion from the bedrock level to the ground surface, through their dynamic filter-

ing effects. One example is the 1985 Mexico City earthquake where deep soft soils

amplified the ground motion and modified the frequency of ground shaking. Similar

behavior was observed during the 1989 Loma Prieta earthquake, in which the sections of

the Cypress freeway in Oakland collapsed due to the soil-related motion amplification.

Past research has shown that for a specific structure, the responses during an earth-

quake may be totally different when the structure is founded on deformable soil when

compared to a rigid foundation. This difference is due to the fact that the SSI may increase

the natural periods of the systems, change the system damping due to wave radiation, or

modify the effective seismic excitation (Jennings et al. 1973; Luco 1980; Luco et al. 1988;

Merritt et al. 1954; Stewart et al. 1999a; Stewart et al. 1999b; Trifunac 2000; Veletsos et

al. 1974; Wong et al. 1988). For large and extended structures such as long bridges, the

spatial variation of the ground motion (also referred to as asynchronous multi-support

seismic excitations), may have significant effects on the bridge response (Deodatis et al.

2000; Der Kiureghian et al. 1992; Harichandran et al. 1996; Nazmy et al. 1992; Saxena et
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al. 2000; Shrikhande et al. 1999; Zerva 1990). The spatial variation of earthquake ground

motion includes both incoherence (loss of coherence with separation distance) due to

reflection and scattering of seismic waves and wave propagation/passage effects (Har-

ichandran et al. 1986; Harichandran 1991). 

Analytical formulations for SSI are numerous, ranging from complex, two- and three-

dimensional finite-element analysis procedures capable of incorporating fully nonlinear

dynamic soil and structural modeling (Borja et al. 1992; Borja et al. 2000; Conte et al.

2002; Koutsourelakis et al. 2002; Zhang et al. 2003) to simplified nonlinear substructure

approaches (Makris et al. 1994; Zhang et al. 2002; Zhang et al. 2004) to simplified linear

substructure techniques suitable for implementation in Building Codes (Stewart et al.

2003). The majority of past research on SSI is based on the substructure approach with lin-

ear substructures and is formulated in the frequency domain. The most advanced nonlinear

SFSI models are formulated using the direct approach in which an integrated model incor-

porating the structure, its foundations, and the surrounding soil is analyzed as a whole. 

However, the complex nature of the SSI during the passage of seismic waves has made

it difficult to predict or determine the conditions under which the SSI can be beneficial or

detrimental to structural performance during a strong earthquake (Bielak 1978; Celebi

1998; Mylonakis et al. 2000; Priestley et al. 1987; Resendiz et al. 1985; Veletsos et al.

1973). 

Due to the complex and still poorly understood nature of SSI effects, the prediction of

structural performance can be done only in a probabilistic sense. Uncertainties are not

avoidable and should be presented in any model of SSI systems. Uncertainties can be for-
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mally grouped into inherent or aleatory and epistemic uncertainty. Inherent/aleatory

uncertainty is defined as the intrinsic variability (or natural randomness) of engineering/

physical quantities such as material (soil, concrete, steel, …) properties, geometric proper-

ties, seismological variables (earthquake magnitude M and site-to-source distance S),

ground motion time history at a specific point, and spatial variation of ground motion.

Inherent uncertainties can be viewed as a property of nature. They are irreducible and can

be estimated from observations using the frequentist interpretation of probability. In con-

trast, epistemic uncertainty results from a lack of knowledge or information and shortcom-

ings in measurement or calculation. It arises due to (a) the use of structural, load, and

probabilistic models that are idealized, simplified, incorrectly calibrated, and/or of ques-

tionable applicability (i.e., modeling uncertainty), and (b) imperfect model parameter esti-

mation due to limited data, measurement errors, etc. (i.e., small sampling uncertainty).

The predictions made on the basis of these models are inaccurate to some unknown

degree. Epistemic uncertainty can usually be reduced by using more accurate/sophisti-

cated models, acquiring additional data, and improving measurement procedures. Thus,

inherent and epistemic uncertainties are very different in nature. This difference should be

recognized and accounted for by the next generation of seismic design methodologies.

Foundation soil materials may be characterized by uncertain material properties and

stochastic (random) spatial variability (Lacasse et al. 1996; Lumb 1966). Random field

models (Vanmarcke 1977; Vanmarcke 1983) to represent the spatial variability of soil

properties have been used in a number of studies to investigate the influence of uncertain

and spatially variable soil properties/parameters on performance (e.g., underground water
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seepage; foundation settlement) of geotechnical/foundation systems (Fenton 2002; Grif-

fiths et al. 1997; Rackwitz 2000; Vanmarcke 1977). These random field soil models are

typically defined by their mean, variance, and spatial correlation structure (e.g., spatial

correlation length or scale of fluctuation), which are usually calibrated with in-situ soil

data (Davis 1986; DeGroot 1996; Fenton 1999). The scale of fluctuation describes how

rapidly a soil property changes with position. In a recent report, Jones et al. (Jones et al.

2002) provide background information, available data, and numerous references on the

uncertainty and spatial variability of soil properties. The intrinsic variability of structural

material properties (e.g., Young’s modulus of steel/concrete, yield strength of steel, com-

pressive/tensile strength of concrete) has been documented and characterized extensively

in the literature (Lu et al. 1994; Mirza et al. 1979b, Mirza et al. 1979c). Uncertainty in

reinforced concrete member geometry has also been studied and documented in the litera-

ture (Mirza et al. 1979a). 

1.2   Objectives

Performance-based earthquake engineering (PBEE) has emerged as a new analysis

and design philosophy in earthquake engineering (Cornell et al. 2000; Moehle et al. 2004;

Porter 2003) and is leading the way to a new generation of seismic design guidelines

(AASHTO 1998; ATC-55 2005; ATC-58 2005; BSSC 2003; ICC 2003; SEAOC 1995).

The performance-based seismic design approach prescribes performance objectives to be

achieved by a structure during earthquakes for various hazard levels. PBEE requires a

comprehensive understanding of the earthquake response of a structure (SFSI system)

when damage occurs in the structural system over the course of an earthquake (cracking,
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yielding, crashing, fracture, and so forth). In the long term, using PBEE, structures will be

rated for a given performance level at a given hazard level. However, due to the inherent

and epistemic uncertainties characterizing material and geometric properties of the struc-

ture (or SFSI system) and the earthquake excitation, the satisfaction of structural perfor-

mance objectives can only be defined in probabilistic terms (e.g., acceptable annual

probability of limit-state exceedance).

In the context of PBEE, the objective of this research is to combine finite element

modeling and seismic response analysis of Soil-Structure-Interaction (SSI) systems with

state-of-the-art methods in sensitivity and reliability analysis. The research is trying to

adopt existing algorithms or develop new analytical methodologies for studying the prop-

agation of uncertainties and failure probabilities of the structure or SSI systems. This

study is applied to both static push over and stochastic earthquake loading cases. 

Several contributions are made to reliability analysis of structural and SFSI systems.

For the purpose of accurately and efficiently computing the response gradients, an ‘exact’

FE response sensitivity computation algorithm based on the Direct Differentiation Method

(DDM) and available in the widely used FE analysis software framework OpenSees is fur-

ther extended to various types of material models, finite elements and multi-point con-

straint equations used in modeling large-scale realistic SFSI systems. As a main

contribution to this research, this sensitivity algorithm is extended to a multi-yield surface

J2 plasticity model used extensively to model clay soil materials in seismic response anal-

ysis. Related to response sensitivity analysis of SFSI systems, several issues are studied,

such as discontinuities in response sensitivities, the relative importance of various soil and
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structural material parameters in regards to a specified aspect of the system response (i.e.,

response parameters). 

As contributions to the reliability analysis of structural and SFSI systems, several

existing solution tools such as first-order reliability method (FORM), second-order reli-

ability method (SORM), and various sampling techniques, such as importance sampling

(IS) and orthogonal plane sampling (OPS), are implemented in OpenSees and/or further

improved to solving reliability analysis problems of structural and SFSI systems. A pow-

erful general-purpose optimization toolbox SNOPT, developed by Professor Philip Gill at

UCSD, is integrated into the reliability analysis framework in OpenSees and customized

for efficiently finding the design point(s) of structural and SFSI systems. For time variant

reliability analysis, an existing mean upcrossing rate analysis algorithm is implemented in

OpenSees and improved. It is found that the FORM approximation for mean upcrossing

rate is significantly inaccurate, especially in cases of highly nonlinear response behavior

of the system analyzed. In such case, the OPS method based on the design point(s) of the

reliability problem significantly improves the FORM approximation of the mean upcross-

ing rate and therefore of the upper bound of the failure probability. 

In order to study the topology of limit-state surfaces (LSS) for reliability problems, a

new visualization method called Multi-dimensional Visualization in Principal Plane

(MVPP) is developed and implemented in OpenSees. The geometrical insight gained from

the MVPP has led to the development of a new hybrid computational reliability method,

called the DP-RS-Sim method, which combines the design point (DP) search, the response
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surface methodology (RS), and simulation techniques (Sim). This method is applied for

the time invariant reliability analysis of a realistic nonlinear structural system.

Several other closely related topics are studied. A simplified probabilistic response

analysis method is developed taking advantage of DDM-based response sensitivity analy-

sis. This method is then applied to a nonlinear structural and SFSI system. It is much more

efficient than the crude Monte Carlo Simulation method and provides, at low computa-

tional cost, good estimates of the mean and standard deviation of the response for low to

moderate level of material nonlinearity in the response. A general-purpose OpenSees-

SNOPT based optimization framework was developed and applied to soil model updating

problems using numerically simulated data. It is found that the optimization process is sig-

nificantly more efficient when using the DDM-based over the FDM-based sensitivities.

Additionally, nonlinear FE model updating is performed for an actual site, the Lotung

downhole array in Taiwan, and based on data recorded during a 1986 earthquake. 

Two main sources of inherent/intrinsic uncertainty are being considered in this study:

(i) soil and structural material properties, (ii) earthquake excitation time histories. Part of

the results can be readily used in the engineering practice leading to a more rational treat-

ment of uncertainties and safer and more economic design of structural systems. 

1.3   Literature Review 

Lutes et al. (Jin et al. 2000; Lutes et al. 2000) have conducted pioneering analytical

studies to investigate the effect of uncertain soil-foundation and superstructure properties

on structural response in seismically excited soil-structure interacting systems. Their work
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focuses on simple linear elastic SSI systems subjected to stochastic earthquake excitation

and shows that for non-negligible system parameter uncertainty, there may be significant

uncertainty about the spectral density of structural response. Toubalem et al. (Toubalem et

al. 1999) studied the effects of the random horizontal and vertical spatial variability of

stiffness of the soil medium on transfer functions and resonant frequencies of some simple

linear soil-structure interaction systems. Few other researchers (Koutsourelakis et al.

2002; Tantalla et al. 2001) have analyzed nonlinear soil and soil-structure interacting sys-

tems (with simple structure) with uncertain material properties, subjected to stochastic

earthquake loading. Their methodology included random field modeling of soil properties,

random process modeling of earthquake loading, nonlinear finite element analysis based

on elastoplastic soil models, and Monte Carlo simulation. 

1.4   Software Platform for the Study

1.4.1   FEAP

The Finite Element Analysis Program (FEAP),(O. C. Zienkiewicz et al. 2000) written

by Prof. Robert L. Taylor at UC Berkeley, is a general purpose finite element package for

the analysis of structure system. The program includes the ability to construct arbitrarily

complex finite element models using a library of one-, two-, and three dimensional ele-

ments for linear and non-linear deformations. In addition, a number of material models

(isotropic, orthotropic, plasticity, etc.) are available to model the constitutive properties of

the materials used. A number of solution procedures are available for linear, non-linear,

and time-accurate problems. A part of the work in this dissertation is based on FEAP. 
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1.4.2   FEDEASLab-FERUM

FEDEASLab (Finite Elements in Design, Evaluation and Analysis of Structures using

Matlab) was originally developed by Prof. Filippou at the University of California, Berke-

ley (Filippou et al. 2004). It is a Matlab (Matlab User’s Guide 1997) toolbox suitable for

linear and nonlinear, static and dynamic structural analysis, which has the advantage of

providing a general framework for physical parameterization of finite element models and

response sensitivity computation using the DDM (Franchin 2004). One of the key features

of FEDEASLab is its strict modularity that keeps separate the different hierarchical levels

encountered in structural analysis (i.e., structure, element, section and material levels). It

is an integral simulation component of NEESgrid <http://www.neesgrid.org> that is par-

ticularly suitable for concept development, for education, and for simulations of small

structures. 

FERUM (Finite Element Reliability Using Matlab) is a Matlab toolbox to perform

finite element reliability analysis originally developed by Prof. Der Kiureghian and his

students at the University of    California,     Berkeley     (http://www.ce.berkeley.edu/

~haukaas/FERUM/ferum.html). The coupling between FEDEASLab and FERUM was

first established by Franchin (Franchin 2004). Over the last few years, Joel Conte at the

University of California in San Diego, has significantly enhanced the original capabilities

of FEDEASLab-FERUM (Barbato et al. 2005; Barbato et al. 2008; Conte et al. 2004;

Zona et al. 2005). FEDEASLab-FERUM has proven to be an excellent and versatile

research tool for algorithm developments in nonlinear finite element reliability analysis.

However, Matlab has proven to be slow when solving large scale problems. As a result, in
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this dissertation, many new algorithms are developed and tested first in FEDEASLab-

FERUM, then reimplemented into C++ based OpenSees (http://opensees.berkeley.edu).

1.4.3   OpenSees

OpenSees (Open System for Earthquake Engineering Simulation), is an open source

software framework used to model structural and geotechnical systems and simulate their

earthquake response. This framework has been under development by the Pacific Earth-

quake Engineering Research Center (PEER) since 1997 through the National Science

Foundation (NSF) engineering and education centers program (McKenna et al. 2000;

McKenna et al. 2004). OpenSees supports a wide range of simulation models, solution

procedures, and distributed computing models. It also has very attractive capabilities for

physical parameterization of SSI models, probabilistic modeling, response sensitivity

analysis (Gu et al. 2008a; Gu et al. 2008b) and reliability analysis (Haukaas et al. 2003;

Haukaas et al. 2004). 

OpenSees has been recently adopted as a NEESgrid simulation component. Over the

last years OpenSees has been extensively used for large-scale modeling and simulation of

an actual bridge-ground system (Conte et al. 2002; Zhang et al. 2003; Zhang et al. 2004).

In this dissertation, the sensitivity and reliability framework in OpenSees has been greatly

enhanced for structural and geotechnical systems. The combination of FEDEASLab-

FERUM as research prototyping as well as an educational tool with OpenSees as a frame-

work for large-scale seismic response simulation and reliability analysis, is an ideal

research platform.
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All algorithms mentioned in this dissertation are developed in OpenSees for the pur-

pose of performing the reliability analysis on real large scale structures or SSI problems.

1.5   Organization of the Dissertation

In this dissertation, several closely related topics are presented. The first research topic

is FE response sensitivity analysis of the structural and geotechnical systems, which is

covered in Chapters 3 through 4. Chapter 3 presented the complete theory of the FE

response sensitivity analysis based on the Direct Differentiation Method (DDM). Some

issues like the convergence rate of DDM, the damping effect, and the poststiffness, are

studied. In Chapter 4 the DDM based sensitivity algorithm is extended to a multi-yield

surface J2 plasticity soil model, as well as other necessary elements, materials, constraints,

and various analyses. Thus, the sensitivity and reliability algorithms are extended to geo-

technical systems and are capable of solving Soil Structure Interaction (SSI) problems.

Concerning applications, several SSI systems are studied for the response and response

sensitivities. As a by-product, the normalized sensitivities are employed to measure the

relative importance of the material parameters in determining the response under consid-

eration. In Chapter 5, a simplified probabilistic response analysis is performed for the SSI

system, based on the DDM based response sensitivity analysis. Chapter 6 presents a last

review of the structural reliability analysis methods based on the design point (DP) con-

cept, including the time invariant and time variant reliability analysis. These methods

include the classical FORM, SORM, Monte Carlo Simulation (MCS), as well as various

newly developed or newly adopted methods. These “new” methods include mean upcross-

ing rate analysis, Orthogonal Plane Sampling (OPS), Importance Sampling (IS) methods.
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A hybrid method combining DP and OPS is used to solve time variant reliability problems

of SSI systems and greatly improve the classical FORM approximation of the mean

upcrossing rate. In order to study the limit state function (LSF) or limit state surface

(LSS), a new methodology for visualization of hyper-surfaces defined in high-dimen-

sional spaces is developed and implemented. A new reliability method that combines the

knowledge of the design point, response surface method, and simulation technique (DP-

RS-Sim) are developed and implemented. These methods are used for a 2D SFSI system

for both time invariant and time variant reliability analyses. Chapter 7 develops a general

framework for nonlinear FE model updating based on a general purpose optimization tool

box SNOPT. The convergence rate of SNOPT is compared between using DDM and the

finite difference method (FDM) as gradients. A real example of nonlinear soil FE model

updating in Lotung Taiwan, China is presented. Chapter 8 is the user’s manual for the

newly developed sensitivity and reliability analysis framework in OpenSees. Chapter 9

summarizes the work in this dissertation, highlights the research findings, and provides

suggestions for future research.



 CHAPTER 2

FRAMEWORK OF RELIABILITY 
ANALYSIS AND PROBABILISTIC 

CHARACTERIZATION OF SSI SYSTEMS

2.1   Computational Framework for Reliability Analysis of SSI Systems

The structural reliability problem consists of computing the probability of failure, Pf,

of a structure or SSI system under consideration given the probabilistic characterization of

the system. These characterizations which include loading, the geometric and material

properties of the system, and other performance parameters, are all modeled as random

variables (Ditlevsen et al. 1996). In structural reliability analysis, failure is usually defined

as the exceedance/violation of some limit-state or performance function(s). 

Let the vector � denote the basic random variables defining the external loads, geo-

metric and material properties of a given system, while the vector S represents the result-

ing response quantities of interest. The response quantities S are also known as

Engineering Demand Parameters (EDPs). Deterministic realizations of � and S will be

denoted by � and s, respectively. The EDPs S are implicit functions of the basic random

variables �, i.e., s = f(�), where the vector function f is not known analytically, but can

only be evaluated numerically through a finite element (FE) algorithm. In performance-

based design, nodal displacement quantities U or deformation quantities (e.g., interstory
14
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drifts for building structures) are common choices for S, and are obtained directly from

numerical integration of the equations of motion. After spacial discretization using the FE

method, the response can be obtained by the following nonlinear differential equation:

(2.1)

where t = time, θ = scalar sensitivity parameter (material or loading variable),

= nodal displacement, velocity and acceleration vectors, M = mass matrix,

C = damping matrix, R(u, t) = history dependent internal (inelastic) resisting force vector,

F(t) = applied dynamic load vector (Conte 2001; Conte et al. 2003). 

Let g(�, S) denote a scalar limit-state function (LSF) for the system considered, such

that  defines the failure domain/region. The hyper-surface defined by

 is called the limit-state surface (LSS). The probability of failure for a time-

invariant reliability problem can be expressed as

(2.2)

where  denotes the joint probability density function (PDF) of random vector �.

The close form solution of the integral in Eq. (2) is not possible to compute for real-world

problems and can be evaluated only approximately. There are well established procedures

consisting of introducing a one-to-one mapping/transformation between the physical

space of the variables � and the standard normal space of variables Y, and then computing

the probability of failure Pf as,

(2.3)

M θ( )u·· t θ,( ) C θ( )u· t θ,( ) R u t θ,( ) θ,( )+ + F t θ,( )=

u t( ) u· t( ) u·· t( ),,

g � S,( ) 0≤

g � S,( ) 0=

Pf P g �( ) 0≤[ ] f� �( ) �d
g �( ) 0≤
∫= =

f� �( )

Pf P g Y( ) 0≤[ ] ϕY y( ) yd
G Y( ) 0≤
∫= =



16
where  denotes the standard normal joint PDF and  is

the limit-state function in the standard normal space. There are methods by which the ran-

dom variable vector may be transformed from the physical space into the standard normal

space. In this dissertation, Nataf model for joint distributions is the chosen method for the

aforementioned probability transformation. This model is completely defined by specify-

ing the marginal distributions and the correlation structures of the random variables. Nataf

model allows a relative wide range of correlation values compared with other joint distri-

bution models, e.g., the Morgenstern model(Liu et al. 1986) .

Solving the integral in Equation (2.3) is a formidable task as well, however this new

form of the integral is suitable for approximate solutions taking advantage of the rotational

symmetry of the standard normal joint PDF and its exponential decay in both the radial

and tangential directions. An optimum point at which to approximate the limit-state sur-

face is the “design point”, defined as the most likely failure point in the standard normal

space. In the standard normal space, the design point on the limit-state surface is the clos-

est point to the origin. Finding the design point is a crucial step for many approximate

methods, such as FORM, SORM and importance sampling, to evaluate the integral in

Equation (2.3)(AASHTO 1998; Breitung 1984; Der Kiureghian et al. 1987). Moreover,

the integral in Equation (2.3) is an essential building block in approximate solution meth-

ods for time-variant reliability problems (i.e., computation of mean rate of out-crossing

the limit-state surface for stochastic dynamic problems) by using time-invariant reliability

methods (Hagen et al. 1991; Li et al. 1995; Vijalapura et al. 1999).

ϕY y( ) G Y( ) g � Y( ) S � Y( )( ),( )=
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The design point y* is obtained as a solution to the constrained optimization problem

(Liu et al. 1991) 

(2.4)

Where y is the random variable vector in the standard normal space. In view of the gener-

ality of a limit-state surface defined for a nonlinear mechanics-based system (such as a

SSI system), there can be multiple points that satisfy Equation (2.4) referred to as multiple

design points in the literature. Special algorithms need to be developed for problems char-

acterized by multiple design points (AASHTO 1998; Der Kiureghian et al. 1996; Kuschel

1998; Zhang et al.1994). 

The most effective techniques for solving the constrained optimization problem in

Equation (2.4) are gradient-based optimization algorithms (Gill et al. 1981; Liu et al.

1991) when coupled with accurate and efficient computation of the gradient of the con-

straint function G(Y), requiring computation of the sensitivities of the EDPs S to parame-

ters �. Using the chain rule of differentiation, we have

(2.5)

where  and  are the gradients of limit-state function g with respect to its

explicit dependency on quantities S and �, respectively, and can usually be computed

analytically. The term   denotes the response sensitivities of response parameters S to

parameters �, while  is the gradient of the physical space parameters with respect to

the standard normal space parameters. Thus, finite element response sensitivities are key

y* min  12
---yTy

s.t. G y( ) 0=
=

GY∇ gS∇ �
S�∇⋅ g�∇ S

+( ) �Y∇⋅=

gS∇ �
g�∇ S

S�∇

�Y∇
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components in propagating uncertainties from basic loading, geometric, and material

parameters to the response parameters of nonlinear finite element models.

For real-world problems, response simulation of a SSI system (computation of s for

given �) is performed using advanced mechanics-based nonlinear computational models

founded on the finite element method. The constrained optimization problem in Equation

(2.4) usually takes place in a high-dimensional space. Finite element reliability analysis

requires the calculations of responses and their sensitivities to parameters �,  . An

accurate and efficient way to perform finite element response sensitivity analysis is

through the Direct Differentiation Method (DDM) (Zhang et al. 1993; Kleiber et al. 1997)

(Barbato et al. 2005; Barbato et al. 2008; Conte 2001; Conte et al. 2003; Conte et al. 2004;

Zona et al. 2005). In order to perform the Reliability analysis on real SSI problems, the

DDM based sensitivity analysis is extended to several elements, materials, constraints and

the integratorAnalysis. This will be discussed in greater detail in chapter 3.

2.2   SSI System and its Finite Element Model

2.2.1   Nonlinear Dynamic Models of SSI Systems

In principle, powerful tools of finite element methods have rendered possible the solu-

tion of any properly posed boundary value problem in soil mechanics (Prevost 1995).

Since the 1960’s numerical formulations have been proposed throughout the soil mechan-

ics literature. Extensive reviews on constitutive soil models are given by Scott (1985),

Dafalias and co-workers (AASHTO 1998; Dafalias 1986a; Dafalias et al. 1986b), and Pre-

vost and Popescu (1996).

S�∇
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Among these soil constitutive models, the “Multi-yield surface J2 plasticity model” is

selected to model the soil (clay) behavior. This plasticity model was first developed by

Iwan (1967) and Mroz (1967), and was later applied by Prevost (1977; 1978a; 1978b) to

soil mechanics. The advantage of this model is that in contrast to the classical J2 (or Von

Mises) plasticity model with a single yield surface, the multi-yield-surface J2 plasticity

model employs the concept of a field of plastic moduli to achieve a very flexible represen-

tation of the material plastic behavior under cyclic loading conditions. Another advantage

of the model is that the material properties are defined by a very limited number of param-

eters: low strain shear moduli, maximum shear strength �max, and bulk moduli, all of

which may be obtained easily by the experiments. (program DYNAFLOW, Prevost 1995;

program CYCLIC, Elgamal et al. 2002). 

Recent years have seen great advances in nonlinear analysis of frame structures. In this

dissertation, structural elements (e.g., beam, columns/piers, foundation piles, pile caps)

are modeled using state-of-the-art displacement based, fiber-section, spread plasticity,

nonlinear frame elements, with realistic constitutive laws for the structural materials

(steel, concrete). Using material-nonlinear frame elements, the behavior of frame struc-

tures can be simulated accurately far into their actual nonlinear range and near their failure

range.

The SSI model is developed in OpenSees, a powerful simulation platform for SSI sys-

tems with broad capabilities for modeling structural and geotechnical materials. Further-

more a wide range of nonlinear solution strategies for integrating the equations of motion

of large-scale nonlinear systems are available (McKenna and Fenves, 2000; 2004). The
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program provides an appropriate platform for conducting fully nonlinear soil studies (e.g.,

seismic soil studies) and soil-foundation-structure studies, which are able to reproduce

complex soil behaviors observed in the laboratory or in the field (Elgamal et al. 2003;

Yang et al. 2003).

2.2.2   Stochastic Modeling of Earthquake Loading

For SSI systems, the seismic input must be defined along the boundary of the compu-

tational soil domain. Under the assumptions of (i) vertically incident shear waves, (ii) a

linear elastic, homogeneous, undamped semi-infinite half-space underlying the nonlinear

computational soil domain, and (iii) the horizontal lower boundary of the soil domain, it

can be shown that the wave propagation in the computational soil domain can be driven by

equivalent seismic forces applied along the bottom boundary of the soil domain equipped

with Lysmer-Kuhlemeyer absorbing/transmitting boundaries (Lysmer and Kuhlemeyer

1969; Zhang et al. 2003). The equivalent seismic forces are proportional to the soil mass

density, shear wave velocity, and velocity of incident wave motion. 

The incident earthquake motion at a point on the boundary of the computational soil

domain should be defined as a random process able to represent the temporal variations in

both the intensity (amplitude nonstationarity) and the frequency content (frequency non-

stationarity) typical of actual earthquake ground motions. 

In practice, in order to solve random vibration problems by the methods of structural

reliability, the input processes must be represented in terms of a finite number of random

variables along time axis. 
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There are several methods available for discrete representation of random processes.

One method is used in conjunction with sampling techniques to generate realizations of a

random process based on a pre-defined power spectral density (PSD) function. 

The spectrum is discretized into a number of frequency intervals of width , with

 (i = 1,2..N) denoting the center frequency points. For a two-sided PSD function S(ω)

the variance of a frequency interval is . One method of creating a real-

ization is to create two vectors of randomly selected numbers Ai = Normal(0, 1) and θi =

Uniform(0, 2π) and evaluate the following sum at each time instant t:

(2.6)

where µ(t) is a time-varying mean function.

Another simple but widely used method to form this stochastic input x(t) is: (Haukaas

dissertation 2003, p153; Der Kiureghian 2000; Li and Der Kiureghian 1995; Koo and Der

Kiureghian 2003) 

(2.7)

where µ(t) is a time-varying mean function. Yik’s are standard normal random variables

representing a train of pulses. These pulses are equally spaced along the time axis with the

total number of impulses denoted by N. This train of impulse may represent Gaussian

white noise when the number of pulses over a finite time interval is large enough. (Hau-

kaas dissertation 2003). This basic process Y is modified by multiplying by a unit impulse

∆ω

ωi

σ2 2S ω( )∆ω=

x t( ) µ t( ) 2S ωi( ) ω∆ Ai ωit θi+( )cos
i 1=

N

∑+=

x t( ) µ t( ) c2 qk t( ) Yikhk t tk–( )
i 1=

N

∑
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response function  of a filter at each time point tk, for each pulse yk. The pulses

may represent intermittent ruptures at the fault, whereas the filter may represent the (soil)

medium through which the waves travel. One option for the filter is the linear single-

degree-of-freedom (SDOF) oscillator characterized by its natural frequency and damping

ratio (Koo dissertation 2003).  is a modulating function used to further control the

variance of process along the time axis. The number of the modulating functions is desig-

nated as K, while c2 is a constant used to control the overall intensity of the process. Equa-

tion (2.7) represents a general non-stationary stochastic random process. 

In this dissertation, the simplest white noise input is used as earthquake input. In Equa-

tion (2.7), let the modulating function  =1, K=1, c2=1.  is the linear inter-

polation between impulses Yk-1 and Yk. Then Equation (2.7) is simplified to represent a

stationary Gaussian white noise with zero mean and constant standard deviation. The

details are discuss in Chapter 6.

2.2.3   Representation of Uncertainty in Structural and Geotechnical Material 
Properties 

SSI systems present large uncertainties both in the material and geometric parameters

characterizing structures, foundations and soils. The material uncertainties in the ground

medium as well as in the structure are mathematically described by random fields. Finite

element reliability analysis methods require discretization of the continuous-parameter

random fields into a finite number of random variables. Discretization methods need to

accurately represent random fields with as few random variables as possible, given that

hk t tk–( )

qk t( )

qk t( ) Ykh t tk–( )
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reliability analysis computational cost increases strongly with the number of random vari-

ables considered. Several methods for discretization of random fields have been proposed

in the past, e.g., Midpoint Method (MP) (Li et al. 1993), the Spatial Averaging (SA)

method (Vanmarcke et al. 1983), the Shape Function method (SF) (Liu et al. 1986), the

Series Expansion (SE) method (Lawrence 1987), and the Optimal Linear Estimation

method (Li et al. 1993). In our research, the MP method is used, due to its simplicity and

mathematical convenience.

Physically meaningful parameters will be considered for describing uncertainties of

the materials, (e.g., initial modulus Ec and the compressive strength f'c of the concrete;

Elastic modulus Es and the yield strength fy of the reinforcing steel; the low-strain shear

modulus G and the maximum shear strength �max of the soil model, etc.).

2.2.4   Limit-State Surface Design, Topology and Visualization

Seismic reliability analysis of large-scale SSI systems is a very complex problem due

to the implicit nature of the limit-state surface (LSS), the high computational cost of each

limit-state function (LSF) evaluation, and therefore the unknown or at best very partially

known topology of the limit-state surface(s) in the high-dimensional standard normal

space. Due to the generality of the problem at hand, the limit-state surface(s) in general

does (do) not necessarily have the usual desirable properties of continuity, smoothness,

convexity, single-connectedness, boundedness, etc. 

The reliability methods of interest in this dissertation require transformation of the

physical random variables � into the standard normal space Y through Nataf transforma-
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tion. In general, the limit-state surface in the physical space, g(�, S) = 0, is a nonlinear

hypersurface, the topology of which is further modified by the nonlinear mapping between

the physical and standard normal spaces. The geometric and analytical properties of the

limit-state surface in the standard normal space, , are of

much interest in reliability analysis.

Few researchers have studied the topology of the limit-state surface(s) for nonlinear

stochastic finite element models of structural systems (Barbato et al. 2005c; Kiureghian

2000), particularly in the study of SSI systems. In spite of this lack of understanding,

methods (such as FORM/SORM) and algorithms have been developed to find design

point(s) and evaluate the probability of failure (i.e., limit-state exceedance). It is clear that

such methods could produce grossly erroneous results when the unknown topology of the

limit-state surface does not meet the assumptions made about its geometric properties. The

high-dimensionality of the geometric interpretation of the finite element reliability analy-

sis problem causes additional difficulties in graphically representing the LSS using tradi-

tional methods (e.g., 2-D plots, contour lines, perspective of 3-D objects on 2-D supports). 

Knowledge about the topology of limit-state surface(s) for structural and SSI systems

would not only foster the development of new, more efficient and more robust algorithms

for the design point(s) search, but also more accurate methods for evaluating the probabil-

ity content of the failure domain. It is of uttermost importance to investigate and classify

general geometric and analytical properties of limit-state surfaces and their dependence on

the stochastic characterization of loading and material parameters.

G Y( ) g � Y( ) S � Y( )( ),( ) 0= =
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In this dissertation, a new visualization technique called the Multidimensional Visual-

ization in the Principal Planes (MVPP) is developed and applied to structures and SSI sys-

tems. The topology study of the LSS is performed near the design point and along each of

the principal directions of the hessian matrix at that point. The principal directions are the

directions along which the LSS has the largest curvature. In structural reliability problems,

these directions are most interesting since they explain the difference between FORM

results and the real failure probability. In practice, the LSS is visualized in each principal

plane as a curve. The principal plane is defined by the design point direction and a princi-

pal direction. 

According to the visualization of the LSS of some structural and SSI problems, at the

design point only a few (no more than 10) curvatures are far from zero. These directions

represent directions along which the LSF is far from linear and needs to be considered as a

nonlinear function. From this fact, a new methodology called “Design-Point Response-

Surface-Method Simulation” (DP-RS-Sim) is developed in which only along the first few

principal directions the LSF is considered as nonlinear and represented accurately by the

response surface method, while along all other directions it is treated as linear. The new

methodology will be explained in detail later.

2.2.5   Development of Limit-State Functions for Structures and SSI Systems

Several limit-state functions related to physical damage states of SSI systems will be

developed considering a set of global and local nonlinear response parameters that are

used as performance indicators in assessing structure-foundation systems at the service-



26
ability and the collapse performance levels. A variety of such candidate damage indices

have been defined in the literature (DiPasquale et al. 1987; Park et al. 1985; Powell et al.

1988) and others can be introduced considering common failure mechanisms of SSI sys-

tems. In these indices, Maximum value type indices and cumulative damage type indices

are two commonly used indices. In this dissertation, maximum value type indices are used

to study the damage directly inflicted to the structure. These indices include maximum

interstory drift for building structures, maximum top drift, etc.

2.3   Design Point Search and Failure Probability Computation

Several methods exist for finding an approximate solution to the structural reliability

problem in Equation (2.2), such as FORM, SORM, importance sampling, etc. Two crucial

steps can be recognized as common to these methodologies: (i) search for the design

point(s), and (ii) approximate evaluation of the probability content of the failure domain.

2.3.1   Design Point(s) Search

As shown in 2.1, the first problem is formulated as a constrained optimization problem

cast in the standard normal space (Liu et al. 1991). This problem is very challenging for

real-world structural and SSI systems due to the following facts:

• the random parameter space presents high dimensionality, because of the discreti-

zation in terms of random variables of the stochastic seismic input and the random

fields of soil properties;

• the strong (material and geometric) nonlinear behavior reached by the structure or

SSI systems near the failure domain and thus near the design point(s);
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• distortions induced by the transformation between the standard normal space and

the physical space;

• evaluation of the constraint function and its first-order derivatives is very expen-

sive, while second-order derivatives are extremely expensive.

In order to effectively deal with these difficulties, the following methods were imple-

mented or introduced:

1. Solve the design point search problem, in its classical form given in Equation (2.4), by

using the state-of-the-art in computational optimization. In the present dissertation, a gen-

eral purpose optimization tool box sparse nonlinear optimization (SNOPT) has been inte-

grated into OpenSees for solving the design point searching problem. It is observed that,

already in this preliminary stage, consistent research progress has been achieved for

obtaining insight into the physical and numerical nature of the problem. In fact, it is neces-

sary to clarify if and under what circumstances recent optimization algorithms are more

efficient and robust in the design point search problem than the widely used classical or

improved Hasofer-Lind-Rackwitz-Fiessler (HL-RF) algorithms (Kiureghian et al. 1986;

Hasofer et al. 1992; Rackwitz et al. 1978). The optimization algorithms and software are

customized so that the physics and the geometry of the problem are exploited.

2. For the design point(s) search for the time variant problems with a stochastic modeling

of uncertain properties, the design point at the inital time point are shifted along the time

axis to form a new “warm“ starting point at a later time point. This method is observed to

be very efficient, and at times crucial for solving design point(s) search for real structure

or SSI reliability problems. 
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2.3.2   Approximate Evaluation of the Probability Content of the Failure Domain

After finding the design point(s), accurate methods for computation of the probability

of failure of a structure or SSI system are required. As previously noted, asymptotic tech-

niques such as FORM and SORM sometimes lead to very inaccurate results even if the

computation of the design point(s) is very accurate, especially when the limit state surface

is far from a plane. In this research, particular attention was given to hybrid methodologies

combining the use of the design point(s) with reduced-variance simulation techniques,

such as importance sampling using distributions peaked at the design point(s) (Au et al.

2003), Orthogonal Plane sampling (OPS) which take advantage of the design point and the

design point direction. These methods gives very close failure probability by using an

acceptable number of simulations.

Based on the information of Design point(s), the hessian Matrix at the design point

was computed using the finite difference of the LSS Gradients. After the hessian matrix

was known, the principal directions the LSS at the design point(s) were computed by

eigen analysis of the hessian matrix. These directions represent the largest gradients on the

Limit State Surface. It was observed that only the first several principal curvatures are far

from zero and the LSF along these directions need to be considered nonlinear, while other

principal curvatures are so close to zero that in these direction the LSF may be considered

linear. 

Based on this knowledge, the DP-RS-Sim method is developed. In this method, the

LSF is represented nonlinearly in the first several principal directions and linearly in other

directions.A grid plane is defined by two directions, selected from either the design point
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direction or the first several principal directions. Several grid planes are employed, on

which the response surface is fit nonlinearly. The total number of grid plane is N(N+1)/2,

where N is the number of principal directions considered.

In each grid plane, a mesh is created according to the user’s requirements (how refined

is the mesh, what is the boundary, etc.). The values of the LSF at mesh points are evalu-

ated by finite element computation, and the LSF was represented approximately by using

the response surface methods and surface fitting techniques. After the surface is approxi-

mated, the failure probability may be easily computed using IS methods. This method was

developed, implemented and applied to structures and SSI systems.

It is noteworthy that structural reliability problems often present multiple design

points, each contributing in a non-negligible way to the probability of failure of the struc-

ture. Thus, it is necessary to be able to find all the important design points and accurately

describe the failure domain in their neighborhoods for meaningful calculations. The multi-

ple design points problems is not studied in this dissertation. 
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 CHAPTER 3

FINITE ELEMENT RESPONSE 
SENSITIVITY ANALYSIS FRAMEWORK 

FOR STRUCTURAL AND 
GEOTECHNICAL SYSTEMS

3.1   General Displacement Based FE Response Sensitivities by Direct 
Differentiation Method (DDM)

As mentioned in Chapter 2, in seismic reliability analysis of civil structures, the inher-

ent random variability or uncertainty associated with both the structure or SSI system and

earthquake dynamic loading must be taken into consideration. Furthermore, in order to

evaluate the probability of structural failure that occurs usually in the domain of nonlinear

response behavior both materially and geometrically, these sensitivity and reliability anal-

ysis are necessarily based on the nonlinear finite element models of structures able to cap-

ture the salient features of the actual ultimate structural behavior under strong

earthquakes. Besides their use in structural reliability analysis, finite element response

sensitivity analysis represents an essential ingredient for gradient-based optimization

methods needed in structural optimization, structural identification, finite element model

updating, structural health monitoring, and even structural control (in the context of semi-

active control systems based on real-time modification of structural system parameters). 
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Several methodologies are available for response sensitivity computation, such as the

Finite Difference Method (FDM), the Adjunct Method (AM), the Perturbation Method

(PM), and the Direct Differentiation Method (DDM). These methods are described by

Zhang and Der Kiureghian(1993), Kleiber et al.(1992, 1997), Conte et al.(2001,

2003,2004), Gu and Conte(2003). FDM is the simplest method for response sensitivity

computation, but is computationally prohibitive and can be negatively affected by numeri-

cal noise. The AM is extremely efficient for linear and non-linear elastic structural mod-

els, but is not competitive with other methods for path-dependent problems. The PM is

computationally efficient but generally not very accurate. The DDM, on the other hand, is

very general, efficient and accurate and is applicable to any material constitutive model.

This paper focuses on the sensitivity analysis based on DDM for SSI systems. 

This chapter focuses on the derivation of the material sensitivity computation algo-

rithm based on the direct differentiation method (DDM). This algorithm is based on the

spatial discretization of the governing response equations (in space and time) using the

finite element method. In the context of nonlinear FE analysis, the DDM based response

sensitivities are computed at each time step, after convergence is achieved for the response

computation. This requires differentiation of the FE algorithm for the response computa-

tion with respect to each sensitivity parameter θ. Consequently, the response sensitivity

computation algorithm involves the various hierarchical layers of FE response analysis,

namely: (1) structure level, (2) element level, (3) Gauss point level (or section level), and

(4) material level. Details on the derivation of the DDM-based sensitivity equations for

classical displacement-based, force-based and mixed finite elements can be found in a
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number of references (Zhang and Der Kiureghian 1993, Kleiber et al. 1997, Conte et al.

2001, 2003, Gu and Conte 2003).

3.2   Response Sensitivity Computation at the Structural Level

After spatial discretization using the finite element method, the equation of motion of

a materially-nonlinear-only structural system is given by the following nonlinear matrix

differential equation:

(3.1)

where t = time, θ = scalar sensitivity parameter (material or loading variable), u(t) =

vector of nodal displacements, C = damping matrix, M = mass matrix, R(u, t) = history

dependent internal (inelastic) resisting force vector, which is not considered as a function

of velocity  in this dissertation, F(t) = dynamic load vector, and a superposed dot

denotes differentiation with respect to time. The potential dependence of each term of the

equation of motion on the sensitivity parameter θ is shown explicitly in (3.1). 

We assume without loss of generality that the equation of motion (3.1) is integrated

numerically in time using the Newmark-β method of structural dynamics (Chopra 2001),

i.e.,

(3.2)

where we select , . Substitution of Eqs. (3.2) into equation of motion

(3.1) expressed at discrete time t = tn+1 = (n+1) ∆t, in which ∆t denotes the constant time
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increment, yields the nonlinear equation in the unknowns un+1 = u(tn+1), the residual

 is, 

(3.3)

where 

We solve Equation (3.3) using an incremental Newton-Raphson iterative method. (Simo

and Hughes 1998) as shown in Figure 3.1. Assuming that a Newton-Raphson iterative

procedure is used to solve Equation (3.3) over time step [tn, tn+1] by solving a sequence of

linearized problems of the form

 i = 0, 1, 2, ... (3.4)

where

(3.5)

and

(3.6)

As shown in Figure 3.1, the updated nodal displacement vector , or displacement

vector at the end of iteration # (i+1) of time step [tn, tn+1], is obtained as

(3.7)
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where  and  denote the total incremental displacement vector from the last con-

verged step and the last incremental displacement vector, respectively. In (3.5),  denotes the

tangent dynamic stiffness matrix and the consistent tangent stiffness matrix  in Equa-

tion (3.5) is obtained as . The ‘consistent’ here emphasizes that the

tangent operator is ‘consistent’ with the constitutive law integration scheme, which guar-

antees the quadratic rate of asymptotic convergence of iterative solution strategies based

on Newton’s method, as will be discussed in detail in Chapter 4.

∆un
i 1+ δun

i 1+

KT
dyn

KT
stat( )n 1+

i

KT
stat( )n 1+

Rn 1+∂
un 1+∂

----------------=
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After the un+1 is obtained which satisfies Equation (3.3), the sensitivity computation is

performed before the histories variables (stresses, strains, etc.) are updated with new state

variables corresponding to the un+1 (often by a ‘commit’ operation). The sensitivity com-

putation includes two sequential steps, i.e computation of the conditional and uncondi-

tional derivatives. 

Ψ

Ψ n 1+( )
0

Ψ n 1+( )
2

Ψ n 1+( )
1

Ψ n 1+( )
3

δu n( )
1 δu n( )

2
δu n( )

3
δu n( )

4
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1 u n 1+( )

3
u n 1+( )

2 u n 1+( )
4 u n 1+( )=u n( )

step n( )
step n 1+( )

K n 1+( )
1( )

dyn

K n 1+( )
0( )

dyn

K n 1+( )
2( )

dyn

K n 1+( )
3( )

dyn

Figure 3.1 Typical newton raphson iteration algorithm
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Differentiating Eq. (3.3) with respect to θ using the chain rule, recognizing that � = �

(�(t, θ), θ) where � and � denote the stress and strain tensors, respectively, we obtain:

(3.8)

In Equation (3.8), 

In Equation (3.8), the computation of all items on the right hand side (RHS) are not

difficult except for  . This term represents the partial derivative of

the internal resisting force vector R(un+1) with respect to sensitivity parameter θ under the

condition that the displacement vector un+1 remains fixed. From Equation (3.8), this con-

ditional derivative term can be expressed as an assembly of contributions from all ele-

ments: 
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(3.9)

where  denotes the derivative with respect to θ for fixed displacement vector

. And  is the strain-displacement transformation matrix.

This sensitivity with fixed displacement  is also referred as the

conditional derivative of the internal resisting force vector R(un+1). To solve the sensitiv-

ity equation (3.8) at the n+1 step, only the conditional derivative is necessary, while the

unconditional derivative is required for solving the sensitivity equation at the subsequent

step. This is due to the fact that at the material point, the computation of the conditional

derivative of the stress/strain at time step n+2 depends on the unconditional derivative of

stress/strain at time step n+1. In the sensitivity framework, there are two sequential steps

to call the assembly of the sensitivity from all elements: one is for the conditional deriva-

tive  and the other is for the unconditional derivative

. 

Analytical expressions for this history dependent conditional derivative of the stress

vector have been derived by Zhang and Der Kiureghian (1993) and Conte et. al. (1995a,

1998) for the constitutive Von Mises J2 plasticity model, and by Conte et. al (1995a,
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1995b) for the constitutive cap plasticity model in the case of a return map constitutive

integration algorithm (Simo and Hughes 1998). 

Numerous random variables may be considered to represent the uncertainties of the

FE model. Three main classes are considered: material parameters, external loading, and

nodal coordinates. This dissertation considers the first two cases.

3.2.1   Response Sensitivity with respect to Nodal Coordinates

In the finite element method, a special case of the integration in Equation (3.9) is that

the element force can be obtained directly and does not need to be integrated from the

material points. This is the case for elastic beam or truss, 

(3.10)

where K is the tangent modulus. 

Then Equation (3.9) is simplified as,

(3.11)

In the general case, the conditional derivative of the internal force in Equation (3.9)

may be obtained by numerical integration, e.g., Gauss quadrature, For each element, the

integration may be evaluated by, 

(3.12)
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where  is weight,  is the local coordinate at Gauss point m,  is the first

order differentiation of the shape function with respect to coordinate and evaluated at

Gauss point m,  is the determinant of the Jacobian evaluated at Gauss point m.

Take advantage of the following relation (Gurtin 1981 ):

, which is nonzero only if the

sensitivity variable is a nodal coordinate.

Differentiating Equation (3.12) with parameter θ with displacement fixed, it can be shown

that:

(3.13)

where N is the shape function. 
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In Equation (3.13), the , 

and  are nonzero if the sensitivity variable θ is a nodal

coordinate. These represent parts of the contributions from uncertainties of the nodal coor-

dinates. 

Another place where the uncertainties of nodal coordinate have contribution is in the

the distributed mass matrix, whose contribution is shown in  in Equation (3.8). In

FEM, the distributed mass is computed as:

(3.14)

and so the sensitivity of the Mass matrix to the nodal coordinate is,

(3.15)
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In this Equation (3.15), item   and

 will be nonzero if the sensitivity variable is a

nodal coordinate. 

If Rayleigh Damping is used: 

(3.16)

then 

(3.17)

The item  is the same as in Equation (3.15). 

The third place where nodal uncertainties contribute to the sensitivity Equation (3.8) is

the term . Since the forces are added either as nodal or body forces, which in both

cases depend on the nodal coordinates. (Haukass T. 2001).

In this dissertation, nodal coordinate uncertainties are not considered in the system

uncertainties. Instead, much emphasis is placed on the uncertainties of the material and

loading parameters. 

3.2.2   Response Sensitivity with respect to Material Parameters

The material uncertainties are represented by 
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(1) the parameters defining the material constitutive law, such as elastic moduli E in

elastic materials. The contribution of these uncertainties are shown in Equation (3.13) by

the item . 

(2) the mass density ρ, whose contribution is shown in  in Equation (3.15). The

item  is nonzero if .

If Rayleigh damping is used, the items  and  in Equation (3.17) are nonzero

for material parameter uncertainty cases. The term  is computed by assembling the

contribution from all elements,

(3.18)

where  is the material initial tangent stiffness matrix. 

The material mass density is also found to contribute in the cases of distributed ele-

ments and volume loads in the form of:

(3.19)

�∂ ζm( )
θ∂

------------------
un 1+
�n 1+

M∂
θ∂

--------

N ζm( ) N⋅
T

ζm( ) ρ∂
θ∂

------⋅ θ ρ=

M∂
θ∂

--------
K∂ init

θ∂
--------------

K∂ init
θ∂

--------------

K∂ init
θ∂

-------------- BT x( ) D x( )init∂
θ∂

---------------------- B x( )dΩ⋅ ⋅
Ω\

∫
n 1=

Nel

∑=

D x( )init

Fext surf, t ê⋅ Ωed
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where t is surface force, b is body force,  is the unit tensor. Differentiating Equation

(3.19) with respect to θ,

(3.20)

The last item  is nonzero if the random variable is material mass density

ρ. 

(3) The lumped mass uncertainties are also considered in the item , which may be

obtained by direct assembly of the contributions from all nodes that have the specified

random variable m. 

(4) The contributions due to other random variables such as the cross sectional area in

beam and truss elements are considered in  and . 

3.2.3   Response Sensitivity with respect to Load Parameters

The load sensitivities are considered in the item  in Equation (3.8). Three kinds

of loads are identified: 

(1) Distributed element loads

ê
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Distributed element loads include the surface load and volume load as shown in Equa-

tion (3.20). The sensitivity part ,  may be nonzero in Equation

(3.15) if the random variables are surface or volume loads.

(2) Nodal loads

The nodal load vector is obtained by assembling the nodal forces from all nodes. 

(3.21)

Where  denotes assembly through the degrees of freedom from 1 to numDOF. The

sensitivity is:

(3.22)

(3) Base excitation load

As mentioned in chapter 2, the earthquake input is, 

(3.23)

differentiating with respect to θ,

(3.24)
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3.3   Response Sensitivity Computation at the Element Level

The sensitivity framework as developed in OpenSees by Haukaas and Derkiureghian

(ref) considers 1D truss and 2D Beam-Column elements with fiber sections consisting of

1D uniaxial materials: elastic material, Kent-Scott-Park concrete material, and bilinear

steel material. In order to solve complicated SSI problems, this framework has been

greatly extended for various elements, including four-node quadrilateral bilinear isopara-

metric element, zero-length element, DispBeamColumn3d element, and 3D bbarbrick ele-

ment. (refer Cook, OpenSees manual).

In Equation (3.8), the conditional derivative of the internal force vector

 is assembled from all elements. Only for the computation of mate-

rial sensitivity,

(3.25)

It is noticed that the conditional derivative of the stress vector , is

obtained from the section or material level. Thus, here the function of Equation (3.25) is to

assemble all contributions from sections or materials. It is worth mentioning that the
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assembly will loop all elements even if some do not explicitly include the sensitivity

parameter θ, since their conditional stress derivatives are nonzero. 

Other implementations include sensitivity computations with respect to element

parameters such as mass density ρ and area A, etc. 

3.4   Response Sensitivity Computation at Section and Material Level

Several sections and materials are implemented in order to perform the sensitivity

analysis for the SSI system including 2D and 3D fiber sections, section aggregation,

uniaxial Bouc-wen material, smoothed Popovics-Saenz model (Balan et al. 1997, 2001;

Kwon and Spacone 2002, Zona et al. 2005) , smooth steel Menegotto-Pinto (MP) materi-

als, and 3D pressure independent multi yield surface J2 plasticity soil material. 

In this section the sensitivity analysis for a 1D von Mises J2 plasticity material model

is explained in detail in order to show the complete computational framework of the sensi-

tivity analysis. This sensitivity analysis is implemented in FEAP by the author as well as

OpenSees and FedeasLab by others, based on which some sensitivity analysis aspects (

e.g., discontinuities, convergence rate, etc.) are studied. While the sensitivity derivative

for the smoothed Popovics-Saenz model (Balan et al. 1997, 2001; Kwon and Spacone

2002, Zona et al. 2005) , and smooth steel Menegotto-Pinto (MP) materials and 3D pres-

sure independent multi yield surface J2 plasticity soil model are shown in the 4th Chapter

in detail. 
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3.4.1   Sensitivity computation for 1D J2 (von Mises) Plasticity model 

This section shows the steps required to compute the response and response sensitivi-
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ties in both conditional and unconditional cases for a 1D J2 Plasticity model with the von

Mises yield criterion. As shown in Figure 3.2, the plasticity model assumes the following

relations: 

1. Additive decomposition of the total strain, i.e, the total strain  can be additively split

into an elastic part  and a plastic part :

(3.26)

2. Elastic stress-strain relations:

(3.27)

where E is the elastic Young’s modulus of the material.

3. Flow rule:

(3.28)

where  is the consistency parameter and  denotes the sign function. 

4. Hardening laws (linear kinematic and linear isotropic hardening):

 (3.29)

where  denotes the rate of effective plastic strain,  is the

effective or cumulative plastic strain,  is the initial yield stress,  is the current yield

stress and  and  are the kinematic and isotropic hardening moduli, respectively. 
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5. Kuhn-Tucker conditions for loading/unloading:

,  and (3.30)

6. Plastic consistency condition:

,  and (3.31)

The yield function is of the form

(3.32)

The 1D J2 plasticity model with pure linear kinematic hardening (Hiso = 0) corresponds to

the bilinear inelastic model shown in Figure 3.2. The rate constitutive equations above

have to be integrated numerically in order to obtain the stress history for a given strain his-

tory. Using the implicit backward Euler scheme to time-discretize the rate equations over

the time step [tn, tn+1], the following discretized material constitutive equations are

obtained:

1. Additive split of the total strain:

(3.33)

2. Elastic stress-strain relation:

(3.34)

3. Flow rule:

(3.35)

where  is the discrete consistency parameter.

λ· 0≥ f σ α ε
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, ,( ) 0≤ λ· f⋅ 0=
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, ,( ) 0≤ λ· f·⋅ 0=

f σ α ε
p

, ,( ) σ α– σy0 Hisoε
p+( )–=

εn 1+ εn 1+
e εn 1+

p+=

σn 1+ E εn 1+
e⋅=
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p εn

p ∆λ σn 1+ αn 1+–( )sgn⋅+=

∆λ λ· td⋅
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4. Hardening laws (linear kinematic and linear isotropic hardening):

(3.36)

5. Kuhn-Tucker loading/unloading and plastic consistency conditions:

,  and (3.37)

The subscript  denotes that the quantity is evaluated at time tn+1. The above dis-

cretized constitutive equations are solved by using the effective elasto-plastic operator

split method with the return map concept. This is based on the notion of the closest-point-

projection in the stress space (Simo and Hughes 1998). The stress  is solved in two

steps, namely (1) a elastic trial step and (2) a plastic corrector step.

Elastic Trial:

(3.38)

IF  { } THEN
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Update all the state/history variables at time tn+1 by assigning the corresponding trial val-

ues to them, i.e.,  and EXIT. 

ELSE 

Plastic Corrector Step Using the Return Map Algorithm:

The plastic corrector step is based upon satisfying the consistency condition in discrete

form:

(3.39)

where 

(3.40)

(3.41)

(3.42)

Using the expressions for  and  in Eqs. (3.41) and (3.42) and defining

, (3.43)

we obtain

(3.44)

…( )n 1+ …( )n 1+
Trial=

fn 1+ σn 1+ αn 1+– σy n 1+,– 0= =
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By analyzing the signs of the three terms of the equation formed by the second equal sign

in (3.44), it follows that

(3.45)

and

. (3.46)

Therefore, using (3.42), the discrete consistency condition in (3.39) is written as

(3.47)

The discrete consistency parameter  can be obtained from the above equation as

(3.48)

Given , once  is known, the state/history variables at tn+1 (i.e., , , ,

, ) are obtained from Eqs. (3.35), (3.36), (3.40) and (3.45). The above discrete

constitutive integration scheme for 1D J2 plasticity is represented graphically in Figure 3.2

for a plastic step. 

Response Sensitivity Calculations

It was shown earlier that the formation of the response sensitivity equation, (3.8), requires

computation of the derivative  in order to get the consistent tangent stiff-

ness matrix . Also, the conditional derivative term  needs to be

computed to evaluate the term  in the right-hand-side of the response sensitivity
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equation (3.8). The derivative   may be obtained by differentiating the dis-

crete constitutive integration algorithm. 

For the elastic case, 

, and . (3.49)

When the current step is plastic, 

(3.50)

and (3.51)

The discrete consistency parameter  is obtained from the discrete consistency condi-

tion in (3.39). Thus, taking differentials on both sides of the discrete consistency condi-

tion, using Equations (3.40), (3.41), (3.42), one may get 

(3.52)

Multiplying last equation by  and using the expression in Equation (3.51) for ,

we obtain

(3.53)

Substituting Equations. (3.51) and (3.53) into (3.50) yields

(3.54)
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Therefore, in the case of the 1-D J2 plasticity model, the consistent elastoplastic material

tangent modulus is given by

(3.55)

which is shown in Figure 3.2 in the case of pure kinematic hardening (Hiso = 0) and corre-

sponds to the post-yield stiffness of the bilinear inelastic model. In the present case, the

consistent material tangent modulus is identical to the continuum tangent modulus. 

Consider the conditional derivative of a generic state/history variable, . In

the current case, the random variables considered are only material and load parameters,

thus fixing the displacement u(tn+1) = un+1 is equivalent to fixing the strain . There-

fore, the conditional derivatives of the state/history variables are simply obtained by set-

ting all the occurrences of the derivative  in the expressions for the

(unconditional) derivatives of the state/history variables,  equal to zero. 

During the current time step [tn, tn+1], if no plastic deformation occurs, the trial solu-

tions for the state variables given by the elastic predictor step are the correct solutions.

Differentiating Equation (3.38) with respect to the sensitivity parameter θ, we obtain

(3.56)

(3.57)

(3.58)
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(3.59)

(3.60)

(3.61)

However, if plastic deformation takes place during the current step [tn, tn+1], the elas-

toplastic constitutive relations in the discrete form are differentiated with respect to the

sensitivity parameter θ in order to compute the derivatives of the state/history variables at

tn+1. Differentiating (3.40) with respect to θ produces

(3.62)

The derivative  is obtained by differentiating (3.35) with respect to θ, using (3.43),

as

(3.63)

where the derivative of  with respect to sensitivity parameter θ is zero. Using (3.45),

(3.48) takes the form

(3.64)
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Differentiating (3.64) with respect to θ yields

(3.65)

where the derivative of  with respect to θ can be obtained as

(3.66)

The derivatives of the remaining state/history variables, , , and , with

respect to the sensitivity parameter θ are obtained by differentiating Eqs. (3.36) as 

(3.67)

(3.68)

(3.69)

The conditional derivative  in the response sensitivity equation (3.8) at the struc-

ture level requires computation of the conditional derivative  at each Gauss
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quadrature point of the finite element model of the structure. As mentioned earlier, this

can be achieved by substituting  with zero in Eqs. (3.62), (3.63), (3.65), and (3.66). 

3.5   Issues regarding the Sensitivity Algorithm Based on DDM

θ∂
∂εn 1+

5 @
 4 

m

8 m

All beams and columns
are taken as W21x50

� = 4 x �steel to account for all masses

T1 = 0.52 sec (initial fundamental period)

Point A

Point A

Node

Figure 3.3 Finite element model of five-story single-bay moment-
resisting frame
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In this section, a test structure consisting of a five-story single-bay steel moment-

resisting frame is studied as shown in Figure 3.3. This frame is subjected to:

(a) a nonlinear static push-over analysis under an inverted triangular pattern of hori-

zontal loads applied at floor levels as shown in Figure 3.4.

(b) a nonlinear response history analysis for earthquake base excitation as shown in

Figure 3.4.

This frame is modeled using a displacement-based simplified distributed plasticity 2-

D beam-column element implemented in FEAP (Taylor 1998). Unless stated otherwise,

the frame is modeled using two and three elements per beam/column in the static and

dynamic case, respectively (Figure 3.4). The source of material nonlinearity is the

P

u··g t( ) 3 El Centro 1940×=

u1(t)

u2(t)

u3(t)

u4(t)

u5(t)

Figure 3.4 Load cases: static push-over and earthquake base excitation
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moment-curvature relation, which is modeled using the 1-D J2 plasticity model with linear

kinematic hardening and zero isotropic hardening as shown in Figure 3.5. The axial force-

strain relation is taken as linear elastic and uncoupled from the flexural behavior. The

effects of shear deformations are neglected. All columns and beams use  steel

sections with a yield moment . A 20 percent post-yield to initial

flexural stiffness ratio is assumed. A material density 4 times that of steel, i.e.,

, is used to account for typical additional masses (e.g., slabs, cross-

beams, floors, ceilings,...). The frame has an initial fundamental period of 0.52 sec. while

the Young’s modulus of steel is taken as . The isotropic and kinematic

hardening moduli are . The cross-sectional prop-

erties of the steel sections are  and . There are 5

Gauss-Lobato points per beam-column element. For the static push-over, the lateral force

P applied at the roof level (Figure 3.4) increases from 0 to 230.5 [kN]. In the dynamic

case, no damping is included in the model until stated otherwise, and the earthquake input

is taken as the balanced 1940 El Centro record (Figure 3.6) scaled up by a factor of 3. Dur-

ing both the static push-over and the dynamic response, the frame yields significantly.

W21 50×

My0 384.2 kN m⋅[ ]=

ρ 31600 Kg m 3–
⋅[ ]=

E 200 GPa[ ]=

Hiso 0.0 Hkin, 20480 kN m2
⋅[ ]= =

A 0.009484 m2
[ ]= I 0.0004096 m4

[ ]=
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M
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My0 1

1-D J2 (von Mises) plasticity
model with linear kinematic
hardening and zero isotropic hardening

Hkin Hiso+
EI Hkin Hiso+ +
---------------------------------------EI 0.20 EI=

Figure 3.5 Section constitutive model (moment-curvature)
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Figure 3.6 Record of 1940 El Centro earthquake N-S comp.
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The following five sensitivity parameters are considered in the response sensitivity

studies presented below: moment of inertia I of steel sections, initial yield moment My0,

isotropic and kinematic hardening moduli Hiso and Hkin, earthquake ground acceleration

 and . Note that times 4.22 and 7.60 are selected ran-

domly.

3.5.1   Sensitivity Convergence Studies

Case 1: Nonlinear Static Push-Over Case

The total displacement of the structure of the 5 floors are shown in Figure 3.7

 

a. Sensitivity Convergence of Forward Finite Difference(FFD) towards DDM 
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Figure 3.7  Responses of the 5 story building to static push-over force
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Here the sensitivities of the horizontal displacement response of Node B (Figure 3.3) is

studied as the frame is subjected to the monotonic static push-over case. A set of different

relative sensitivity parameter increments, , is used to study the convergence of

response sensitivity results obtained using FFD to those obtained using DDM. FFD and

DDM results expressed in normalized or semi-normalized forms are compared in Figure

3.8 through Figure 3.11. 
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Figure 3.8 Sensitivity of roof displacement to I
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Figure 3.9 Sensitivity of roof displacement to My0
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It is observed that for each sensitivity parameter , as the perturbation  is

decreased, the FFD results approach those of the DDM. Furthermore there is an optimum

value of  that leads the FFD results to best approximate the DDM results. When the

relative sensitivity parameter increment surpasses this optimum value, the finite difference

results worsen due to truncation error (i.e., effects of higher order terms in Taylor series

expansion of response parameter). If we decrease the relative sensitivity parameter incre-

ment below this optimum value, so as to reduce the truncation error, we have an excessive

condition error due to round-off errors. In some cases, there may not be any sensitivity

parameter increment which yields an acceptable error. This is the so-called “stepsize
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dilemma.” It is noteworthy that for a given structural system, the optimum value of 

depends on the parameter and the load case. 

For the response analyses considered here, the optimum value and acceptable range of

the sensitivity parameters are summarized in Table 3.1. Notice that in Table 3.1,  is

not normalized because the nominal value of  is zero (i.e., no isotropic hardening).

b. Convergence of Response and Response Sensitivities with respect to Spatial Discreti-

zation

This section examines the convergence of global and local response parameters, as well as

their sensitivities, with respect to the spatial discretization (i.e., number of finite elements

per beam/column). Here, a global response parameter is taken as the horizontal displace-

ment at node B, (i.e., roof displacement), while the local response parameters are chosen

as the moment-curvature, , plastic curvature, , and accumulated plastic curva-

ture, , at Gauss-Lobato point A at the bottom of the left column of the frame (Figure

Table 3.1   FEM differentiation results

Material sensitivity variables

Best 

Range of 

∆θ
θ

-------

∆Hiso

θ

θ ∆I
I

------
∆My0
My0

--------------
∆Hkin
Hkin

--------------- ∆Hiso

∆θ
θ

------- 1 10× 2– 1 10× 2– 1 10× 2– 1 10× 5

∆θ
θ

------- 10 3– 10 1–∼ 10 3– 10 1–∼ 10 3– 10 1–∼ 104 106∼

M χ– χp

χp
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3.3). The spatial discretization was varied from 1 to 8 finite elements per beam/column.

Some computational results are shown in Figures 3.12 through 3.26. Furthermore, for

each response parameter and load case, the minimum number of elements per beam/col-

umn required to achieve convergence of response and response sensitivities is reported in

Table 3.2 for the global response parameter and in Table 3.3 for local response parameters.
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Figure 3.12 Roof displacement with increasing number of elements
per beam/column
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elements per beam/column
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Figure 3.21 Sensitivity of plastic curvature to Hkin with increasing number of
elements per beam/column



77

0 50 100 150 200 250
−5

−4

−3

−2

−1

0
x 10

−8

P[KN]

1 element per column
2 element per column
3 element per column
4 element per column
6 element per column
7 element per column

Figure 3.22 Sensitivity of plastic curvature to Hiso with increasing number of
elements per beam/column

∂χ
p

∂H
is

o
----

----
-----

1 χp-----
m

2
N

1–
⋅

[
]

⋅



78

0 50 100 150 200 250
−0.8

−0.6

−0.4

−0.2

0

0.2

P[KN]

1 element per column
2 element per column
4 element per column
6 element per column
7 element per column

∂χ̃
p

∂I----
-----

I χ̃p----- ⋅

Figure 3.23 Sensitivity of accumulated plastic curvature to I with increasing
number of elements per beam/column
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Table 3.2   Minimum number of elements per beam/column 
required for convergence of global response and its 

sensitivities

Response u

4 5 4 4 3

Table 3.3   Minimum number of elements per beam/column 
required for convergence of local response and its sensitivities 

5 6 6 6 6 5 6 6 6 6
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Figure 3.26 Sensitivity of accumulated plastic curvature to Hiso with increasing
number of elements per beam/column
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From the results obtained, we observe that:

(1) Global response parameters converge with fewer finite elements per beam/column

than local response parameters (compare results in Tables 3.2 and 3.3).

(2) A given response parameter, global or local, converges with fewer elements per beam/

column than its sensitivities. This is due to the fact that the response sensitivities are less

smooth than the responses themselves; in fact, the response sensitivities are only piece-

wise continuous, with discontinuities due to material state transitions between elastic and

plastic states at Gauss points (Conte et al. 2002).

(3) Sensitivities of global response parameters converge with slightly fewer elements per

beam/column than sensitivities of local response parameters in the static push-over case.

However, this is not always true in the dynamic case as will be explained later. 

Case 2, Dynamic case 

In this section, the frame mentioned before is restudied for dynamic case. The displace-

ment of the 5 floors is shown in Figure 3.27. The convergence of global and local response

parameters, as well as their sensitivities, with different perturbation size, number of ele-

ments per beam/column and time step size is investigated. 

a. Sensitivity Convergence of FFD towards DDM 

The sensitivities of the horizontal displacement response of Node B (Figure 3.3) are

studied as the frame is subjected to the earthquake base excitation. A set of different rela-

tive sensitivity parameter increments, , is used to study the convergence of response

sensitivity results obtained using forward finite difference analysis to those obtained using

∆θ
θ

-------
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the DDM. Finite difference and DDM results expressed in normalized or semi-normalized

forms are compared in Figure 3.28 to Figure 3.32 and the best value, the lower and upper

bound of the perturbation  are listed in Table 3.4.∆θ
θ

-------
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Figure 3.27 Responses of the 5 story building to earthquake input
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For the response analyses considered here, the optimum value and acceptable range of

the sensitivity parameters are summarized in Table 3.4. It is observed that in the dynamic

Table 3.4   FE differentiation results

Material sensitivity variables Earthquake 
input variable

Best 

Range of 
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Figure 3.32 Sensitivity of roof displacement to earthquake input
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case, the optimum value of  is at least one order of magnitude larger for the discrete

load parameter than for the material parameters.

b. Convergence of Response and Response Sensitivities with respect to Spatial Discreti-

zation

This section examines the convergence of global response parameters, as well as the sensi-

tivities of the global and local variables taken the same as static load case, with respect to

the spatial discretization. The spatial discretization was varied from 1 to 8 finite elements

per beam/column. Some computational results are shown in Figures 3.33 through 3.51.

The minimum number of elements per beam/column required to achieve convergence of

response and their sensitivities are tabulated in Tables 3.5 and 3.6.
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Figure 3.33 Displacement of floors with increasing number of elements per
beam/column
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From the results obtained, it is observe that:

Table 3.5   Element number per beam/column required in global 
convergence case

Response u

6 9 9 7 7 3

Table 3.6   Element number per beam/column required in local convergence case 

3 5 7 7 7 7 7 5 7 7 7 7 7
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Figure 3.51 Sensitivity of accumulated plastic curvature to  with
increasing number of elements per beam/column
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(1) Global response parameters converge with fewer finite elements per beam/column

than local response parameters.

(2) A given response parameter, global or local, converges with fewer elements per beam/

column than its sensitivities. 

(3) Sensitivities of global response parameters converge with slightly more elements per

beam/column than sensitivities of local response parameters. This is in contrast to results

in static push-over cases. 

c. Convergence of Response and Response Sensitivities with respect to Temporal Dis-

cretization

The convergence is studied for both responses and their sensitivities with time steps

varying from 20 ms to 0.5 ms. Some computational results are shown in Figures 3.52

through 3.70. Furthermore, for each response parameter and load case, the maximum time

step size required to achieve convergence of the response and its response sensitivities is

reported in Table 3.7 for the global response parameter and in Table 3.8 for the local

response parameters respectively.
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Figure 3.52 Convergence of roof displacement with respect to time step size
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Figure 3.62 Sensitivity of plastic curvature to My0 with respect to time step size



120

0 2 4 6 8 10 12
−0.01

−0.005

0

0.005

0.01

time [sec]

∆ t=0.0005
∆ t=0.001
∆ t=0.005
∆ t=0.01
∆ t=0.02

Figure 3.63 Sensitivity of plastic curvature to Hkin with respect to time step size

∂χ
p

∂H
ki

n
----

----
-----

H
ki

n
m

1–
[

]
⋅



121

0 2 4 6 8 10 12
−4

−3

−2

−1

0

1

2

3
x 10

−9

time [sec]

∆ t=0.0005
∆ t=0.001
∆ t=0.005
∆ t=0.01
∆ t=0.02

Figure 3.64 Sensitivity of plastic curvature to Hiso with respect to time step size

∂χ
p

∂H
is

o
----

----
-----

m
N⋅

1–
[

]



122

∂χ
p

∂u·
· g

----
-----

u·· g
m

1–
[

]
⋅

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3
x 10

−4

time [sec]

∆ t=0.0005
∆ t=0.001
∆ t=0.005
∆ t=0.01
∆ t=0.02

Figure 3.65 Sensitivity of plastic curvature to  with respect to time
step size

u··g t 7.60s=( )



123

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

time [sec]

∆ t=0.0005
∆ t=0.001
∆ t=0.005
∆ t=0.01
∆ t=0.02

∂χ̃
p

∂I----
-----

I
m

1–
[

]
⋅

Figure 3.66 Sensitivity of accumulated plastic curvature to I with respect to time
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Based on the results obtained, it is observed that:

Table 3.7   Largest time interval (sec.) required for global convergence

Resp. (u)

Table 3.8   Largest time interval (sec.) required for local convergence
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(1) Both global and local response parameters converge at a larger time step size than

their respective sensitivities.

(2) Sensitivities of global and local response parameters tend to converge at the same

time step size.

(3) The global response parameter converges at a time step size larger than or equal to

that required for local response parameters.

3.5.2   Discontinuities of Response Sensitivities, and Propagation of Discontinuities 
from Local material properties to Global Response Sensitivities

This section studies the discontinuities in the response sensitivities for the model men-

tioned above while subjected to the cyclic push-over force as shown in Figure 3.71. 

During each time step of the response computation, at one Gauss point, the step is

either an elastic step or a plastic step depending on whether there is plastic flow. The

derivative  is zero for elastic steps and finite for plastic steps even if . If a

point is in an elastic state in a previous step but enters a plastic state in the current step,

there is a ‘sudden’ jump in  during the transition from the elastic to plastic material

states, causing discontinuities in the sensitivity of local variables at this point, such as 

and . This local discontinuities will propagate mathematically and physically into the

global level via FEM assembly. It is worth mentioning that if the point changes transitions

from the plastic to elastic state, there will be no discontinuity in the sensitivity computa-

∆λ( )∂
θ∂

--------------- ∆λ 0→

∆λ( )∂
θ∂

---------------

∂χp
∂θ
---------

∂χp
˜

∂θ
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tion at the Gauss point, and thus will not cause discontinuity at the global level (Haukaas

2001).

The propagation of discontinuities from local to global response sensitivities is illus-

trated with the frame in Figure 3.3 subjected to a static push-over force as shown in Figure

3.71. The relationship between the number of yield Gauss points, and the response and

their sensitivities are shown in Figures 3.72 through 3.84.
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Figure 3.71 The maximum distributed force on the frame
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From the figure above it is clear that:

(1) Each discontinuity in the sensitivity of global or local variables corresponds to a transi-

tion of some Gauss points from the elastic to plastic state.

(2) Local discontinuities are bigger than global discontinuities.

(3) Transitions of some Gauss points from the elastic to plastic states will not necessarily

cause local or global discontinuities. 

(4) Transition of Gauss points from the plastic to elastic states will not cause local or glo-

bal discontinuities. This could be observed at the unloading time point (t=60 sec). 
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3.5.3   Effect of Damping 

A comparison of the response sensitivity analysis between cases involving (1) Ray-

leigh damping with a damping ratio of 5% and (2) no damping, was performed while con-

sidering the same frame and ground excitation as in section 3.5.1. A portion of the results

are shown in Figures 3.85 to 3.101. All sensitivities are normalized except the Hiso

because Hiso =0.
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From these figures the following conclusions can be made:

(1) Both global and local response sensitivities decrease when 5% damping is considered

than when it is not.

(2) When damping is considered, discontinuities of response sensitivities become smaller

than for the dampingless case. 

3.5.4   Post Stiffness Studies

Based on the same dampingless frame and earthquake scenario as in section 3.5.1, a

comparison of the frame response sensitivities is made between a non-post-stiffness case
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(with zero Hkin) and a 20% post-stiffness case. Part of the results are shown in Figures

3.102 through 3.117. 
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From these figures, it is observed that in most cases, in contrast to the 20% post stiff-

ness case, zero post-stiffness leads to:

(1) greater sensitivities.

(2) further shifting of both responses and their sensitivities from zero.

(3) greater discontinuities of response sensitivities.

3.6   Conclusions for the Issues of the Sensitivity Analysis 

In this section, the complete response sensitivity analysis derivation based on Direct

Differentiation Method (DDM) is presented. This derivation considers the differentiation

of the FE algorithm for the response computation with respect to the material, geometry
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and load parameters. The response sensitivity computation algorithm involves the various

hierarchical layers of FE response analysis, namely: (1) structure level, (2) element level,

(3) Gauss point level (or section level), and (4) material level. As an illustration example,

sensitivity analysis for a 1D Von Mises J2 plasticity material model is performed. Based

on the example, many issues of sensitivity are studied. 

When using FFD to verify DDM results, the FFD results converge to the DDM results

asymptotically with reduced perturbation . For each random variable there is a best

value and an acceptable range of the perturbation , beyond which the FFD results

diverge due to the round off error. 

The convergence of variable sensitivities based on DDM is studied. It is found that the

convergence of the response sensitivities, with respect to both temporal and spatial resolu-

tions, is slower than the convergence of the responses. The sensitivity discontinuity is

caused by the stress state transition at Gauss points from the elastic to plastic state. How-

ever this transition is not guaranteed to cause discontinuities. 

Damping effects both the response sensitivities and their discontinuities: when damp-

ing is considered, global and local response sensitivities decrease, and the discontinuities

of response sensitivities become smaller. 

Post-stiffness also affects response sensitivities and their discontinuities: in contrast to

the nonzero post-stiffness case, zero post-stiffness leads to greater sensitivities, further

shifting of both responses and their sensitivities from zero, and greater discontinuities of

response sensitivities.

∆θ
θ

-------

∆θ
θ

-------
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 CHAPTER 4

FINITE ELEMENT RESPONSE 
SENSITIVITY ANALYSIS FRAMEWORK 

FOR STRUCTURAL AND 
GEOTECHNICAL SYSTEM

4.1   Introduction 

In this Chapter, a multi-yield-surface J2 plasticity model, used to simulate clay behav-

ior, is introduced into the sensitivity and reliability framework. The derivations of the con-

sistent tangent modulus and response sensitivity are developed for this model. Response

sensitivity analysis is performed on several SSI systems which are modeled using the

aforementioned soil model and existing material models for structures. 

4.2   Multi-Yield-Surface J2 Plasticity Clay Model 

This section illustrates in detail the existing multi-yield-surface J2 plasticity model.

This plasticity model was first developed by Iwan (1967) and Mroz (1967) , then applied

by Prevost in soil mechanics (1977, 1978), and recently implemented in OpenSees by

Elgamal et al. (2002, 2003) with the tangent stiffness matrix based on the continuum tan-

gent moduli. OpenSees is an open source software framework for advanced modeling and

simulation of structural and geotechnical systems developed under the auspice of the
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Pacific Earthquake Engineering Research (PEER) Center. In contrast to the classical J2 (or

Von Mises) plasticity model with a single yield surface, the multi-yield-surface J2 plastic-

ity model employs the concept of a field of plastic moduli (Prevost 1977, 1978) to achieve

a better representation of the material plastic behavior under cyclic loading conditions.

This field is defined by a collection of nested yield surfaces of constant size (i.e., no iso-

tropic hardening) in the stress space, which define the regions of constant plastic shear

moduli (and constant tangent shear moduli). At each time or load step, it is not possible to

know a priori which and how many yield surfaces will be reached (or activated) until con-

vergence (or global equilibrium) is achieved at this step. Hence, the expression of the con-

sistent tangent moduli (or operators) at the current stress point (not necessarily converged)

depends on all of those yield surfaces that have contributed to the change of stress state

from the last converged time or load step. 

4.2.1   Multi-Yield Surface

Each yield surface of this multi-yield-surface J2 plasticity model is defined in the devi-

atoric stress space as

(4.1)

where  denotes the deviatoric stress tensor and , referred to as back-stress tensor,

denotes the center of the yield surface {f = 0} in the deviatoric stress space. Parameter K

represents the size (radius) of the yield surface which defines the region of constant plastic

f 3
2
--- � �–( ): � �–( )( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

1
2
---

K– 0= =

� �
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shear moduli. The dyadic tensor product of tensors A and B is defined as .

The back-stress  is initialized to zero at the beginning of loading. 

In geotechnical engineering, soil nonlinear shear behavior is described by a shear

stress-strain backbone curve (Elgamal 2002) as shown in Figure 4.1.

�:� �ij�ij=

�
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Figure 4.1 Yield surfaces of multi-yield-surface J2 plasticity model in principal
deviatoric stress space 
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The experimentally determined backbone curve can be approximated by the hyper-

bolic formula as 

(4.2)

where � and � denote the octahedral shear stress and shear strain, respectively, and G is the

low-strain shear modulus. Parameter �r is a reference shear strain defined as

(4.3)

where �max, called shear strength, is the shear stress corresponding to the shear strain

 (selected sufficiently large so that ) (Figure 4.1).

Within the framework of multi-yield-surface plasticity, the hyperbolic backbone curve

in Equation (4.2) is replaced by a piecewise linear approximation as shown in Figure 4.1.

Each line segment represents the domain of a yield surface {fi = 0} of size Ki characterized

by an elasto-plastic shear modulus H(i) for i = 1, 2, ..., NYS, where NYS denotes the total

number of yield surfaces. Parameter H(i) is conveniently defined as 

[15]. 

Then, for every point j on the � ~� curve, the corresponding shear stress and shear

strain are computed as,

 and  (4.4)

Loop for each yield surface j from 1 to NYS-1,

τ Gγ

1 γ
γr
----+

--------------=

γr
γmax τmax⋅

G γmax τmax–⋅
------------------------------------=

γ γmax= �max � � ∞=( )≈

H i( ) 2
τi 1+ τi–
γi 1+ γi–
---------------------⎝ ⎠
⎛ ⎞=

τj τmax
j

NYS
-----------⋅= γj

τj γr⋅
G γr τj–⋅
-----------------------=
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 (4.5)

(4.6)

(4.7)

(4.8)

(4.9)

For the last yield surface, set H(NYS)=H’(NYS)=0.

Therefore the initial yield surfaces are given by a set of concentric cylindrical surfaces

whose axes coincide with the hydrostatic axis in the effective stress space as shown in Fig-

ure 4.1. Also, The outermost yield surface fp represents a failure surface and is a geometri-

cal boundary in stress space. 

4.2.2   Flow Rule (Continuum Form)

A constant plastic shear modulus  defined as

(4.10)

is associated with each yield surface {fi = 0}. The plastic shear modulus associated with

the outermost yield surface is set to zero, i.e., . An associative flow rule is

used to compute the plastic strain increments. In the deviatoric stress space, the plastic

∆γ( )j γj 1+ γj–=

∆τ( )j τj 1+ τj–=

Kj
3
2

-------τj=

Hj
2 ∆τ( )j
∆γ( )j

----------------=

H'j
2G Hj⋅
2G Hj–
-------------------=

H' i( )

1
H' i( )
---------- 1

H i( )
--------- 1

2G
-------–=

H' NYS( ) 0=
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strain increment vector lies along the exterior normal to the yield surface at the stress

point. In tensor notation, the plastic strain increment is expressed as

(4.11)

where the second-order unit tensor  defined as 

, (4.12)

in which , represents the plastic flow direction normal to the yield sur-

face {f = 0} at the current stress point. Parameter L in Equation (4.11), referred to as the

plastic loading function, is defined as the projection of the stress increment vector  onto

the direction normal to the yield surface, i.e., 

 (4.13)

The symbol  in (4.11) denotes the MacCauley’s brackets defined such that

. 

4.2.3   Discretized Form of Flow Rule

The flow rule defined above in differential (continuum) form is integrated numerically

over a trial time step (or load step) using an elastic predictor-plastic corrector procedure

illustrated in Figure 4.2
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In Figure 4.2, as an illustration, two corrective iterations before convergence is

achieved. In this figure, subscript i is attached to the parameters and quantities related to

-
-

�0
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tr
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tr
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� m( )

� m 1+( )

Figure 4.2 Flow rule of multi-yield-surface J2 plasticity model
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the i-th corrective iteration. Assuming that the current active yield surface is {fm = 0} with

its center at , the elastic trial (deviatoric) stress  is obtained as

 (4.14)

where  is the converged deviatoric stress at the last time step (n-th time step), and 

denotes the total (from last converged step) deviatoric strain increment in the current step.

The contact stress , defined as the intersection point of vector  and the current

active yield surface fm, can be computed as (see Figure 4.2)

(4.15)

where  is defined as

(4.16)

which is proportional to the distance from  to . 

The vector normal to the yield surface at  is derived from (4.12) or Figure 4.2 as

(4.17)

Define the plastic stress correction tensor as

 (i = 1 ,2 , . . .). (4.18)
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The plastic stress correction tensor at the first iteration in (4.18) can be expressed as (see

Appendix A),

 (4.19)

The plastic loading function L is then obtained from (4.13) as 

(4.20)

Then

, (4.21)

The trial stress after the plastic correction for the current active yield surface ( )

is given by

(4.22)

If the trial stress  is out of the next yield surface fm+1, the active yield surface index

is set to m = m+1, the subscript (for the iteration number) is set to i = i+1, and the above

plastic correction process, Equations (4.15) through (4.22), is repeated until the trial stress

 does not cross anymore yield surfaces, except for the plastic stress correction tensor

and the plastic loading function (Equations 4.19 and 4.20) that are replaced by Equations

4.23 and 4.24 below.

The plastic stress correction tensor is,

P1 2G
Q1: �0

tr
�1

*–( )

H' m( ) 2 G⋅+( )
-----------------------------------Q1⋅=

L1 P1:Q1 2G
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-----------------------------------⋅= =

P1 L1Q1=

fm 0=

�1
tr

�0
tr P1–=

�1
tr
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 (4.23)

While the plastic loading function is, 

(4.24)

After “convergence” of the deviatoric trial stress  to  (referred to as the current

stress herein), the volumetric stress  is updated to

(4.25)

where B = elastic bulk modulus,  = total strain increment, and I = second order unit

tensor. Then, the new total stress (at the end of the integration of the material constitutive

law over a trial time/load step) referred to as the current stress point is given by

(4.26)

4.2.4   Hardening Law

A pure deviatoric kinematic hardening rule is employed to conveniently generate hys-

teretic cyclic response. All yield surfaces may translate in the stress space by the stress

point without changing in form and orientation. In the context of multi-surface plasticity,

translation of the active yield surface fm is generally governed by the consideration that no

overlapping is allowed between yield surfaces. The translation direction � as shown in

Figure 4.3 is defined as (Elgamal et al [14]) :

Pi 2G
Qi: �i 1–
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Figure 4.3 Hardening rule of multi-yield-surface J2 plasticity model
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where  is the deviatoric stress tensor defining the position of point T ( Figure 4.3) as the

intersection of  with the vector connecting the inner surface center  and the

updated stress state (�+d�). This rule (Eq. (4.27)) is also based on the Mroz [6] conjugate-

points concept, and allows no overlapping of yield surfaces(Elgamal et al [14]). 

After “convergence” of the deviatoric trial stress  to the current stress , the multi-

yield surfaces need to be updated.

1. active surface update.

Compute the deviatoric stress  (refer Figure 4.3).

(4.28)

where x is obtained from the condition that  is on the surface m+1. Thus  must sat-

isfy,

(4.29)

From (4.29) x could be solved for as a solution to

(4.30)

where A,B,C are defined as,

(4.31)

(4.32)

(4.33)

�T

fm 1+ �
m( )

�i
tr

�

�T

�T �
m( ) x � �

m( )–( )+=

�T �T

fm 1+ � �
m 1+( )–( ): � �

m 1+( )–( ) 2
3
--- K m 1+( )( )

2
– 0= =

Ax2 Bx C+ + 0=

A � �
m( )–( ): � �

m( )–( )=

B 2 �
m( )

�
m 1+( )–( ): � �

m( )–( )⋅=

C �
m( )

�
m 1+( )–( ): �

m( )
�

m 1+( )–( ) 2
3
--- K m 1+( )( )

2
–=



190

Once  is known, the direction of surface center translation  can be computed from

(4.27).

After obtaining , the translation quantity ‘a’ is computed such that the current stress

� is on the surface m after translation of the mth surface. Hence,

(4.34)

which is equivalent to solving for ‘a’ from the following equation 

(4.35)

where A,B,C are defined as,

(4.36)

(4.37)

(4.38)

Then the active surface center is update as,

(4.39)

2. inner surface update.

After the active surface fm is updated, all the inner yield surfaces f0, f1, ..., fm-1 needed to

be updated such that all the inner surfaces and the active surface fm are tangent to each

other at the current stress point � as shown in Figure 4.4.
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From similarity

 (4.40)

The above hardening law determines the movement of the inner yield surfaces. 

From (4.40), the center of each inner surfaces is determined by,

 (4.41)
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where a(i) and K(i), are the center and radius of the ith surface respectively, and m is the

number of the current or active surface.

4.3   Consistent Tangent Operator 

As a general class of nonlinear problems in continuum mechanics, rate-independent

elasto-plasticity problems are typically solved through the Finite Element Method (FEM)

and using Newton’s method. Newton’s method is used in conjunction with an incremental-

iterative solution procedure which, at each time or load step, reduces the nonlinear prob-

lem to a sequence of linearized problems called iterations. Thus, at every iteration, a lin-

earized incremental problem is solved, which requires the tangent stiffness matrix of the

structure. In general, this tangent stiffness matrix can be computed from the material tan-

gent moduli (operators) at the material (or integration point) level. In rate-independent

plasticity, the material constitutive behavior is described by rate constitutive equations

( ). The above incremental-iterative process requires these rate constitutive

equations to be integrated numerically over a sequence of discrete time or load steps, i.e.,

. Two types of material tangent moduli can be selected to form the struc-

ture stiffness matrix: continuum tangent moduli and consistent tangent moduli. Consistent

tangent moduli (also called algorithmic tangent moduli) are obtained through differentia-

tion of the incremental constitutive equations ( ) with respect to the total

incremental strains , while the continuum tangent moduli are defined as the differenti-

ation of the rate constitutive equations ( ) with respect to the strain rate  [1].

Previous studies (1977,1978) show that use of the consistent tangent moduli guarantees

�· �· �·( )=

∆� ∆� ∆�( )=

∆� ∆� ∆�( )=

∆�

�· �· �·( )= �·
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the quadratic rate of asymptotic convergence of Newton’s iterative process. Furthermore,

for parameter sensitivity analysis in nonlinear mechanics using the Direct Differentiation

Method (DDM), the consistent tangent moduli are also required when differentiating the

discretized response equations (i.e., static or dynamic equilibrium equations) with respect

to material, geometric or loading parameters in order to obtain the governing response

sensitivity equations. 

In this section, a general methodology is presented to compute the consistent tangent

moduli by accumulating the contributions from all yield surfaces affecting the stress

change from the last converged time/load step. The algorithm derived herein to compute

the consistent tangent moduli of the multi-yield-surface J2 soil plasticity model is then

implemented in OpenSees. Application examples are presented to verify the quadratic rate

of asymptotic convergence of Newton’s iterative process obtained when using the derived

consistent tangent moduli. Based on these examples, the convergence rate and computa-

tional time obtained when using consistent and continuum tangent moduli are compared. 

As an alternative and classical method for computing the tangent modulus, the contin-

uum tangent modulus method is presented and is later compared with the consistent tan-

gent modulus method.

4.3.1   Continuum Tangent Operator

The continuum elastoplastic tangent moduli are obtained through differentiation with

respect to  of the rate constitutive equation , where  and  denote

infinitesimal increments in total stress and strain, respectively. In small strain plasticity,

d� d� d� d�( )= d� d�
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the decomposition of the total strain into the elastic and plastic parts can be expressed in

infinitesimal form as

 (4.42)

where  and  denote infinitesimal increments of elastic and plastic (irreversible)

strains, respectively. The constitutive equation is based on the relationship between the

elastic strain and the stress, which is the same as in linear elasticity, i.e., 

(4.43)

where C denotes the tensor of elastic moduli, which in the case of isotropic elasticity can

be expressed as  where  and  are Lamé constants,

and Cep represents the tensor of continuum elastoplastic tangent moduli. Note that Lamé

constant  is identical to the low-strain shear modulus G. 

In multi-yield-surface J2 plasticity, the continuum elastoplastic material tangent mod-

uli tensor can be obtained as

(4.44)

where the tensor product of two tensors A and B is defined as  and

, 
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4.3.2   Consistent Tangent Moduli 

Consistent tangent moduli were first introduced by Taylor and Simo. These moduli are

obtained by differentiating directly the discretized constitutive equation 

with respect to the strain increment . This ensures that the tangent operator is ‘consis-

tent’ with the constitutive law integration scheme, which guarantees the quadratic rate of

asymptotic convergence of iterative solution strategies (at the structure level) based on

Newton’s method. The consistent tangent moduli (also called algorithmic tangent moduli

in the literature) are defined at a material point as

(4.45)

where  denotes the incremental material response function, and

the notation  indicates that function f is evaluated at . It is worth men-

tioning that the stress  is not necessarily the converged one at the structure level at the

end of the current time step, i.e., it could be the stress at the end of a non-converged itera-

tion at the structure level. The material consistent tangent moduli give raise to the consis-

tent tangent stiffness matrix at both the element and structural levels. 

In the following part, the consistent tangent operator is derived for the multi-yield-sur-

face J2 plasticity material model based on the stress updating process defined in Equations

(4.14) through (4.26). 

1. Differentiation of the elastic trial deviatoric stress with respect to the current devia-

toric strain. From (4.14), it follows that

∆� ∆� ∆�( )=

∆�

Cn 1+
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 (4.46)

where the derivative of tensor A with respect to tensor B is defined as

 in which  is the base vector defined as the unit vector

along the ith axis, and the 4th order symmetric unit tensor I4 is defined as

. 

2. Differentiation of the contact stress with respect to the current deviatoric strain. Dif-

ferentiating (4.15) and (4.16) for the ith iteration with respect to  yields

(4.47)

  (i = 1, 2, ...) (4.48)

3. Differentiation of the unit vector normal to the yield surface with respect to the current

deviatoric strain. Differentiating (4.17) for the ith iteration with respect to  gives

  (i = 1, 2, ...) (4.49)
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4. Differentiation of the plastic stress correction tensor with respect to the current devia-

toric strain. From (4.19) and (4.23), it follows that

(4.50)

for the first iteration (i = 1) and

 (4.51)

for subsequent iterations ( i = 2, 3, 4, ... ) if the current stress  is out of the next yield

surface.

5. Differentiation of the new trial stress after plastic correction with respect to the cur-

rent deviatoric strain. Differentiating (4.22) for the ith iteration with respect to  gives

(4.52)

If the trial stress at the ith iteration is out of the next yield surface (fm+1), the active yield

surface index is updated to m = m+1, the subscript (for the iteration number) is set to i =

i+1, and the derivative computations in steps 2 to 5 above are repeated. 
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After “convergence” of the deviatoric stress sequence  (i = 0, 1, 2, 3, ...) to  at the

end of the trial time/load step, the material consistent tangent moduli are finally obtained

as the differentiation of the current (total) stress  with respect to the current (total) strain

, see (4.45), as shown below. From the relation between the deviatoric strain tensor

 and total strain tensor , i.e., , it follows that

(4.53)

Then, the differentiation of the current stress  with respect to the total strain 

can be expressed as, using the chain rule of differentiation and (4.53), 

(4.54)

The relation between the total stress and deviatoric stress tensors given in (4.26) can

be re-written as . Then, 

(4.55)

The material consistent tangent moduli given in (4.55) depend on the sensitivities

(with respect to strains) of all trial stresses  (i = 0, 1, 2, ...) yielding the current stress

state , according to the incremental process defined by Equations (4.46) through (4.52)

or steps 1 through 5. Thus, in the case of multiple surface plasticity, the consistent tangent

moduli cannot be evaluated directly from a single expression, but need to be computed in

an incremental/additive manner. 
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The above results for the material consistent tangent moduli, derived in tensor nota-

tion, need to be converted into matrix and vector notation for software implementation

purposes. In this section, the 2nd order tensors and 4th-order tensors are represented as vec-

tors and matrices, respectively, as

(4.56)

and (4.57)
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4.3.3   Three-Dimensional Block Subjected to Quasi-Static Cyclic Loading

In this section, a three-dimensional (3D) solid block of dimensions 

subjected to quasi-static cyclic loads in both horizontal directions, see Figure 4.5, is used

as first application and validation example. 

As shown in Figure 4.5, the block is discretized into 8 brick elements consisting of dis-

placement-based eight-noded, trilinear isoparametric finite element with eight integration

points each. The material represents medium clay with the following constitutive material

parameters: low-strain shear modulus G = 60000 kPa, bulk modulus B = 240000 KPa,

1m 1m 1m××

Figure 4.5 Solid block of clay subjected to horizontal quasi-static cyclic loads 
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(Poisson’s ratio = 0.38) maximum shear stress  = 30 kPa. The points ( , ) defining

the piecewise linear approximation of the �-� backbone curve are defined such that their

projections on the  axis are uniformly spaced as shown in Figure 4.1. The bottom nodes

of the model are fixed and top nodes {A, B, C} and {A, D, E} are subjected to concen-

trated horizontal forces  and

, respectively, as shown in Figure 4.6. The number

of yield surfaces is set to 20 unless specified otherwise.

The nodal displacement response of node A in the x-direction is shown in Figure 4.7

as a function of the force , while the hysteretic shear stress - strain response

τmax τj γj

τj

Fx1
t( ) 2.0· 0.2πt( ) kNsin=

Fx2
t( ) 2.0 0.2πt 0.5π+( ) kNsin=

0 5 10 15 20 25 30 35 40 45 50
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0

1

2
F

x1
 F

x2

Figure 4.6 Time variation of quasi-static cyclic loads
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kN[
]
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 at Gauss point G (see Figure 4.5) is plotted in Figure 4.8. From these figures it

is noted that significant yielding of the material is observed during the cyclic loading con-

sidered.

σ31 ε31–( )
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Figure 4.7 Force vs. displacement response of node A 
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4.3.3.1   Comparison of Convergence Rate and Computational Time

In this section, the number of Newton-Raphson iterations at the “structure” level

needed to reach convergence at each time or loading step using the material consistent tan-

gent moduli is compared to the number of iterations needed when using material contin-

uum tangent moduli (Figures 4.9 to 4.11). The convergence criteria used to produce the

results in these figures are: unbalanced force (tolerance = 10-4[kN]), displacement incre-

ment (tolerance = 10-8[m]), and energy increment (tolerance = 10-12 ). In each

figure, the computational time is provided in the legend. The computational time (clock

time and not CPU time) depends on the CPU speed, memory capability, and the back-

ground processes. For each comparison, the two problems are run consecutively on the

−3 −2 −1 0 1 2 3 4 5

x 10
−4

−3

−2

−1

0

1

2

3

Figure 4.8 Shear stress - strain response at Gauss point G (see Figure 4.1) 
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same machine, and the ratio of the CPU time over computational time is high (near one),

comparison of the computational times can be used to compare the speed of the two algo-

rithms. Tables 4.1 to 4.3 provide the unbalanced force, last incremental displacement, and

energy, respectively, as a function of the iteration number for a representative load step

(step # 20) computed using the material continuum and consistent tangent moduli. 
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Continuum tangent (13 sec for 50 steps)

Figure 4.9 Convergence rate comparison using unbalanced force as test for
convergence (tol = 1E-4 [kN]) 
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Consistent tangent (16 sec for  50 steps)
Continuum tangent (14 sec for  50 steps)

Figure 4.10 Convergence rate comparison using displacement increment as test
for convergence (tol = 1E-8 [m]) 
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Figure 4.11 Convergence rate comparison using energy increment as test for
convergence (tol = 1E-12 )kN m⋅[ ]
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From the results of this benchmark problem, the following observations can be made:

• The number of iterations per load step is consistently lower (16.7% - 25%) when

using consistent tangent moduli over continuum tangent moduli. 

Table 4.1   Unbalanced force versus iteration number in load step # 
20 (tol = 1E-4 [kN])

iteration # 1 2 3 4

consistent 
tangent

1.00E-1 2.01E-3 3.61E-7

continuum 
tangent

1.41E-1 7.87E-3 6.82E-4 7.82E-5

Table 4.2   Last incremental displacement versus iteration number in load step # 20 
(tol = 1E-8 [m])

iteration # 1 2 3 4 5

consistent 
tangent

1.87E-4 1.38E-5 1.52E-7 2.71E-11

continuum 
tangent

1.89E-4 1.69E-5 4.79E-7 3.09E-8 3.62E-9

Table 4.3   Last incremental energy versus iteration number in load 
step # 20 (tol = 1E-12 )

iteration # 1 2 3 4

consistent 
tangent

2.05E-6 7.99E-9 1.78E-13

continuum 
tangent

2.25E-6 3.77E-9 1.24E-11 7.39E-14

–

–

kN m⋅[ ]

–
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• The computational time remains the same when using either the consistent or the

continuum tangent moduli. This is due to the fact that although the number of iter-

ations is reduced when using the consistent tangent moduli, more computational

work is required to form the consistent tangent stiffness matrix than the continuum

tangent stiffness matrix at each time or load step. In a later section, it will be

shown that for tighter convergence criteria (smaller tolerance), the use of consis-

tent tangent moduli will save a larger proportion of iterations which will result in a

reduction in the computational time. 

• From Table 4.1, it is observed that when using the consistent tangent moduli, the

unbalanced forces exhibit an asymptotic rate of quadratic convergence as

expected, which is not the case when using the continuum tangent moduli. It is

also observed from Tables 4.2-4.3 that the rate of convergence of the last incre-

mental displacement and energy, although not quadratic, is much higher for the

consistent than for the continuum tangent moduli. 

4.3.3.2   Comparison of Convergence Rate for Smaller Convergence Tolerance

In this section, the model defined in Section 4.3.3 is re-evaluated with tighter conver-

gence tolerances. The computational conditions are the same, except for the tolerances

that are set to 10-8[kN], 10-12[m], and 10-20 [ ] for the convergence criteria based on

the unbalanced force, displacement increment, and energy increment, respectively. The

number of Newton-Raphson iterations needed to reach convergence at each time or load-

ing step when using the continuum and consistent material tangent moduli are compared

kN m⋅
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in Figures 4.12 through 4.14. At representative load step # 15, the unbalanced force, last

incremental displacement and last incremental energy as a function of the iteration number

are reported in Tables 4.4 through 4.6, respectively, when using both continuum and con-

sistent tangent material moduli. These results demonstrate, as in Section 4.3.3.1, that the

convergence rate is significantly improved when using consistent tangent moduli (asymp-

totic rate of quadratic convergence of unbalanced forces) over using continuum tangent

moduli. 
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Figure 4.12 Convergence rate comparison using unbalanced force as test for
convergence with smaller tolerance (tol = 1E-8 [kN]) 
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Consistent tangent (21 sec for 50 steps)
Continuum tangent (29 sec for 50 steps)

Figure 4.13 Convergence rate comparison using displacement increment as
test for convergence with smaller tolerance (tol = 1E-12 [m]) 
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Figure 4.14 Convergence rate comparison using energy increment as test for
convergence with smaller tolerance (tol = 1E-20 ) kN m⋅[ ]
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Table 4.4   Unbalanced force versus iteration number in load step # 15 (tol = 1E-8 
[kN])

iteration 
# 1 2 3 4 5 6 7 8

consis-
tent tan-
gent

1.14E
-1

2.98E-
3

1.01E
-6

1.69E-
13

continu
um 

tangent

1.09E
-1

4.58E-
3

3.23E
-4

3.08E-
5

3.47E-
6

4.26E-
7

5.38E-
8

6.88E-
9

Table 4.5   Last incremental displacement versus iteration number in load step # 15 
(tol = 1E-12 [m])

iteration 
# 1 2 3 4 5 6 7 8 9 10

consis-
tent tan-
gent

1.86
E-4

1.63
E-5

2.17
E-7

6.71
E-11

9.59
E-18

continu
um 

tangent

1.88
E-4

1.76
E-5

4.08
E-7

3.35
E-8

4.17
E-9

5.33
E-10

6.90
E-11

8.90
E-12

1.15
E-12

1.47
E-13

Table 4.6   Last incremental energy versus iteration number in load step # 15 (tol = 
1E-20 )

iteration 
# 1 2 3 4 5 6 7 8 9

consis-
tent tan-
gent

2.60E
-6

5.40E
-9

5.00E
-14

2.78E
-24

– – – –

– – – – –

kN m⋅[ ]

– – – – –
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Comparing the results in Sections 4.3.3.2 and 4.3.3.1, it is observed that the advantage

of using the consistent over the continuum tangent moduli becomes more pronounced (in

terms of both the number of iterations per step and the computational time) with tighter

convergence tolerance. Only when the tolerance is small enough such that the sequence of

trial stresses  approaches the solution point inside the convergence region, does the use

of consistent tangent moduli ensure a quadratic convergence of the Newton process. 

4.3.3.3   Convergence Rate Comparison for Varying Number of Yield Surfaces

This section examines the effect of using 40 versus 20 yield surfaces in defining the

backbone curve of the material constitutive model, on the convergence rate of the Newton

process. The comparative results are shown in Figures 4.15 through 4.17 and Tables 4.7

through 4.9. The convergence criteria used to perform these simulations are the same as in

Section 4.3.3.1, i.e., tolerance = 10-4[kN] for unbalanced force, tolerance = 10-8[m] for

displacement increment, and tolerance = 10-12  for energy increment. 

continuu
m 

tangent

1.81E
-6

6.83E
-9

4.66E
-11

5.59E
-13

8.40E
-15

1.34E
-16

2.19E
-18

3.59E
-20

5.91E
-22

Table 4.6   Last incremental energy versus iteration number in load step # 15 (tol = 
1E-20 )

iteration 
# 1 2 3 4 5 6 7 8 9

kN m⋅[ ]

�i
tr

kN m⋅[ ]
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Consistent tangent 20 yield surfaces (12 sec for 50 steps)
Continuum tangent 20 yield surfaces (13 sec for 50 steps)
Consistent tangent 40 yield surfaces (13 sec for 50 steps)
Continuum tangent 40 yield surfaces (13 sec for 50 steps)

Figure 4.15 Convergence rate comparison using unbalanced force as test for
convergence with varying number of yield surfaces (tol = 1E-4 [kN])
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Consistent tangent 20 yield surfaces (16 sec for 50 steps)
Continuum tangent 20 yield surfaces (14 sec for 50 steps)
Consistent tangent 40 yield surfaces (16 sec for 50 steps)
Continuum tangent 40 yield surfaces (14 sec for 50 steps)

Figure 4.16 Convergence rate comparison using displacement increment as
test for convergence with varying number of yield surfaces (tol =
1E-8 [m])
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Table 4.7   Unbalanced force versus iteration number in load step # 
10 (tol = 1E-4 [kN])

iteration # 1 2 3 4

consistent 
tangent

1.11E-1 2.11E-3 1.76E-5

continuum 
tangent

1.26E-1 7.69E-3 6.73E-4 7.79E-5
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Consistent tangent 20 yield surfaces (14 sec for 50 steps)
Continuum tangent 20 yield surfaces (14 sec for 50 steps)
Consistent tangent 40 yield surfaces (14 sec for 50 steps)
Continuum tangent 40 yield surfaces (14 sec for 50 steps)

Figure 4.17 Convergence rate comparison using energy increment as test for
convergence with varying number of yield surfaces (tol = 1E-12

) kN m⋅[ ]
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Comparing the results in Sections 4.3.3.3 and 4.3.3.1, it is noticed that the conver-

gence rate is better when using the consistent tangent moduli over the continuum tangent

moduli, regardless of the number of yield surfaces used in the material constitutive model.

In this comparative example, the difference in convergence rates is not very significant

due to the lax convergence tolerance used in the computations. 

4.3.4   Layered Soil Column Subjected to Earthquake Base Excitation

The second benchmark problem consists of a multi-layered soil column subjected to

earthquake base excitation. This soil column is representative of the local soil condition at

Table 4.8   Last incremental displacement versus iteration number in 
load step # 10 (tol = 1E-8 [m])

iteration # 1 2 3 4 5

consistent 
tangent

1.87E-4 1.45E-5 1.72E-7 5.43E-11

continuum 
tangent

1.89E-4 1.67E-5 4.59E-7 3.73E-8 4.67E-9

Table 4.9   Last incremental energy versus iteration number in load 
step # 10 (tol = 1E-12 )

iteration # 1 2 3 4 5

consistent 
tangent

2.54E-6 3.10E-9 7.44E-
13

continuum 
tangent

2.05E-6 6.00E-9 9.81E-11 1.11E-12 1.67E-
14

–

kN m⋅[ ]

– –
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the site of the Humbolt Bay Middle Channel Bridge near Eureka in northern California. A

multi-yield-surface J2 plasticity material model with 20 yield surfaces is employed to

describe the various layers of soil as shown in Table 4.10. The soil column is discretized

into a 2D finite element model consisting of 28 four-node quadratic bilinear isoparametric

elements with 4 Gauss points each as shown in Figure 4.18. The soil column is assumed to

be under simple shear condition and the displacements of corresponding nodes at left and

right boundaries are set to be same for both horizontal and vertical directions. The total

horizontal acceleration at the base of the soil column, see Figure 4.19, was obtained else-

where (through deconvolution of a ground surface free field motion. The Newmark-beta

direct step-by-step integration method with parameters ,  is used with

a constant time step ∆t = 0.01 sec for integrating the equation of motion of the system. The

horizontal displacement response of the soil column (relative to the base) at the top of

each soil layer is shown in Figure 4.20. At the lowest layer, the relation of shear stress 

and shear strain  at Gauss point C (Figure 4.18) is shown in Figure 4.21. From these

figures that significant yielding of the material is observed during the earthquake.

Table 4.10   Material properties of various 
layers of soil column

Mat. G(KPa)

1 54450 33

2 33800 26

3 96800 44

4 61250 35

β 0.2756= γ 0.55=

σxz

εxz

τmax KPa( )
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Table 4.10   Material properties of various 
layers of soil column
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Figure 4.19 Total acceleration at the base of the soil column
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4.3.4.1   Comparison of the Convergence Rate and Computational Time between the 
Use of Consistent and Continuum Tangent Moduli 

In this section, the number of iterations to reach convergence at every time step is

investigated for both the case of using consistent tangent moduli and that of using contin-

uous tangent moduli, as shown in Figures 4.22- 4.24. The convergence criteria is based on
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Figure 4.21 Shear stress vs shear strain at the point C, D, E, and F 
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the unbalanced force (tolerance = 10-4[kN]), increment of displacement(tolerance = 10-

8[m]), and incremental energy (tolerance = 10-12[ ]), respectively. 

At representative load step 30, for both the case of using the continuum tangent opera-

tor and that of using the consistent tangent operator, the unbalanced force, last incremental

displacement and energy as a function of iteration number are reported in Tables 4.11 -

4.13, respectively. 
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Figure 4.22 Convergence rate comparison using unbalanced force as test for
convergence (tol = 1E-4 [kN]) 
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Figure 4.23 Convergence rate comparison using displacement increment as
test for convergence (tol = 1E-8 [m]) 
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Figure 4.24 Convergence rate comparison using energy increment as test for
convergence (tol = 1E-12 ) kN m⋅[ ]
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From these results, the following observations can be made:

Table 4.11   Unbalanced force versus iteration number 
in load step # 30 (tol = 1E-4 )

iteration # 1 2 3

consistent 
tangent

1.32 1.16E-4 2.61E-10

continuum 
tangent

9.61E-1 2.29E-3 1.24E-5

Table 4.12   Last incremental displacement versus 
iteration number in load step # 30 (tol = 1E-8 [m])

iteration # 1 2 3

consistent 
tangent

4.39E-5 5.63E-8 1.13E-13

continuum 
tangent

4.39E-5 3.56E-8 1.36E-10

Table 4.13   Last incremental energy versus iteration 
number in load step # 30 (tol = 1E-12 )

iteration # 1 2 3

consistent 
tangent

2.54E-6 7.50E-15

continuum 
tangent

2.05E-6 1.51E-11 3.88E-16

kN m⋅[ ]

kN m⋅[ ]

–
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• The convergence rate at every load step as measured by the number of iterations is

faster by 0% - 50%, when using consistent tangent moduli instead of continuum

tangent moduli. It is noteworthy to mention that occasionally convergence rate is

slower when using consistent tangent moduli over continuum tangent moduli,

because the convergence tolerance is bigger than convergence ‘radius’ such that

the quadratic convergence rate is never achieved before convergence when using

consistent tangent moduli .

• The computational time is almost the same when using either of the two tangent

moduli. While the number of iterations is reduced when using the consistent tan-

gent moduli, more computational work is required to form the consistent tangent

moduli than the continuum tangent moduli at each time or load step.

• From Table 4.11, it is observed that when using the consistent tangent moduli, the

unbalanced forces exhibit an asymptotic rate of quadratic convergence. It is also

observed from Tables 4.12-4.13 that the rate of convergence of the last incremental

displacement and energy is much higher for the consistent tangent moduli than for

the continuum tangent moduli.

4.3.4.2   Comparison of Convergence Rates with Smaller Convergence Tolerance

In this section, the model described in section 4.3.4 is reconsidered with stricter toler-

ance. The computational conditions are the same, however the tolerances are set to 10-

8[kN], 10-12[m], and 10-20 [ ] for the convergence criteria based on the unbalanced

force, displacement increment, and energy increment, respectively. The number of the

kN m⋅
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iterations versus load step number are given in 4.25-4.27. At representative load step 40,

the unbalanced force, last incremental displacement and incremental energy as a function

of iteration number are reported in Tables 4.14 - 4.16, respectively.
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Figure 4.25 Convergence rate comparison using unbalanced force as test for
convergence with smaller tolerance (tol = 1E-8 [kN]) 
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Figure 4.26 Convergence rate comparison using displacement increment as
test for convergence with smaller tolerance (tol = 1E-12 [m]) 

N
o.

 o
f i

te
ra

tio
ns

 p
er

 st
ep

Time sec[ ]

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

Consistent Tangent (42 Sec)
Continuum Tangent (56 Sec)

Figure 4.27 Convergence rate comparison using energy increment as test for
convergence with smaller tolerance (tol = 1E-20 ) kN m⋅[ ]
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These results demonstrate that the use of the consistent tangent moduli reduces the

number of iteration steps needed to reach convergence by about 40%, and the computa-

tional time by 10% to 25%, when compared with the use of the continuum tangent moduli. 

Table 4.14   Unbalanced force versus iteration number in load step # 40 (tol = 1E-8 
[kN])

iteration # 1 2 3 4 5

consistent 
tangent

1.12 2.50E-6 2.65E-10

continuum 
tangent

8.03E-1 1.98E-3 1.35E-5 7.92E-8 6.75E-10

Table 4.15   Last incremental displacement versus iteration 
number in load step # 40 (tol = 1E-12 [m])

iteration # 1 2 3 4

consistent 
tangent

 6.51E-5  6.11E-8 1.95E-13

continuum 
tangent

 6.51E-5  3.65E-8  1.58E-10  7.29E-13

Table 4.16   Last incremental energy versus iteration number in load step # 40 (tol = 
1E-20 )

iteration # 1 2 3 4 5

consistent 
tangent

3.06E-6 1.42E-14 2.40E-25

continuum 
tangent

2.27E-6 1.62E-11 6.00E-16 2.64E-20 1.26E-24

– –

–

kN m⋅[ ]

– –
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Comparing results in 4.3.4.1 and 4.3.4.2, it is observed that the advantage of the use of

the consistent tangent moduli is more evident when the tolerance is stricter. 

4.3.4.3   Comparison of the Convergence Rates with Varying Time Step Size

In this section, the convergence rate and computational time are compared for the use

of the consistent tangent moduli and the continuous tangent moduli when time step is pur-

posely exaggerated to  , with all other conditions remaining the same as in

section 4.3.4.1. The results are shown in Figures 4.28-4.30. At representative load step 60,

the unbalanced force, last incremental displacement and energy as a function of iteration

number are reported in Tables 4.17 - 4.19, respectively, for both the case of using the con-

tinuum tangent operator and that of using the consistent tangent operator. 
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Figure 4.28 Convergence rate comparison using unbalanced force as test for
convergence for longer time step (tol = 1E-4 [kN]) 
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Figure 4.29 Convergence rate comparison using displacement increment as
test for convergence for longer time step (tol = 1E-8 [m]) 
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Figure 4.30 Convergence rate comparison using energy increment as test for
convergence for longer time step (tol = 1E-12 ) kN m⋅[ ]
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Table 4.17   Unbalanced force versus iteration number in load step # 60 (tol = 1E-4 
[kN])

iteration 
# 1 2 3 4 5 6

consis-
tent tan-
gent

2.86E1 6.10E-1 3.35E-5

continuu
m tangent

9.64E1 4.16 2.22E-1 1.36E-2 8.86E-4 6.37E-5

Table 4.18   Last incremental displacement versus iteration number in load 
step # 60 (tol = 1E-8 [m]) 

iteration # 1 2 3 4 5

consistent 
tangent

2.78E-3  7.55E-5  3.71E-7  3.24E-11

continuum 
tangent

2.79E-3 5.17E-5 1.19E-6 6.00E-8 3.88E-9

Table 4.19   Last incremental energy versus iteration number in load step # 60 (tol = 
1E-12 )

iteration 
# 1 2 3 4 5

consis-
tent tan-
gent

9.74E-3 1.40E-6 2.06E-12 6.25E-23

continuu
m 

tangent

6.62E-3 4.19E-5 8.19E-8 2.58E-10 1.10E-12 6.50E-15

– – –

–

kN m⋅[ ]

– –
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It is observed from this data that the use of consistent tangent moduli reduced the num-

ber of iterations per time step needed to achieve convergence by 0% to 69%, and computa-

tional time by 14% to 38%. 

Comparing the results in section 4.3.4.3 and section 4.3.4.1, it is observed that when

the time step is increased, the advantage of consistent tangent moduli becomes more evi-

dent. When the time step is larger, the difference between the equation  and

 becomes more significant, as does the differentiation of stress  to strain ,

which are defined as consistent tangent moduli and continuum tangent moduli. In this

case, the continuum tangent moduli are more ‘inconsistent’ with the Newton process,

leading to a loss of quadratic rate of asymptotic convergence which characterizes New-

ton’s method.

4.3.4.4   Comparison of the Convergence Rate using Different Number of Yield 
Surfaces

This section examines the effect on the convergence rate of the use of 20 and 40 yield

surfaces in describing the model, as shown in Figures 4.31 - 4.33 and Tables 4.20 - 4.22.

The convergence criteria used to get the results are the same as that in section 4.3.4.1:

unbalanced force (tolerance = 10-4[kN]), displacement increment (tolerance = 10-8[m]),

and energy increment (tolerance = 10-12 ). Comparing sections 4.3.4.4 and

4.3.4.1, it is noticed that the convergence rate is better when using the consistent tangent

moduli than when using the continuum tangent moduli, regardless of the number of yield

surfaces in the model. 

∆� ∆� ∆�( )=

�· �· �·( )= � �

kN m⋅[ ]
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Figure 4.31 Convergence rate comparison using unbalanced force as test for
convergence with 40 yield surfaces (tol = 1E-4 [kN]) 
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Figure 4.32 Convergence rate comparison using displacement increment as
test for convergence with 40 yield surfaces (tol = 1E-8 [m]) 
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Table 4.20   Unbalanced force versus iteration 
number in load step # 30 (tol = 1E-4 [kN])

iteration # 1 2 3

consistent 
tangent

1.31 2.08E-6

continuum 
tangent

 9.61E-1 2.29E-3 1.23E-5

Table 4.21   Last incremental displacement versus 
iteration number in load step # 30 (tol = 1E-8 [m])

iteration # 1 2 3

consistent 
tangent

4.39E-5 5.58E-8 1.45E-11
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Figure 4.33 Convergence rate comparison using energy increment as test for
convergence with 40 yield surfaces (tol = 1E-12 ) kN m⋅[ ]
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4.3.5   Conclusions

For Nonlinear problems involving rate constitutive equations, such as rate-indepen-

dent elasto-plasticity, consistent tangent moduli (operator) play an important role in pre-

serving the quadratic rate of asymptotic convergence of incremental-iterative solution

schemes based on Newton’s method. On the other hand, consistent tangent moduli are

necessary in structural response sensitivity analysis based on the Direct Differentiation

Method (DDM).

In this section, consistent tangent moduli have been derived for the Multi-yield J2 plas-

ticity model, a very versatile material model used extensively in geotechnical engineering.

Derivative and software implementation have been verified through two application

examples. The comparison studies are performed between continuum tangent moduli and

continuum 
tangent

4.39E-5 3.52E-8 1.85E-10 

Table 4.22   Last incremental energy versus iteration 
number in load step # 30 (tol = 1E-12 )

iteration # 1 2 3

consistent 
tangent

3.41E-6 2.20E-13

continuum 
tangent

 2.76E-6 2.97E-11 1.45E-15

Table 4.21   Last incremental displacement versus 
iteration number in load step # 30 (tol = 1E-8 [m])

iteration # 1 2 3

kN m⋅[ ]

–
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consistent tangent moduli in term of convergence rate and computation time of Newton’s

process. The results obtained indicate the followings:

• When the convergence tolerance is lax, the Newton process converges slightly

faster when using the consistent tangent moduli rather than the continuum tangent

moduli. However, this does not ensure a reduction in computational time when

compared with the use of continuum tangent moduli, since more computational

work is required to form the consistent tangent moduli than the continuum tangent

moduli at each time or load step.

• When the tolerance is tightened, using consistent tangent moduli reduces both the

number of iterations needed to achieve convergence per step and the computa-

tional time. The decreasing unbalanced forces show an asymptotically quadratic

convergence of the Newton process when using consistent tangent moduli. 

• In dynamic cases, when the time step increases, the use of the consistent tangent

moduli reduces both the number of iterations needed to achieve convergence per

step and computational time. 

• Increasing the number of yield surfaces in the Multi-Yield J2 plasticity model has a

negligible effect on the comparison between using consistent tangent moduli and

continuum tangent moduli when considering the convergence rate and computa-

tional time.
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4.3.6   Appendix A. Derivation of stress correction

The following provides the derivation of Equations (4.19) and (4.23) based on the

flowchart of the integration algorithm for the multi-yield surface J2 plasticity model by

Prevost 1978. Although not the focus of this paper, these derivations provide insight into

this model. 

A.1. Derivation of stress correction for the first crossed yield surface.

The stress correction for the first crossed yield surface is similar to that for classical J2 sin-

gle surface plasticity. The stress correction computation is based on the following two sets

of discretized relations.

(a) Incremental stress-strain relation:

In small strain plasticity, the decomposition of the total strain into the elastic and plastic

parts can be expressed in discretized form as . The equality

 stems from the pressure invariant nature of the plasticity model considered

here (i.e., isochoric plastic deformations). The incremental stress-strain relation for linear

elastic isotropic material can be expressed as

(A1)

where  represents the deviatoric stress at the last converged load/time step and the

superscript [...]dev denotes the deviatoric part of the quantity inside the brackets. The ten-

sor of elastic moduli C can be expressed as . Equation (A1) can be

rewritten as

�∆ �∆ e
�

p∆+ �∆ e e∆ p+= =

�
p∆ e∆ p=

� �n– �∆ C: �
e∆[ ]

dev
C: �∆ ep∆–( )[ ]

dev
2G �∆[ ]dev ep∆–( )= = = =

�n

C λI I 2GI4+⊗=



236

(A2)

Defining the plastic stress correction tensor as (see Figure 4.2)

, (A3)

the current deviatoric stress can be expressed as

(A4)

(b) Discretized form of flow rule:

In incremental form, the continuum flow rule in Equations (4.11) and (4.13) becomes

(A5)

where  is the plastic shear modulus of the current (or active) yield surface. The plas-

tic strain increment tensor in Equation (A5) must obey the Kuhn-Tucker complementarity

conditions expressed as  where . It can be shown that at

the end of the first iterative correction,  can be replaced by  where

 is the intersection of  with the yield surface {fm = 0} (see Figure 4.34). In

addition, for the current plastic loading case,  can be approximated by

. Thus, Equation (A5) becomes

(A6)

Solving Equations (A2) and (A6) for the total plastic strain increment  yields

� �n �∆+ �n 2G �∆[ ]dev 2G ep∆–+ �0
tr 2G ep∆–= = =

P1 2G ep∆=

� �0
tr P1– �1

tr= =

ep∆ 1
H' m( )
------------Q1 L〈 〉 1

H' m( )
------------Q1 Q1: �∆〈 〉= =

H' m( )

L〈 〉

H' m( )
------------ fm � �,( ) 0= L Q1: �∆=

Q1: �∆〈 〉 Q1: � �A–( )〈 〉

�A �0
tr

�n–( )

Q1: � �A–( )〈 〉

Q1: � �1
*–( )

ep∆ 1
H' m( )
------------Q1 Q1: � �1

*–( )⊗=

ep∆
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(A7)

Then from Equation (A3)

(A8)

A.2. Derivation of stress correction for the second and successive crossed yield surfaces.

After completion of the stress correction for the first yield surface, if the stress point lies

outside the next larger yield surface, then before continuing the stress correction corre-

sponding to the next yield surface, some small but crucial correction to the stress  must

be made to account for the fact that the plastic stress correction has actually been ‘overre-

laxed’ at the first stress correction step (Prevost technique note). 

The total deviatoric strain increment  may be subdivided into three parts (E-A,

A-B, and B-C, see Figure 34), where E is the stress point  at the last converged time/

load step. Stress path E-A is linear elastic, i.e,  and the equality holds only at point

A. A-B is the path of the stress state between the first yield surface ( ) and the sec-

ond yield surface ( ). Stress point B may be obtained by the ‘elastic predictor A-

D, plastic corrector D-B’ process and by satisfying the consistency condition .

The exact position of point B could be obtained iteratively. 

The entire elastic predictor E-F has been relaxed plastically to stress point  (point G

in Figure 34) according to the first yield surface ( ) only. The portion D-F of the

ep∆
Q1: �0

tr
�1

*–( )

H' m( ) 2G+( )
-------------------------------Q1=

P1 2G ep∆ 2G 
Q1: �0

tr
�1

*–( )

H' m( ) 2G+( )
-------------------------------Q1= =

�1
tr

�∆[ ]dev

�n

fm 0≤

fm 0=

fm 1+ 0=

fm 1+ 0=

�1
tr

fm 0=
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elastic predictor E-F should be relaxed plastically according to the second yield surface

( ). Thus, the plastic stress correction F-G ( ) must be scaled back to F-H

(see Figure 35) where the deviatoric plastic strain at point H is the same as at point B (i.e.,

). Then plastic stress correction F-H is followed by the plastic stress correction

H-I according to the second yield surface ( ) resulting in stress state . The

plastic strain from stress point G to stress point I can be decomposed as (see Figure 35) 

(A9)

Note that both  and  correspond to the plastic loading case. The second

stress correction ( ) is obtained from the following two sets of discretized relations. 

(a) Incremental stress-strain relation (from G  to I ): 

Since, between stress points G and I (see Figure 35), the total strain remains unchanged,

i.e., , it follows that

(A10)

where . 

2, Discretized form of flow rule:

The plastic strain increment from stress point H to stress point I is given by the plastic

strain increment from stress point B to stress point I and defined as, according to (4.11), 

fm 1+ 0= P– 1

eH
p  eB

p=

fm 1+ 0= �2
tr

�GI
p∆ �HG

p∆– �HI
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Figure 4.34 Schematic of plastic stress correction for the second yield surface
in the multi-yield surface J2 plasticity model
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(A11)

where  is defined as the stress change from B to I (see Figure 34). For the plastic load-

ing case,  can be approximated with  (see Figure 35) in which 

and  are as defined in Equations (15) and (17), respectively. Substituting this approxi-

mation as well as  into Equation (A11), which in turn is substituted into Equation

(A9), yields

(A12)

The plastic strain increment  corresponding to the stress increment H-G by

which the stress state was over relaxed (according to the first yield surface), can be

approximated as (see (4.11) and Figure 35)

 (A13)

Substituting (A13) into Equation (A12) gives

(A14)

Solving Equations (A10) and (A14) for  and , it is found that

(A15)

The second plastic stress correction  can then be obtained as
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(A16)

After the second plastic stress correction, if the stress lies outside the next yield sur-

face, the correction process from Equation (A9) to Equation (A16) is repeated with the

subscript for the iteration number set i = 3. More generally, the plastic stress correction for

iteration i (corresponding to yield surface ) is given by

(A17)

If the number of yield surfaces used to represent the original shear stress-strain back-

bone curve (see (4.2)) is large enough (say NYS > 20) such that the unit tensors normal to

the two consecutive yield surfaces  and  corresponding to stress

points  and , respectively, are close, then

(A18)

and Equation (A17) further simplifies to

(A19)

P2 C: �GI
p∆ 2G

H' m( ) 2G Q⋅ 1:Q2+( )

H' m( ) H' m 1+( ) 2G+( )
--------------------------------------------------- Q2 Q⊗ 2: �1

tr
�2

*–( )⋅==

2G
H' m( )
------------Q1 Q1⊗ : �1

tr
�2

*–( )–

fm i 1–+ 0=

Pi 2G
H' m i 2–+( ) 2G Q⋅ i 1– :Qi+( )

H' m i 2–+( ) H' m i 1–+( ) 2G+( )
--------------------------------------------------------------------- Qi Q⊗ i: �i 1–

tr
�i

*–( )⋅=

2G
H' m i 2–+( )
-------------------------Qi 1– Qi 1–⊗ : �i 1–

tr
�i

*–( )–

fm i 2–+ 0= fm i 1–+ 0=

�i 2–
tr

�i 1–
tr

Qi 1– Qi≈

Pi 2G H' m i 2–+( ) H' m i 1–+( )–( )

H' m i 2–+( ) H' m i 1–+( ) 2G+( )
--------------------------------------------------------------------- Qi Q⊗ i: �i 1–

tr
�i

*–( )⋅=



242

4.3.7   Sensitivity Computation

The derivation of the response sensitivity for the pressure independent multi-yield-sur-

face J2 plasticity material model based on DDM, is presented in this section. Application

examples are provided to validate the sensitivity results.

As was mentioned in Chapter 3, the conditional derivative of the internal resisting

force vector R(un+1) represents the partial derivative of the internal resisting force vector,

R(un+1), with respect to sensitivity parameter θ under the condition that the displacement

vector un+1 remains fixed. The conditional derivative of the internal resisting force vector

could be obtained by assemble contribution of all elements,

(4.58)

In the next sections, the stress sensitivity is derived based on the flowchart of the stress

computation process. The material sensitivity parameter  could be low-strain shear mod-

uli G, bulk moduli K, and the Peak shear  as shown in Figure 4.1. 

4.3.7.1   Initial Surface Sensitivity

First, the initial surface sensitivity is derived. Differenting (4.3) with respect to the

sensitivity parameter  results in, 

(4.59)
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From (4.4), differentiating with respect to  for each surface with number j from 1 to

NYS,

 (4.60)

(4.61)

Looping from the first surface to the NYS-1 surface, from (4.4) to (4.9),

 (4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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θ

τj∂
θ∂

-------
τmax∂
θ∂

------------- j
NYS
-----------⋅=

γj∂
θ∂

------ 1
G γr τj–⋅( )2

------------------------------
τj∂
θ∂

------- γr τj
γr∂
θ∂

-------⋅+⋅⎝ ⎠
⎛ ⎞ G γr τj–⋅( )⋅=

τj γr⋅ G∂
θ∂

------- γr G
γ∂ r
θ∂

-------
τj∂
θ∂

-------–⋅+⋅⎝ ⎠
⎛ ⎞⋅–

∆γ( )j∂
θ∂

---------------
γj 1+∂
θ∂

-------------
γj∂
θ∂

------–=

∆τ( )∂ j
θ∂

---------------
τj 1+∂
θ∂

--------------
τj∂
θ∂

-------–=

Kj∂
θ∂

-------- 3
2

-------
τj∂
θ∂

-------=

Hj∂
θ∂

-------- 2
∆γ( )j

2
---------------

∆τ( )∂ j
θ∂

--------------- ∆γ( )j⋅ ∆τ( )j
∆∂ γ( )j
θ∂

---------------⋅–=

H∂ 'j
θ∂

--------- 2
2G Hj–( )2

-------------------------- G∂
θ∂

------- Hj G
Hj∂
θ∂

--------⋅+⋅ 2G Hj–( ) G Hj 2 G∂
θ∂

-------
Hj∂
θ∂

--------–⎝ ⎠
⎛ ⎞⋅ ⋅–⋅

⎩ ⎭
⎨ ⎬
⎧ ⎫
⋅=

Hj∂
θ∂

-------- 0
Hj′∂
θ∂

---------- 0=,=



244

4.3.7.2   Stress Sensitivity

Then compute the sensitivity of the deviatoric stress, which follows the steps of Equa-

tions (4.14) to (4.41). From (4.14), it is obtained, 

 (4.67)

The subscript i is removed for convenience. The sensitivity of contact stress  is

obtained from (4.15), 

(4.68)

where sensitivity of K is obtained from (4.16) as,

(4.69)

The sensitivity of surface normal is then derived from (4.17) as, 

(4.70)

Then the sensitivity of the plastic loading function is obtained from (4.20) as 
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(4.71)

if the stress is beyond the next yield surface. Then from (4.24),

(4.72)

the sensitivity of the stress after the plastic correction corresponding to current surface

is obtained from (4.22) as 

(4.73)

If the trial stress is still beyond the next yield surface n+1, increment the active surface

number m by 1, repeating this process (Equations (4.68)-(4.73)) until the trial stress no

longer crosses any surfaces.

After obtaining the deviatoric stress, the sensitivity of the stress volume  is

determined using (4.25),

(4.74)

where B is the bulk modulus and � is the total stress.
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From (4.26), the sensitivity of the total stress is,

(4.75)

4.3.7.3   Active Surface Update

The sensitivity of stress  at point T (Figure 4.3) is determined using (4.28),

(4.76)

where  is obtained from (4.30),

(4.77)

where , ,  are obtained from Equations (4.31) to (4.33) as,

(4.78)

(4.79)

(4.80)

The sensitivity of the direction of surface center translation , is obtained by differen-

tiation of (4.27) with respect to , 
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(4.81)

After  is obtained, the sensitivity of translation quantity ‘a’ is computed using

(4.35) as,

(4.82)

where , ,  are obtained from Equations (4.36) to (4.38) as,

(4.83)

(4.84)

(4.85)

Then from (4.39) the sensitivity of updated active surface center is obtained as,

(4.86)

4.3.7.4   Update Inner Surface Sensitivities

From (4.41), the sensitivity of the center of each inner surfaces is determined by,
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 (4.87)

where .

4.3.7.5   Numerical Examples 

Example of 3D soil block subjected to quasi-static push-over loads.

In this section, response sensitivity analysis is performed for the 3D solid block used in

section 4.3.3 as shown in Figure 4.5. The number of yielding surfaces is set to 20.

The sensitivities of the displacement at point A (figure 4.5) in the x direction with

respect to shear moduli G, Peak Shear , and bulk moduli B are studied and verified

with the Forward Finite Difference method (FFD). Figures 4.35 to 4.38 show part of the

results. 
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It is observed that within an acceptable range, with reduced perturbation , the

results of the FFD method approach those of DDM. However when the perturbation is so

small that it is out of an acceptable range decided by the computational round off error,

FFD results diverge suddenly.

Example of soil column modeled with 2D 4-node quadratic elements subjected to base

excitation.

In this section, response sensitivity analysis is performed for the soil column men-

tioned in section 4.3.4 as shown in Figure 4.18. Sensitivity variables are chosen as low
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strain shear modulus G and the maximum shear strength �max at each soil layer. Part of the

sensitivity results are verified in Figures 4.39 through 4.46.
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From these results, it is obvious that the FFD results approach to the DDM results with

the decreasing perturbation size within an acceptable range, proving that the DDM results

are correct. 

It is also noticed that the sensitivity results are very insightful when evaluating the rel-

ative importance of the parameters in affecting the responses. The sensitivity results are

normalized by the nominal value of the variables to show the relative importance of the

parameters in figures 4.49 through 4.56.
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From the normalized sensitivities of the top displacement, with respect to different

parameters, as shown in Figures 4.54 to 4.56, it is observed that the relative importances

of the random variables are:

It is worth mentioning that the word ‘importance’ means ‘sensitivity’, or a parameter’s

influence on the response at the parameters’ nominal values. This does not necessarily
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to Figure 4.18)
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mean it is important in resisting external forces. For example, in the R/C fiber section, the

cover concrete is usually more sensitive (or more important) in determining the response

than the core concrete, however this does not mean that the cover concrete is more impor-

tant in resisting the external force. Furthermore, the assessment of relative importance

described above is valid while parameters are allowed to vary within a very small region

close to the nominal parameter values. While this relative importance is true locally, it is

not guaranteed to be true globally when parameters vary beyond this local region. 

4.3.7.6   Summary 

Based on the Direct Difference Method (DDM) in the context of FEM, this section

provides a method to compute the response sensitivity for an existing multi-yield-surface

J2 plasticity model with respect to material parameters. Sensitivity analysis results are val-

idated through the Forward Finite Difference (FFD) method. The computational results

indicate that the FFD results converge to the DDM results as the perturbation decreases

within an acceptable range determined by the computational round-off error.

The sensitivity computational method presented herein provides a way to evaluate the

relative importance of the material parameters in terms of their relative influence on the

structural/soil responses. 

4.4   Extension of Sensitivity Framework to Multiple Point Constraint 
Handlers 

This section studied the sensitivity derivative of the constraints enforce additional con-

ditions on the degrees of freedom (DOFs) of a given system. The sensitivity derivation for
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static case is shown in detail, while for dynamic case it is very similar and may be find in

reference (Gu and Barbato, 2008). 

A constraint either prescribes the value of a DOF, in which case it is called “single-

point constraint” (e.g., support conditions), or prescribes a relation among two or more

DOFs, in which case it is called “multi-point constraint” (e.g., rigid links, rigid elements).

Handling of single-point constraints is an easy task and reduces to eliminating the con-

strained DOF from the equation of motion (dynamic case) or the equation of equilibrium

(quasi-static case). Multi-point constraints can be expressed by introducing a set of equa-

tions that couple the DOFs affected by the constraints, called constraint equations, in the

form,

(4.88)

Different techniques are available for handling of multi-point constraints, namely: (1)

the transformation equations method, (2) the Lagrange multipliers method and (3) the pen-

alty functions method.

The transformation equations method requires partitioning of the equation of motion

(equilibrium) and of the constraint equations between retained DOFs (denoted by the sub-

script “r”) and constrained DOFs (denoted by the subscript “c”).

4.4.1   Sensitivity Computation

The computation of response sensitivities begins with the same set of equations for the

three methods considered,

Cun 1+ θ( ) Q=
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(4.89)

4.4.1.1   Transformation Equations Method

Let us consider the structure DOF displacement vector u and structure DOF resisting

force vector R and let us partition them into d.o.f. to be retained (subscript ‘r’) and d.o.f.

to be condensed out (subscript ‘c’) as

 ,  ,  ,  ,  , (4.90)

we obtain

(4.91)

where .

When the first Equation of the Equation (4.89) is multiplied by C on both side, it is

obtained that,

(4.92)

in which

(4.93)

(4.92) is wrote as incremental format,

(4.94)

R u θ( ) θ,( ) F θ( )– 0=
Cu θ( ) Q=⎩

⎨
⎧

u
ur

uc

= R
Rr

Rc

= F
Fr

Fc

= C Tr  Tc[ ]= K
Krr Krc

Kcr Kcc

=

uc θ( ) Trcur θ( ) Tc
1– Q+=

Trc Tc
1– Tr–=

Re ur θ( ) θ,( ) Fe θ( )– 0=

Re Rr Trc
T Rc+=

Fe Fr Trc
T Fc+=⎩

⎪
⎨
⎪
⎧

Krr KrcTrc Trc
T Kcr Trc

T KccTrc+ + +[ ] δur⋅ δFe θ( )=
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or , where .

Differentiating (4.91) with respect to , we have

(4.95)

For computing sensitivities, the conditional and unconditional sensitivities of the

equivalent structure d.o.f. forces  and , respectively (subscript ‘e’ stands for

‘equivalent’) are obtained as,

(4.96)

differentiating (4.92) and (4.93), we have

(4.97)

Substituting (4.96) in (4.97), finally we obtain

(4.98)

Since

(4.99)

The sensitivity equations become
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(4.100)

4.4.1.2   Lagrange Multipliers Method

Equation (4.89) is rewritten as

(4.101)

and (4.101) is differentiated wrt  as

(4.102)

or in matrix form

(4.103)

4.4.1.3   Penalty Functions Method

Equation (4.89) is rewritten as

(4.104)

and (4.104) is differentiated wrt  as
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(4.105)

4.5   Extension of Sensitivity Framework to Variable Transient Integra-
tion Analysis 

In the variable transient integration analysis case, the time step size is automatically

adjusted (i.e., adaptive time step) according to the convergence conditions. It is required

that the time step in the sensitivity computation be consistent with the integration time

step. 

It is worth mentioning that the FFD may not work in this case. In the FFD, the tempo-

ral discretization size must be the same between the perturbed and unperturbed cases.

However, in the variable transient integration analysis, the perturbation may change the

convergence state, and the adapted time step in the perturbed state may be inconsistent

with that of the unperturbed case. 

The DDM can deal with the adaptive time step well due to the fact that it analytically

computes the sensitivity instead of using a perturbation.

4.6   Examples of Response Sensitivity Analysis of SFSI Systems

4.6.1   2D SFSI System

The first application example consists of a two-dimensional Soil-Foundation-Structure

Interaction (SFSI) system, a model of which is shown in Figure 4.57. The structure is a

two-story two-bay reinforced concrete frame with section properties given in Figure 4.57.

KT
stat( )n 1+ CT

�C( )+[ ]
dun 1+

dθ
----------------

dFn 1+
dθ

----------------
Rn 1+∂
θ∂

----------------
un 1+

–=
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The foundations consist of reinforced concrete squat footings at the bottom of each col-

umn. The soil is a layered clay, with stiffness properties varying along the depth.

The frame structure of this SFSI system is modeled by using displacement-based

Euler-Bernoulli frame elements with distributed plasticity, each with four Gauss-Legendre

integration points. Section stress resultants at the integration points are computed by dis-

cretizing the frame sections by layers. Foundation footings and soil layers are modeled

through isoparametric four-node quadrilateral finite elements with bilinear displacement
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interpolation. The soil mesh is shown in Figure 4.57. The constitutive behavior of the steel

reinforcement is modeled by using a one-dimensional J2 plasticity model with both kine-

matic and isotropic linear hardening (Conte et al. 2003). The concrete is modeled by using

a Kent-Scott-Park model with zero tension stiffening (Scott et al 1982). Different material

parameters are used for confined (core) and unconfined (cover) concrete in the columns.

The soil is modeled by using a pressure-independent multi-yield surface J2 plasticity

material model (Elgamal et al. 2003), specialized for plane strain analysis (Figure 4.57).

Different material parameters are used for each of the four layers considered. The material

parameters are shown in the Table 4.23. The material parameters are considered as random

variables.

Table 4.23   Material parameters

Concrete Steel Soil Foun
dation

Ma
t Core Cover Mat Mat G �max K E

fc -
3.449e
4

-
2.759e
4

E 2.0E8 #1 54450 33 1.6e5 2.0e7

fcu -
2.069e
4

0 s 2.484e
5

#2 33800 26 1.0e5

εc -0.004 -0.002 Hkin 1.6129
e6

#3 61250 35 1.8e5

ecu -0.014 -0.008 Hiso 0.0 #4 96800 44 2.9e5
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The soil under a condition of simple shear has its bottom nodes fixed and the corre-

sponding boundary nodes at same depth tied together (Figure 4.58). The node of the beam

(3 DOF) and the corresponding node on the foundation concrete block (2 DOF), at the

same location, are tied together in both the horizontal and vertical directions as shown in

Figure 4.58. 

a, quasi-static pushover analysis

In this analysis, after static application of the gravity loads, the structure is subjected to a

quasi-static pushover analysis, in which an upper triangular distribution of horizontal

forces is applied at the floor levels (see Figure 4.57). The total base shear force, Ptot =

 The two corresponding nodes are tied together

Figure 4.58 Boundary conditions and multipoint constraints

Soil

Column

Foundation concrete block

 Node on beam and node on soil are tied together
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1.5P, is considered as deterministic and is assumed to increase linearly during the analysis

from 0kN to 750kN. 

A response analysis and response sensitivity analysis based on DDM is performed.

Interstory drift of each floor and interlayer drift of each soil layer are shown in Figure

4.59, Shear stress-strain relations of a girder A in second floor and in a Gauss point B of

third soil layer are shown in Figure 4.60. It is clear that the systems yield significantly

under the push over force. 
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The DDM results are verified by using the forward finite difference (FFD) method.

Part of results are shown in Figure 4.61 and Figure 4.62. From these figures, it is observed

that the FFD results approach DDM results as the perturbation is reduced. While some

time the FFD results can not convergence because the criterion (tolerance) of the response

convergence is not small enough. (in this example, the displacement tolerance is 1.0e-8).
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The normalized response sensitivity results are studied to compare the relative impor-

tance in determining the response of the first floor drift (except the fcu of the cover con-

crete and Hiso of steel since their nominal values are zero and can not be normalized by the

values). It is noticed that at different push over stage, (i.e., P=10% Ptotal, or P=50%Ptotal

and P=10% Ptotal), the importance of parameters are not same. The relative importance for

these three cases are shown below:

1) P=10% Ptotal

0 100 200 300 400 500 600 700
−6

−5

−4

−3

−2

−1

0

1

2
x 10

−8

DDM
∆ θ/θ=0.05
∆ θ/θ=0.01
∆ θ/θ=0.001

325 330 335 340 345 350

−2.05

−2

−1.95

−1.9

−1.85

−1.8

−1.75

−1.7

−1.65

−1.6
x 10

−8

DDM
∆ θ/θ=0.05
∆ θ/θ=0.01
∆ θ/θ=0.001

Figure 4.62 Sensitivity of response u1 with respect to the shear modulus G4

u1∂
G4∂

---------

 Force [kN]



284

1) P=50% Ptotal

3) P=100% Ptotal

Based on the knowledge obtained, it is observed that,

The relative importance of the first floor drift to the steel yielding strength 

increases dramatically from zero ( ) for 10% loading, to

 for 100% loading case. And in full loading case 

becomes most important material parameters. 

From 10% loading case to full loading case, the relative importance of concrete mate-

rial parameters ,  and soil low strain shear strength  to  reduced,

while the importance of the fourth layer soil parameters  and  , and the steel

material parameter Hkin increase.

Esteel fc cover, εc cover, εc core, K3 τmax 3, τmax 1, fc core, G3 K4> > > > > > > > >

τmax 2, G1 G2 τmax 4, K1 G4 Efoundation K2 σy steel,> > > > > > > > > Hkin 0= =

Esteel fc cover, εc cover, τmax 3, K3 τmax 1, σy steel, τmax 4, K4 τmax 2,> > > > > > > > >

fc core, εc core, G> > 3 G1 G2 G4 K1 E> foundation K2 Hkin> > > > > > >

σy steel, τmax 3, Esteel fc cover, K3 K4 τmax 4, τmax 1, fc core, τmax 2,> > > > > > > > >

εc core, εc cover, K1 Hkin K2 G3 G4 G2 G1 Efoundation> > > > > > > > > >

σy steel,

udrift∂
σy steel,∂

--------------------σy steel, 0=
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σy steel,∂

--------------------σy steel, 0.13–= σy steel,
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K4 τmax 4,
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The third soil layer material parameters  and , steel elastic modulus ,

cover concrete strength  are always very sensitive; The sensitivity of the first and

second soil layer material parameters  and , core concrete strength 

are in the middle and not change; The sensitivity of the first and second soil layer material

parameters  and  are low and not change; The foundation parameters

 are always not sensitive. 

Part of the normalized sensitive results are shown in FIgures 4.63 to 4.65. 
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b, base excitation 

In this analysis, after static application of the gravity loads, the structure is subjected to a

base excitation taken as three times of the earthquake recorder of Elcentro 1940 (N-S). A

response analysis and response sensitivity analysis based on DDM is performed.

The interstory drifts of each floor and interlayer drifts of each soil layer are shown in

Figure 4.66. The moment curvature relation of a girder at the second floor and the shear

stress-strain relation of a Gauss point at the third layer of soil are shown in Figure 4.67.
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From these figure, it is clear that the system yield significantly when subjected to the base

excitation.
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The DDM results are verified by using the forward finite difference (FFD) method.

Part of results are shown in Figures 4.68 to 4.72. 
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From these figures, it is observed that, the FFD results approach to DDM results with

reduced perturbation  in an acceptable range. There is alway a best perturbation 

that makes the FFD results closest to DDM results. 

The sensitivity results are normalized to compare the relative importance in determin-

ing the response of the first floor drift (except the fcu of the cover concrete and Hiso of

steel since their nominal values are zero and can not be normalized by the values). The

effect of the sensitive parameters in determining the first floor drift are shown in FIgures

4.73 to 4.76. 
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From these results it is obvious that the relative importance of the material parameters

in determining the first floor drift is:

From these results, it is clear that the steel strength, elastic modulus, and the maximum

shear strength of the soil are most important in determining the first floor drift; The cover

concrete properties, and the low shear modulus of the third and fourth layer are second

important; while the bulk modulus of the third and fourth layer, as well as the core con-
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crete properties are third; the foundation concrete properties and bulk modulus of the first

and second layers, as well as the post yielding properties Hkin, are last important. All other

parameters are almost ignorable. 

Comparing this case with static push over case, it is observed that the relative impor-

tance of most of the material parameters does not change, however the soil material

parameters , , , and ,  increases, while that of  decreases.

Similar study is also performed to a local variable shear stress at the Gauss point B

(Figure 4.67). The most important variables in determining the shear stress is:

Part of results are shown in Figures 4.77 to 4.80. 

τmax 1, τmax 2, τmax 4, G3 G4 K4

τmax 4, τmax 3, σy steel, Esteel K> 4 K3 τmax 1, fc cover, τmax 2, G3 G4> > > > > > > > >

εc cover, fc core, K2 εc core, K1 G2 Hkin> Efoundation> > > > > > >
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From these results, it is observed that the most important material parameters in deter-

mining the shear stress at point B are almost same as that in determining of the first floor

drift, while the sequence of importance are not necessary same. For example, the bulk

modulus of the third layer soil is important in determining the shear stress at point B, but is

not sensitive in determining the first floor drift.
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4.6.2   3D Pile Soil System

In this section a soil pile system subjected to a base excitation is studied as shown in

Figure 4.81. The reinforced concrete pile has a 30cm diameter circular cross section. The

pile is modeled using 3D displacement-based Euler-Bernoulli frame elements with distrib-

uted plasticity, each with four Gauss integration points. Section stress resultants at the

integration points are computed by discretizing the frame sections by layers. Soil layers

are modeled through isoparametric four-node quadrilateral finite elements with bilinear

displacement interpolation. The constitutive behavior of the steel reinforcement is mod-

eled by using a one-dimensional J2 plasticity model with both kinematic and isotropic lin-

ear hardening (Conte et al. 2003). The concrete is modeled by using a Kent-Scott-Park

model with zero tension stiffening (Scott et al 1982). Different material parameters are

used for confined (core) and unconfined (cover) concrete in the columns. 

The soil is modeled by using a pressure-independent multi-yield surface J2 plasticity

material model (Elgamal et al. 2003), specialized for plane strain analysis (Figure 4.81).

Different material parameters are used for each of the five layers considered. 

In order to model the behavior of the pile, the cross sectional area is taken into consid-

eration by using a number of stiff beam elements to radially link the central node of the

pile to corresponding soil nodes at the periphery of the pile as shown in the Figure 4.81.

The material parameters are shown in the Table 4.24. The material parameters are taken to

be random variables.

The base excitation in the horizontal direction is taken from the record of the El Centro

1940 (N) quake, amplified by 2. The time step is 0.01 seconds, while in the divergence
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case, the time step is automatically adjusted from 0.001 to 0.01 seconds. The upper struc-

ture is modeled as a 10 ton lumped mass 1 meter above the ground.

Table 4.24   Material parameters

Concrete Steel Soil

Ma
t Core Cover Mat Mat G �max K

fc 3.4e4 2.8e4 E 2.10E8 #1 54450 33 1.6e5

fcu 2.4e4 0 s 2.48e5 #2 33800 26 1.0e5

εc 0.005 0.002 b 0.02 #3 61250 35 1.8e5

ecu 0.02 0.006 0.0 #4 96800 44 2.9e5

#5 180000 60 5.4e5
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The response of the mass and the different soil layers are shown in Figure 4.82 below.

Local moment curvature relations at point A and shear stress-strain relations at point B are

shown in Figure 4.83. It is clear that the system yielded significantly under the base exci-

tation.
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Response sensitivity analysis is performed. The sensitivity obtained by DDM is veri-

fied by FFD as shown in Figures 4.84 and 4.85. 
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The FFD results approach the DDM results as the perturbation is reduced. This shows

that the DDM results are correct.

The normalized sensitivity results are analyzed and the relative importance of the

material parameters are as follows

Part of the results are shown in Figures 4.85 to 4.88.
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From these results, it is clear that the cover concrete material parameters, as well as

yield strength σY and elastic modulus of the steel E are most important. The first (top) soil

layer properties are more important than that of the lower layers.
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4.6.3   3D SFSI System

In this section a soil-structure system subjected to a base excitation is studied. The

application example considered herein consists of a three-dimensional reinforced concrete

(RC) frame with concrete slabs at each floor as shown in Figure 4.89. The frame consists

of three stories of height h = 3.66m (12ft) each and one bay of span L = 6.10m (20ft) in

each direction. Beam and column cross-sections are shown in Figure 4.90.

Beams and columns are modeled using displacement-based Euler-Bernoulli frame ele-

ments, each with four Gauss-Legendre integration points. Each column and beam is dis-

cretized into two and three finite elements, respectively. Beam and column cross-sections

are discretized into fibers of confined concrete, unconfined concrete and steel reinforce-

ment. The reinforcement steel is modeled through a bilinear hysteretic model, while the

concrete is represented by the Kent-Scott-Park model with zero tension stiffening (Scott et

al., 1982), as shown in Figure 4.90. Different material parameters are used for the con-

fined (core) and unconfined (cover) concrete in the columns and beams. The concrete

slabs are modeled through a diaphragm constraint at each floor to enforce rigid in-plane

behavior. 

In the foundation, the 4m RC piles are modeled in the same manner as the columns in

the upper structure. The same beam\column elements, fiber sections, and material proper-

ties are used for both the piles and the columns. The soil is modeled using the multi-yield

surface J2 plasticity model (Elgamal et al. 2003) with four layers at different depths. 

The connection of the soil and piles is achieved by tying the three translational dof of

corresponding nodes of the piles (6DOF) and the nodes of the soil (3DOF) at the same
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locations. A simple shear condition in the soil is modeled by tying the corresponding hori-

zontal dof of the boundary nodes at same depth together in the x or y directions. 

Twenty three random variables are studied, taken from the material parameters of the

soil, foundation and frame. Their relative importance are shown later.

The parameters used to model the frame and soil materials are listed in Table 4.25. 

Figure 4.89 Example of 3D SFSI system
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The poission ration is computed by . In this case it is about 0.35. 

Table 4.25   Material parameters (unit:kPa)

Frame and pile foundation
Soil

Concrete Steel

Ma
t Core Cover Mat Mat G �max K

fc 34473.
8

27579.
04

E 2.1e8 #1 54450 33. 1.6e5

fcu 24131.
66

0 sY 248200 #2 33800 26. 1.0e5

εc 0.005 0.002 b 0.02 #3 61250  35. 1.8e5

ecu 0.02 0.006 #4  96800 44.  2.9e5

ν 3K 2G–
6K 2G+
---------------------=
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After static application of the gravity loads, the structure is subjected to a bi-direc-

tional base excitation taken from the earthquake recorder of Tabas 1978 in both the normal

and fault directions as shown in Figure 4.91. The maximum accelerations in both direc-

tions are approximately 1 g (9.81 m/s2). 
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.

A response analysis and response sensitivity analysis based on DDM is performed. An

integration time step of 0.01 sec is used. 

The response of the frame and different soil layers are shown in Figures 4.92 and 4.93

below. Local moment curvature relations at point A and shear stress-strain relations at

point B are shown in Figure 4.94. It is clear that the system yields significantly under the

base excitation loading case.

0 5 10 15
−1

−0.5

0

0.5

1

0 5 10 15
−1

−0.5

0

0.5

1

u··gx g[ ]

Time sec[ ]

Figure 4.91 Base excitation taken as the earthquake record of Tabas 1978

u··gy g[ ]



319

 

0 5 10 15
−0.05

0

0.05

0.1

0.15
interlayer drift ∆

4x
interlayer drift ∆

3x
interlayer drift ∆

2x
interlayer drift ∆

1x

0 5 10 15
−0.2

0

0.2

0.4

0.6

interstory drift ∆
1x

interstory drift ∆
2x

interstory drift ∆
3x

Figure 4.92 Response in x direction of the 3D pile soil system (refer to Figure
4.89)

u
m[
]

Time sec[ ]

u
m[
]

Time sec[ ]



320

0 5 10 15
−0.05

0

0.05

0.1

0.15
interlayer drift ∆

4y
interlayer drift ∆

3y
interlayer drift ∆

2y
interlayer drift ∆

1y

0 5 10 15
−0.2

0

0.2

0.4

0.6

interstory drift ∆
1y

interstory drift ∆
2y

interstory drift ∆
3y

Figure 4.93 Response in y direction of the 3D pile soil system (refer to Figure
4.89)

u
m[
]

Time sec[ ]

u
m[
]

Time sec[ ]



321

Response sensitivity analysis is performed. Part of the sensitivity obtained by DDM is

verified by FFD as shown in Figure 4.95. 
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The FFD results approach the DDM results as the perturbation is increased. This is

because the convergence criterion for the response is set very large (1.0e-3 [m]) such that

too small a perturbation will cause the FFD to be inaccurate due to computational round

off error.

The normalized sensitivity results are analyzed and the relative importance of the

material parameters in determining the first floor drift in x direction are: 
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in y direction are: 

Part of the results are shown in Figures 4.96 to 4.105.

τmax 4, Esteel τmax 3, σy steel, fc cover, fc core, G2 τmax 1, G1> > > > > > > > >

Efoundation steel, σy foundation steel, , εc core, εc cover, G3 τmax 2, G4 εcu cover,> >> > > > >

b> steel fc core foundation, , εc core foundation, , b> foundation steel, fcu core, εcu core,> > > >

σy steel, τmax 4, Esteel τmax 3, fc core, fc cover, τmax 1, σy foundation steel, ,> > > > > > > >

G2 τmax 2, G3 Efoundation steel, G4 εcu cover, εc core, G1> εc cover, bsteel> > > > > > > >

f> c core foundation, , εc core foundation, , bfoundation steel, fcu core, εcu core,> > > >
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From these results, it is observed that the importance sequence for x and y direction

are almost same. , , , , are always most important parame-

ters; while , , , , , , ,

 are sensitive as well. 

The normalized sensitivity results are analyzed and the relative importance of the

material parameters in determining the second floor drift in x direction are: 
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in y direction are: 

The relative importance to second floor drift is similar with that to the first drift. Part

of the results are shown in Figures 4.106 to 4.109.

τmax 4, τmax 3, E> steel σy steel, fc cover, G2 G1 G3 τmax 1, fc core,> > > > > > > > >

G4 E> foundation steel, σy foundation steel, , εc core, τmax 2, εcu cover,> >> > >

fc core foundation, , b> steel εc core foundation, , b> foundation steel, fcu core, εcu core,> > >

τmax 3, Esteel σ> > y steel, τmax 4, fc cover, τmax 1, G2 εc cover, τmax 2,> > > > > >

G3 Efoundation steel, G4 fc core, σy foundation steel, , G1> εc core, εcu cover,> > > > > >

b> steel f> c core foundation, , εc core foundation, , bfoundation steel, fcu core, εcu core,> > > >
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Same sensitivity analysis is performed for local strain at point B and moment at point

A. The normalized sensitivity results are used to obtain the relative importance of the

material parameters in determining the strain at point B: 

0 5 10 15
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

f
c,cover,col
f
c,core,col
G

2
τ

max,1

Figure 4.109Relative importance of θ’s on the second floor drift in y direction

Time sec[ ]

u 2
∂ θ i∂----

----
θ i

m[
]

τmax 1, τmax 4, τmax 2,> σy steel, τmax 3, G1 fc cover,> > > > > >

G4 E G2> > f> c core, εc core,> G3 εc cover, b> > >



339

The relative importance to strain is similar with that to the first drift. Part of the results

are shown in Figures 4.110 to 4.111.
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The normalized sensitivity to the moment at point A is studied and the relative impor-

tance of the material parameters are:

Part of the results are shown in Figures 4.112 to 4.113
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4.7   Conclusion

The sensitivity computation framework based on DDM is extended to Soil Structure

Interaction (SSI) systems. Various elements, sections, materials, as well as the multi-point

constraint, and adaptive time step analyses are extended to adopt the sensitivity computa-

tion. 
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As a main contribution among these, an existing multi-surface yield J2 plasticity

model, a very versatile material model used extensively in geotechnical engineering, is

studied and redeveloped in the following manner: (1) the consistent tangent moduli of this

model is developed and implemented. (2) the response sensitivity algorithm is developed

and implemented. Based on the studies between consistent tangent moduli and classic

continuum tangent moduli, it is observed that when the tolerance is decreased, using con-

sistent tangent moduli reduces both the number of iterations needed to achieve conver-

gence per step and the computational time. The decreasing unbalanced forces show an

asymptotically quadratic convergence of the Newton process when using consistent tan-

gent moduli. In dynamic cases, when the time step increases, the use of the consistent tan-

gent moduli reduces both the number of iterations needed to achieve convergence per step

and computational time. 

Response sensitivity analysis results based on the DDM algorithm are validated

through the Forward Finite Difference (FFD) method. The computational results indicate

that the FFD results converge to the DDM results as the perturbation decreases within an

acceptable range determined by the computational round-off error, thus verifying the

DDM results. 

The response sensitivity computational method provides a way to evaluate the relative

importance of the material parameters in terms of their relative influence on the structural

or soil responses (both global and local). Various SSI examples are studied for the material

sensitivity parameters and their importance ranking in regards to the response of interest. 



 CHAPTER 5

PROBABILISTIC PUSHOVER ANALYSIS 
OF STRUCTURAL AND GEOTECHNICAL 

SYSTEMS

In this chapter, the First-Order Second-Moment (FOSM) method is employed to per-

form a probabilistic pushover response analysis of structural and geothecnical systems.

The research presented in this chapter is a collaborative work with another researcher

(Barbato, M. and Gu Q. 2006). Approximations of the means and the standard deviations

of response quantities of structural and soil-foundation-structure interaction (SFSI) system

with random material parameters of prescribed probability distributions are computed by

using quasi-static finite element response and response sensitivity analysis results. The

finite element response sensitivity analysis is performed efficiently by using the Direct

Differentiation Method (DDM). Response sensitivity analysis is also used to gain insight

into the effects and relative importance of the various material parameters of the structural

and geotechnical systems in influencing the variability of the system response. A three-

dimensional symmetric three-story reinforced concrete (R/C) frame building and a two-

dimensional SFSI system of a R/C frame structure on a layered soil, both subjected to non-

linear quasi-static pushover analysis, are considered as application examples. First- and

second-order statistical moments of response quantities computed through the Mean-Cen-
344
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tered FOSM method are compared with the corresponding estimates obtained via Monte

Carlo simulation (MCS). Comparisons are also made between results obtained using

“exact” (computed by DDM) and “gross” (computed by finite difference using relatively

large perturbation of the considered parameters) response sensitivities. The relative impor-

tance of the material parameters describing the system is studied in both the deterministic

(response sensitivities scaled with the nominal/mean values of the considered parameters)

and probabilistic (response sensitivities scaled with the standard deviations of the consid-

ered parameters) sense. These results are compared with the ones obtained by direct simu-

lation and presented in the form of tornado diagrams. Effects of correlation between

couples of material parameters are also considered and analyzed. A simple method for

obtaining approximate information about the probability distributions of response quanti-

ties as functions of each random material parameter is introduced and presented in the

form of javelin diagrams. Conclusions are drawn on both the appropriateness of using

exact response sensitivities for simplified probabilistic response analysis and the limits of

applicability of the FOSM by comparison with the corresponding MCS results. In particu-

lar, the Mean-Centered FOSM method provides sufficiently accurate estimates of the first

and second statistical moments of response quantities for low-to-moderate non-linearities

in the structural behavior and useful qualitative information on the importance ranking of

the material parameters also for large non-linearities in the system response.

Evaluation of the uncertainty in the computed structural response of civil structures is

of paramount importance in order to improve safety and optimize the use of economic

resources. In the last two decades, significant research has been devoted to propagating
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uncertainties from modeling parameters to structural response through the finite element

method (Der Kiureghian, 1988). Probabilistic methodologies for describing the statistics

of the random response of structures with uncertain properties or/and subjected to random

loading have been developed and interfaced with the widely used and accepted finite ele-

ment method. Some of these methods, used in particular for estimating the first- and sec-

ond-moment statistics, are the Stochastic Equivalent Linearization Method (Crandall,

2006; Ghanem and Spanos, 1991) and the Stochastic Perturbation Method (Bolotin, 1968;

Grigoriou, 2000) 

This chapter presents a comparison of two different probabilistic response analysis

methods based on non-linear finite element response simulation. A Mean-Centered First-

Order Second-Moment (FOSM) approximation (Haukaas and Der Kiureghian, 2004) is

used to estimate first- and second-moment statistics of finite element response quantities

and these estimates are compared with results obtained using Monte Carlo simulation

(MCS) (Liu, 2001). Finite element response sensitivities required by FOSM analysis are

computed through the Direct Differentiation Method (DDM) (Kleiber et al., 1997) and

through forward and backward finite difference analysis using relatively large perturba-

tions of the uncertain parameters. Only material non-linearities and uncertainties in mate-

rial parameters are considered in this study. 

The FOSM is applied to advanced non-linear finite element models of realistic struc-

tures and Soil-Structure-Foundation-Interaction (SFSI) systems subjected to non-linear

quasi-static pushover analysis. Non-linear quasi-static pushover analysis is a popular pro-

cedure in the earthquake engineering community, since it allows gaining insight into the



347
non-linear seismic response behavior of structures using simplified analysis techniques.

Even though this procedure presents several shortcomings and is based more on intuition

than on rigorous physical and mathematical modeling of the problem, it has been recog-

nized by international codes (ATC, 1996; FEMA, 1997) as a possible substitute, under cer-

tain conditions, for non-linear dynamic analysis of structural systems.

5.1   First-Order Second-Moment Probabilistic Response Analysis 

Probabilistic response analysis consists of computing the probabilistic characterization

of the response of a specific structure, given as input the probabilistic characterization of

material, geometric and loading parameters. An approximate method of probabilistic

response analysis is the First-Order Second-Moment (FOSM) method, in which mean val-

ues (first-order statistical moments), variances and covariances (second-order statistical

moments) of the response quantities of interest are estimated by using a first-order Taylor

series expansion of the response quantities in terms of the random or uncertain modeling

parameters (Haukaas and Der Kiureghian, 2004) about a given point in the space in which

the modeling parameters are defined. Thus, this method requires only the knowledge of

the first- and second-order statistical moments of the random parameters. It is noteworthy

that often statistical information about the random parameters is limited to first and second

moments and therefore probabilistic response analysis methods more advanced than

FOSM analysis cannot be fully exploited. 

Given the vector of n random parameters , where  the domain of variability

of , the corresponding covariance matrix  is

� �∈ �

� ��
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(5.1)

where  is the correlation coefficient of random parameters  and  ( ; i =

1, 2, …, n), and  denotes the standard deviation of random parameter . FOSM analy-

sis is based on a linearization of the vector r of the m response quantities of interest. In

fact, the vector r is approximated by the following first-order truncation of its Taylor

series expansion in the random parameters  about a given point  

(5.2)

In general, the linearization point is chosen as the point  of the mean values of the

parameters. In fact, this is an optimal point (at least in a local sense) for estimating the

mean of a scalar function (e.g., response quantity rk, with ) of the parame-

ters by using a linear approximation, independently of the functional relation and of the

joint probability distribution of the parameters (see Appendix). Using the Mean-Centered

FOSM method, the vector r of m response quantities of interest is approximated by a first-

order truncation of its Taylor series expansion in the random parameters  about their

mean values  as

(5.3)

The first- and second-order statistical moments of the response quantities r are

approximated by the corresponding moments of the linearized response quantities, i.e.,

(5.4)

�� ρijσiσj[ ]      i j,; 1 2 … n, , ,= =

ρij θi θj ρii 1=

σi θi

� �0 �∈

r �( ) rlin �( )≈ r �0( ) r�∇
� �0=

� �0–( )+=

��

k 1 2 … m, , ,=

�

��

r �( ) rlin �( )≈ r ��( ) r�∇
� ��=

� ��–( )+=

�r �rlin
≈ E rlin �( )[ ] r ��( ) r�∇

� ��=
E � ��–[ ]+ r ��( )= = =
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(5.5)

in which E[…] denotes the mathematical expectation operator. In particular, the explicit

form for the variances of each of the response quantities considered is found from Eq.

(5.5) as

; k = 1, ..., m (5.6)

The approximate response statistics computed through Equations (5.4) and (5.5) are

extremely important in evaluating the variability of the response quantities of interest due

to the intrinsic uncertainty of the modeling parameters and provide information on the sta-

tistical correlation between the different response quantities. It is noteworthy that these

approximate first- and second-order response statistics can be readily obtained when

response sensitivities evaluated at the mean values of the random parameters are available.

Only a single finite element analysis is needed in order to perform a FOSM probabilistic

response analysis, when the finite element response sensitivities are computed using the

DDM. In the following, only Mean-Centered FOSM analyses will be considered and

denoted as FOSM analyses, for sake of brevity.

5.2   Probabilistic Response Analysis Using Monte Carlo Simulation

Probabilistic response analysis can also be performed using Monte Carlo simulation

(MCS) (Liu, 2001). In this study, MCS is used to assess the accuracy of the FOSM

approximations in when applied to non-linear finite element response analysis of R/C

�r �rlin
≈ E rlin �( ) �rlin

–( ) rlin �( ) �rlin
–( )T⋅[ ] r�∇

� ��=
�� r�∇
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building structures characterized with random/uncertain material parameters and sub-

jected to quasi-static pushover. The MCS procedure requires:

1. Generation of N realizations of the n-dimensional random parameter vector  accord-

ing to a given n-dimensional joint probability density function (PDF).

2. Computation by finite element analysis of N pushover curves (i.e., force-response

curves) for each component of the response vector r, corresponding to the N realiza-

tions of the random parameter vector .

3. Statistical estimation of specified marginal and joint moments of the components of

response vector r at each load step of the finite element response analysis.

MCS is a general and robust methodology for probabilistic response analysis, but it

suffers two significant limitations:

1. It requires knowledge of the joint PDF of the random parameters . In general, this

joint PDF is only partially known and appropriate models, consistent with the incom-

plete statistical information available, must be used to generate realizations of the vec-

tor .

2. MCS requires performing N finite element response analyses. This number N can be

very large for accurate estimates of marginal and joint moments of response quantities

r and increases rapidly with the order of the moments. For real-world structures, com-

plex non-linear finite element analyses are necessary for accurate prediction of the

structural response and repeating such analyses a large number of times could be com-

putationally prohibitive.

�

�

�

�
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In this study, the Nataf model (Ditlevsen and Madsen, 1996) is used to generate real-

izations of the random parameters . It requires specification of the marginal PDFs of the

random parameters  and their correlation coefficients. It is therefore able to reproduce

the given first- and second-order statistical moments of the random parameters .

5.3   Estimation of Response probability distributions

The FOSM method used in this chapter allows to consider the effects of the variability

of each random parameter on the variability of the response. Herein, two simplified proce-

dures, based on the response and response sensitivities computed at the mean values of the

parameters, are presented to obtain information on the dependency of the response quanti-

ties considered on each of the material random parameters.

The first procedure is used to find the relative importance of each material random

parameter on the response quantities. Such relative importance is obtained using the

response sensitivities computed at the mean values of the parameters and the variances of

the parameters. The relative importance using FOSM results is validated against corre-

sponding results obtained computing the response quantities changing the value of each

parameter by  standard deviation one at a time. Such validation is graphically repre-

sented through tornado diagrams (Howard, 1983; Porter et al., 2002). Another quantity

commonly used to define a relative importance ranking of the uncertain/random parame-

ters in influencing the variability of the response quantities considered is the so-called

“swing” (Porter et al., 2002). The term swing denotes the variation in the response quan-

tity of interest due to the variability of only one parameter when all the other parameters

�

�

�

1±
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are kept fixed at their corresponding mean values. The swing is computed in correspon-

dence of the minimum and maximum values of the parameter considered when its proba-

bility distribution is defined over a finite interval (e.g., beta and uniform distributions) or

of the 10% and 90% fractiles when the probability distribution of the parameter is defined

over an infinite (e.g., normal distribution) or semi-infinite (e.g., lognormal or exponential

distributions) interval. The swing is commonly represented by using tornado diagrams.

The second procedure is employed to find an approximation of the cumulative proba-

bility distributions (CDFs) and probability density functions (PDFs) of the response quan-

tities of interest as functions of each random parameter considered one at a time. These

approximations are obtained assuming that the response quantities of interest have the

same distribution of the random parameter considered, with mean value and standard

deviation given by the Mean-Centered FOSM estimates of mean and standard deviation,

respectively. These approximate CDFs and PDFs are validated through the corresponding

quantities obtained simulating repeatedly the response for several values of the material

parameter considered and keeping all the other random parameters at their mean value.

The results of this procedure are graphically represented using the so-called “javelin dia-

grams” (Felli and Hazen, 2004), which are used in the fields of Economics, Management

and Decision Analysis but, to the authors knowledge, have not yet been employed by the

Structural Engineering community. 
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5.4   Application Examples

5.4.1   Three-Dimensional R/C Frame Building

The first application example considered herein consists of a three-dimensional rein-

forced concrete frame building on rigid foundation with concrete slabs at each floor as

shown in Figure 5.1. The frame consists of three stories of height  (12ft) each

and one bay of span  (20ft) in each direction. Beam and column cross-sections

are shown in Figure 5.1.

h 3.66m=

L 6.10m=

Figure 5.1 Geometry, cross-sectional properties, applied horizontal loads and
material constitutive models for the three-story R/C building
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Beams and columns are modeled using displacement-based Euler-Bernoulli frame ele-

ments with four Gauss-Legendre integration points each. Each column and beam is dis-

cretized in two and three finite elements, respectively. Beam and column cross-sections

are discretized in fibers of confined concrete, unconfined concrete and steel reinforce-

ment. The reinforcement steel is modeled through a bilinear hysteretic model, while the

concrete is represented by the Kent-Scott-Park model with zero tension stiffening (Scott et

al., 1982), as shown in Figure 5.1. Different material parameters are used for the confined

(core) and unconfined (cover) concrete in the columns and beams. The concrete slabs are

modeled through a diaphragm constraint at each floor to enforce rigid in-plane behavior. 

Ten material constitutive parameters are used to characterize the various structural

materials involved in the structure, namely four parameters for the confined concrete

( : peak strength, : strain at peak strength, : residual strength, :

strain at which the residual strength is reached), three parameters for the unconfined con-

crete ( , , ) with the fourth parameter , and three

parameters for the reinforcement steel (fy: yield strength, E0: initial stiffness, b: post-yield

to initial stiffness ratio). Figure 5.1 shows graphically the meaning of all the material

parameters considered. These material parameters are modeled as random fields spatially

fully correlated, i.e., each material parameter is modeled with a single random variable

(RV). The marginal PDFs of these material parameters are given in table (5.1) and were

obtained from studies reported in the literature (Mirza and MacGregor 1979, Mirza et al.

1979). The correlation coefficients between the various material parameters are assumed

as follows:  for (1)  and , (2)  and , (3)  and

fc core, εc core, fcu core, εcu core,

fc cover, εc cover, εcu cover, fcu cover, 0MPa=

ρ 0.8= fc core, fcu core, εc core, εcu core, εc cover,
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, (4)  and , (5)  and , (6)  and ;

 for (1)  and , (2)  and , (3)  and ; and

 for all other pairs of parameters. These correlation coefficients are chosen based

on engineering judgement, since to the authors’ knowledge, precise values of correlation

coefficients are not available in the literature.

Table 5.1   Marginal PDFs of material parameters for the three-story building 
(distribution parameters for lognormal distribution: (1) , (2) 

; for beta distribution: (1) , (2) , (3) , (4) )

RV [unit] Distributi
on Par.#1 Par.#2 Par.#3 Par.#4 Mean C.O.V. 

[%]

fc,core [MPa] lognormal 3.520
5

0.198
0

- - 34.47 20

εc,core [-] lognormal -
5.317
9

0.198
0

- - 0.005 20

fcu,core 
[MPa]

lognormal 3.163
8

0.198
0

- - 24.13 20

εcu,core [-] lognormal -
3.931
6

0.198
0

- - 0.020 20

fc,cover 
[MPa]

lognormal 3.297
5

0.198
0

- - 27.58 20

εc,cover [-] lognormal -
6.234
2

0.198
0

- - 0.002 20

εcu,cover [-] lognormal -
5.135
6

0.198
0

- - 0.006 20

fy [MPa] beta 227.5
3

427.4
8

3.21 4.28 307.46 10.6

εcu cover, fc core, fc cover, εc core, εc cover, εcu core, εcu cover,

ρ 0.64= fcu core, fc cover, εc core, εcu cover, εcu core, εc cover,

ρ 0.0=

λ µ X( )log=

ζ σ X( )log= xmin xmax α1 α2
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After static application of the gravity loads (assumed as uniformly distributed load per

unit area  at each floor), the structure is subjected to a quasi-static pushover

analysis, in which an upper triangular distribution of horizontal forces is applied on the

master nodes of the floor diaphragm constraints in the x-direction (see Figure 5.1). The

total base shear force, Ptot = 2P, is considered as deterministic and is assumed to increase

linearly during the analysis from 0kN to 600kN. In this analysis, only material non-linear-

ities are taken into account. A response analysis and response sensitivity analysis using the

DDM are first performed at the mean values  of the random parameters . A MCS

analysis based on 1000 realizations is then carried out based on the Nataf model used as

joint PDF of the random parameters . Gross sensitivities of the response quantities r are

evaluated through FFD and BFD analysis, perturbing one material parameter at a time by

plus and minus one standard deviation, respectively. Finally, the swing of the response

quantities of interest is computed by performing two additional finite element analyses for

each random material parameter at its upper and lower values (as previously defined in the

above Section: “Estimation of response probability distributions”). Finite element

E0 [MPa] lognormal 12.19
14

0.033
0

- - 201000 3.3

b [-] lognormal -
3.931
6

0.198
0

- - 0.02 20

Table 5.1   Marginal PDFs of material parameters for the three-story building 
(distribution parameters for lognormal distribution: (1) , (2) 

; for beta distribution: (1) , (2) , (3) , (4) )

RV [unit] Distributi
on Par.#1 Par.#2 Par.#3 Par.#4 Mean C.O.V. 

[%]

λ µ X( )log=

ζ σ X( )log= xmin xmax α1 α2

q 8kN m2⁄=

�� �

�
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response, response sensitivity and probabilistic response computations are performed

using the finite element analysis framework OpenSees (Mazzoni et al. 2005), in which

new classes were added to perform MCS probabilistic response analysis, three-dimen-

sional frame elements were augmented for response sensitivity analysis (Barbato et al.,

2006b) and the response sensitivity algorithm for imposing multipoint constraints was

implemented (Gu et al., 2006b). 

Figure 5.2 shows a comparison of estimates of the mean and mean  standard devi-

ation of the force - response curve for the roof displacement in the x-direction, ux3,

obtained through FOSM analysis using the DDM to compute the response sensitivities

and MCS, respectively. 
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Figure 5.3 displays the standard deviation estimates of ux3 obtained through MCS and

FOSM analysis using different methods to compute the response sensitivities. For the

given structure subjected to quasi-static pushover, the condition of failure is defined as

(near) singularity of the structure stiffness matrix or roof displacement in the x-direction,

ux3, exceeding 0.4m (i.e., ux3,fail = 0.4m), whichever happens first. It is found that, until

the load level  is reached, no failure case is observed in the MCS performed,

while nearly one third of the Monte Carlo realizations reach failure below load level

. In Figures 5.2 and 5.3, horizontal dashed lines mark the load levels

 and , which denote the load levels below which the

Figure 5.3 ProStandard deviation of the three-story R/C building
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response is almost linear and no failure occurs, respectively. In Figures 5.2 and 5.3, for

load levels above , both the unconditional (denoted as “MC”) and condi-

tional to survival (“MCS cond. surv.”) MCS estimates of the mean value and standard

deviation of ux3 are plotted. The MCS mean response conditional to survival presents a

stiffening behavior at high load levels, since it represents the mean response of only the

realizations corresponding to structures with higher stiffness and/or strength. It is clear

that MCS results conditional to survival cannot be directly compared with the FOSM

approximations, because of the different meaning of the two sets of quantities. On the

other hand, the presence of simulations with failure due to singularity of the structure stiff-

ness matrix (i.e., non-convergence of the finite element pushover analysis) introduces

some arbitrarity in the computation and interpretation of the unconditional MCS results. In

fact, the value of the displacement ux3 at the last converged step of the pushover analysis

in these simulations is lower than the value assumed as failure threshold (ux3,fail = 0.4m)

and thus the value to be used for the unconditional MCS estimates of mean and standard

deviation is not clearly and uniquely defined for load levels higher than the one at which

failure occurred (denoted here as Ptot,fail). In this work, for ,

 is assumed, which is consistent with the failure condition for the

simulations reaching the failure threshold and provides unconditional MCS estimates

comparable with FOSM results.

Figure 5.2 shows clearly that the FOSM approximation is in excellent agreement with

the MCS results when the structural response is nearly linear (for load levels below

Ptot 450kN=

Ptot Ptot fail,≥

ux3 ux3 fail, 0.4m= =
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), while the FOSM results slightly underestimate the MCS results when the

structure undergoes low-to-moderate non-linear inelastic deformations (for load levels

between  and ). When MCS realizations start to reach fail-

ure as defined above (i.e., for load levels ), FOSM results significantly

underestimate unconditional MCS results. It can be concluded that, for the first applica-

tion example considered in this chapter, FOSM analysis provides, at very low computa-

tional cost, very good estimates of the mean of response quantities for low-to-moderate

levels of material non-linearity in the structural response. 

In Figure 5.3, the different techniques employed for computing response sensitivities

used in FOSM are: (1) DDM; (2) BFD analysis with perturbations 

; (3) FFD analysis with perturbations  ; and (4)

FD average of gross sensitivities computed using BFD and FFD. It is observed that these

four methods produce similar results and in particular the standard deviation estimate

obtained using method (4) is very close to the one based on the DDM, except for very high

load levels. However, it is important to note that, for each sensitivity parameter, the com-

putational cost of response sensitivities using the DDM is only a fraction of the cost of an

additional non-linear finite element analysis, which is required for BFD and FFD analy-

ses. Thus, method (4) requires two additional non-linear finite element analyses for each

sensitivity parameter, and is therefore significantly more expensive computationally than

the DDM. In addition, the BFD analysis for parameter  does not reach the load level

 and the corresponding structural model fails at  and

Ptot 300kN=

Ptot 300kN= Ptot 450kN=

Ptot 450kN≥

∆θi  σi–=

i 1 2 … 10, , ,=( ) ∆θi σi= i 1 2 … 10, , ,=( )

fc core,

Ptot 600kN= Ptot 582kN=
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. Therefore, it is not possible to compute the BFD and FD average esti-

mates of the response standard deviation for . As for the mean of the

response, FOSM analysis using DDM provides, at very low computational cost, excellent

estimates of the standard deviation of response quantities for low-to-moderate levels of

material non-linearity in the structural response.

Figure 5.4 plots, on a semilogarithmic scale, the coefficient of variation (C.O.V.) of the

mean of the response quantity ux3 for different load levels as a function of the number of

simulations performed. As expected, the C.O.V. is higher for higher load levels, for which

the dispersion of the results is higher. At 1000 simulations, the C.O.V. for

ux3 0.344m=

Ptot 582kN≥

Figure 5.4 Coefficient of variation of the mean response at different load levels
computed using MCS for the three-story R/C building 
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 are 0.59%, 1.04% and 2.85%, respectively, and thus the

MCS results are very reliable. Notice also that the number of simulations required to

obtain a C.O.V. lower than 10% are less than 10 for  and , but

more than 100 for . 

Figure 5.5 displays the cumulative density functions (CDFs) of ux3 obtained by MCS

for load levels , 450kN and 600kN. For , the CDF conditional

to survival and scaled by the probability of survival is also shown, while the CDF condi-

Ptot 300kN 450kN 600kN, ,=

Ptot 300kN= Ptot 450kN=

Ptot 600kN=

Figure 5.5 CDFs of ux3 for different load levels estimated using MCS for the
three-story R/C building 
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tional to failure (and scaled by the probability of failure) corresponds to the difference

between the unconditional CDF and the scaled CDF conditional to survival. 

Table 5.2   Normalized sensitivities computed by DDM of ux3 to material parameters 
and their relative contribution to variance of ux3 at different load levels (three-story 

building) 

Deterministic sense Probabilistic sense  [%]

Ptot 
[kN]

300 450 600 300 450 600 300 450 600

fc,core -
0.230
1

-
0.312
6

-
2.741
8

-
0.046
0

-
0.063
2

-
0.548
4

6.01 9.22 36.21

εc,core 0.218
6

0.284
1

1.540
0

0.043
7

0.056
8

0.308
0

5.42 7.44 11.42

fcu,core 0 0 -
0.005
7

0 0 -
0.001
1

0 0 <0.01

εcu,core 0 0 -
0.003
3

0 0 -
0.000
7

0 0 <0.01

fc,cover -
0.520
7

-
0.604
9

-
1.737
0

-
0.104
1

-
0.121
0

-
0.347
4

30.74 33.74 14.53

εc,cover 0.412
6

0.304
7

-
0.159
7

0.082
5

0.060
9

-
0.031
9

19.30 8.56 0.12

εcu,cove
r

0 -
0.006
2

-
1.141
7

0 -
0.001
2

-
0.228
3

0 <0.01 6.28

fy 0 -
0.062
6

-
2.069
8

0 -
0.006
6

-
0.219
4

0 0.10 5.80

∆ σux3

2( ) σux3

2⁄
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Table 5.2 provides the sensitivities of ux3 to the random material parameters computed

at the nominal/mean values of the latter and normalized in a deterministic sense,

, and probabilistic sense, , respectively (with the

mean response  computed using FOSM). The sensitivities normalized in a determinis-

tic sense can be interpreted as the percent change in the response due to one percent

change in the sensitivity parameter considered. The sensitivities normalized in a probabi-

listic sense represent the percent change in the mean response due to a change in the mean

of the random parameter taken as one percent of the standard deviation of this parameter,

assuming this change to be equally likely for all random parameters. It is observed that

these normalized sensitivities increase in absolute value for increasing load level Ptot,

except the normalized sensitivity to , which is first positive and relatively large for

, decreases in absolute value for  and becomes negative for

. Table 5.2 gives also the specific relative contributions (or marginal contri-

E -
0.368
9

-
0.417
4

-
0.764
7

-
0.012
2

-
0.013
8

-
0.025
2

0.42 0.44 0.08

b 0 -
0.000
1

-
0.047
3

0 ~0 -
0.009
5

0 <0.01 0.01

Table 5.2   Normalized sensitivities computed by DDM of ux3 to material parameters 
and their relative contribution to variance of ux3 at different load levels (three-story 

building) 

Deterministic sense Probabilistic sense  [%]

Ptot 
[kN]

300 450 600 300 450 600 300 450 600

∆ σux3

2( ) σux3

2⁄

ux3∂ θi∂⁄( ) θi ux3⁄( ) ux3∂ θi∂⁄( ) σθi
µux3

⁄( )

µux3

εc cover,

Ptot 300kN= Ptot 450kN=

Ptot 600kN=



365
butions) to the variance  of ux3 of each of the material random parameters, expressed

as per cent of  for different load levels. These relative contributions to the variance

can be used as measures of relative importance in a probabilistic sense of the various

parameters in regards to the response quantity of interest. In this case, it is noted that the

most important parameter in the probabilistic sense is  for  and

, while  becomes predominant for . The steel material

parameters fy and E are found to be relatively less important in the probabilistic sense than

in the deterministic sense (for which the relative importance is given by the absolute value

of the sensitivities normalized in a deterministic sense), since their coefficients of varia-

tion are relatively small compared to other parameters. Note that for equal coefficients of

variation of all random parameters, the order in terms of relative importance of these

parameters in the deterministic and probabilistic sense are identical. Table 5.3 provides the

contributions to the variance  of ux3 due to the cross-terms (for all pairs of correlated

parameters) expressed as per cent of  for different load levels. These normalized

(dimensionless) cross-term contributions grow for increasing load level Ptot and are of

magnitude comparable or even larger than the marginal contributions of the random

parameters to the variance of the response given in Table 5.2. In particular, the correlation

between the parameters  and  provides the highest contribution to the vari-

ance  of ux3 for the load level . 

σux3

2

σux3

2

fc cover, Ptot 300kN=

Ptot 450kN= fc core, Ptot 600kN=

σux3
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Table 5.3   Contribution (%) of the cross-correlation terms to the variance of the 
response quantity u3x (three-story building) 

Ptot [kN] 300 450 600

εc,core εcu,core 0 0 -0.04

εc,core εc,cover 16.36 12.77 -1.90

εc,core εcu,cover 0 -0.21 -10.84

fc,core fcu,core 0 0 0.12

fc,core fc,cover 21.75 28.22 36.70

εcu,core εc,cover 0 0 <0.01

εcu,core εcu,cover 0 0 0.03

fcu,core fc,cover 0 0 0.06

εc,cover εcu,cover 0 -0.28 1.41
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Figure 5.6 compares results for evaluating the relative importance and effects on the

structural response ux3 of the randomness of the material parameters for different load lev-
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els by using the tornado diagrams. In particular, the estimate of the relative change in the

response (taken as the change in the response normalized with the mean value of the

response) due to a variation of  standard deviation of each parameter considered one at

the time is computed by FOSM and by FFD and BFD with changes in the parameters

equal to  standard deviation of the parameter considered, respectively. The response

change are computed as follows

; i = 1, ..., 10 (5.7)

; i = 1, ..., 10 (5.8)

where  is a Boolean vector of length equal to the number of parameters with 1 in the i-

th position and 0’s elsewhere and  is the vector collecting the standard deviation of the

random parameters. The two tornado diagrams corresponding to  and

, respectively, show that, for low-to-moderate non-linearities in the

response, FOSM estimates of the response variability are in good agreement with the ones

obtained through direct simulation using finite difference (FD). Furthermore, in the same

range of non-linearities, the response variability due to the variation of  standard devia-

tion of each parameter is moderate. For large non-linearities ( ), larger dif-

ferences occur between FOSM and FD results, in particular for parameters to which the

response is more sensitive, such as the core and cover concrete parameters. For these

parameters, the FOSM estimate of the variation of the response due to the variation of 

standard deviation of each parameter is very large (more than 50% for ), while the

1±

1±
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----------
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same estimate via FD provides lower values. For the parameter , which is the

parameter to which the response is more sensitive at load level , the BFD

analysis does not converge and the corresponding finite element models reaches failure

due to near singularity of the structure stiffness matrix at the load level .

This result is denoted in Figure 5.6 (c) as ‘BFD NA’. In order to generate the tornado dia-

grams of Figure 5.6 using FD analysis, two additional non-linear finite element pushover

analyses are required for each random parameter considered. On the other hand, the tor-

nado diagrams using FOSM results are obtained at insignificant additional computational

cost after performing the FOSM analysis. In addition, tornado diagrams using FD do not

provide any information about the effects of correlation between couples of random

parameters. In contrast with this, FOSM analysis provides information about the depen-

dency of the response variance due to the correlation between parameters, as shown in

Table 5.3. The tornado diagrams given in Figure 5.6 plot also the swing of the response

quantity ux3 due to the variability of each material parameter. The computed swings pro-

vide consistent information in terms of relative importance ranking of the material param-

eters to the results obtained through FOSM analysis. The only exception is at the load

level  for parameter fy, which importance is underestimate by FOSM. In

fact, for the lowest values of fy, the structural system reaches failure at load levels lower

than  (represented in Fig. 6(c) with the note ‘swing NA’), showing that the

relation between the response quantity ux3 and the parameter fy is strongly non-linear.

fc core,

Ptot 600kN=

Ptot fail, 582kN=

Ptot 600kN=

Ptot 600kN=
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Figure 5.7 Correlation of response quantity u3x with material parameter fc,cover
for the three-story R/C building 
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FOSM analysis provides additional information about correlation between different

response quantities and between response quantities and random material parameters. As

examples, Figures 5.7 and 5.8 compare the correlation coefficient between the response

quantity ux3 and the material parameter  and between the response quantities ux3

and ux1, respectively, computed by FOSM analysis and by MCS analysis. The results from

the two different methods show good agreement for low-to-moderate non-linearities in the

response behavior. Notice that for load levels above , the MCS results used

to compute the correlation coefficient between the response quantities ux3 and ux1 are con-

ditional to the survival of the structure up to the corresponding load level and, thus, for

Figure 5.8 Correlation of response quantities u3x and u1x for the three-story R/C
building 
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this specific case, the comparison between FOSM and MCS results is not very meaningful

for . On the other hand, computing the correlation coefficient from uncondi-

tional MCS results would give completely arbitrary results, since the value of the displace-

ment ux1 after failure is achieved is not uniquely defined.

Ptot 450kN≥

Figure 5.9 CDF, PDF and relation of the response u3x of the three-story R/C
building as function of fc,cover for Ptot = 300kN 
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Figure 5.10 CDF, PDF and relation of the response u3x of the three-story R/C
building as function of fc,cover for Ptot = 450kN 
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Figures 5.9 through 5.11 show some results from the simplified procedure proposed to

approximate the probability distributions of the response quantity considered as function

of the modeling parameters considered as random one at the time. In Figures 5.9 and 5.10,

the PDFs (scaled by a factor 100 and 50, respectively) and CDFs of the displacement ux3

for  and , respectively, obtained by the proposed approximate

procedure considering as variable the parameter , are compared with the corre-

sponding quantities obtained by simulation. In the same Figures, the relations between ux3

and  are also plotted. Figure 5.11 shows the PDFs (scaled by a factor 4000) and

CDFs of the displacement ux3 for  obtained by the proposed approximate

Figure 5.11 CDF, PDF and relation of the response u3x of the three-story R/C
building as function of fy for  Ptot 450kN=
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procedure considering as variable the parameter  are compared with the corresponding

quantities obtained by simulation. In addition, the relation between ux3 and  is also plot-

ted. The response probability distributions obtained by simulation are generated by repeat-

ing the non-linear finite element pushover analysis for 20 different values of the parameter

considered. The response probability distributions obtained by the proposed simplified

procedure are generated at a negligible additional computational cost for the parameter

, which follows a lognormal distribution completely described by mean and stan-

dard deviation, while, for parameter , two additional non-linear finite element analyses

(corresponding to the minimum and maximum values of the parameter) are required to

determine the corresponding beta distribution. From the results presented in Figures 5.9

through 5.11 and from results corresponding to other random material parameters not pre-

sented herein for space limitation, it is found that the proposed simplified procedure can

provide approximate probability distributions which are in good agreement with the ones

obtained through simulation for low-to-moderate non-linearities in the response at a very

low computational cost. It is also found that, for large non-linearities as the ones encoun-

tered at the load level , the approximate probability distributions could com-

pare very poorly with the distributions obtained through direct simulation.

5.4.2   Two-Dimensional SFSI System

The first application example consists of a two-dimensional Soil-Foundation-Structure

Interaction (SFSI) system, a model of which is shown in Figure 5.12. The structure is a

two-storey two-bay reinforced concrete frame with section properties given in Figure

fy

fy

fc cover,

fy

Ptot 600kN=
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5.12. The foundations consist of reinforced concrete squat footings at the bottom of each

column. The soil is a layered clay, with stiffness properties varying along the depth.

The frame structure of this SFSI system is modeled by using displacement-based

Euler-Bernoulli frame elements with distributed plasticity, each with four Gauss-Legendre

integration points. Section stress resultants at the integration points are computed by dis-

cretizing the frame sections by layers. Foundation footings and soil layers are modeled

through isoparametric four-node quadrilateral finite elements with bilinear displacement
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interpolation. The soil mesh is shown in Figure 5.12. The constitutive behavior of the steel

reinforcement is modeled by using a one-dimensional J2 plasticity model with both kine-

matic and isotropic linear hardening (Conte et al. 2003). The concrete is modeled by using

a Kent-Scott-Park model with zero tension stiffening (Scott et al 1982). Different material

parameters are used for confined (core) and unconfined (cover) concrete in the columns.

The soil is modeled by using a pressure-independent multi-yield surface material model

(Elgamal et al. 2003), specialized for plane strain analysis (Figure 5.12). Different mate-

rial parameters are used for each of the four layers considered.

Similarly to the previous application example, ten material constitutive parameters are

used to characterize the various structural materials involved in the structure, namely four

parameters for the confined concrete ( , , , ), three parameters

for the unconfined concrete ( , , ) with the fourth parameter

, and three parameters for the reinforcement steel (fy, E0, Hkin: kinematic

hardening modulus) with the fourth parameter Hiso = 0MPa (isotropic hardening modu-

lus). Notice that, assuming Hiso = 0MPa, the one-dimensional J2 plasticity model reduces

to the bilinear inelastic model used in the first application example. These material param-

eters are assumed to follow lognormal distributions with parameters given in Table 5.4.

fc core, εc core, fcu core, εcu core,
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The correlation coefficients between the couples of parameters are the same as in the

first application example. In addition to the material parameters describing the structural

materials, eight material parameters are used to model the four soil layers, i.e., the cohe-

sion, τi, and the initial shear modulus, Gi, with i = 1, 2, 3, 4. These material parameters are

assumed to follow lognormal distributions with parameters given in Table 5.4. The corre-

lation coefficients between the parameters are assumed as follows:  for (1)  and

, (2)  and , (3)  and , (4)  and , (5)  and , (6)  and , (7) 

Table 5.4   Material parameters (with lognormal distributions) for the two-
dimensional SFSI system 

Structural material parameters Soil material parameters

RV [unit] Mean C.O.V. [%] RV [unit] Mean C.O.V. [%]

fc,core 
[MPa]

34.49 20 τ1 [kPa] 33 25

εc,core [-] 0.004 20 G1 [kPa] 54450 30

fcu,core 
[MPa]

20.69 20 τ2 [kPa] 50 25

εcu,core [-] 0.014 20 G2 [kPa] 77600 30

fc,cover 
[MPa]

27.59 20 τ3 [kPa] 75 25

εc,cover [-] 0.002 20 G3 [kPa] 121000 30

εcu,cover [-] 0.008 20 τ4 [kPa] 100 25

fy [MPa] 248.20 10.6 G4 [kPa] 150000 30

E0 [MPa] 200000 3.3 - - -

Hkin [MPa] 1612.9 20 - - -

ρ 0.4= τ1

τ2 τ1 G1 τ2 τ3 τ2 G2 τ3 τ4 τ3 G3 τ4
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and ; and  for all other pairs of parameters. Also in this case, these correlation

coefficients are chosen based on engineering judgement, since to the authors’ knowledge,

precise values of correlation coefficients are not available in the literature.

Similarly to the first application example, after static application of the gravity loads,

the structure is subjected to a quasi-static pushover analysis, in which an upper triangular

distribution of horizontal forces is applied at the floor levels (see Figure 5.12). The total

base shear force, Ptot = 1.5P, is considered as deterministic and is assumed to increase lin-

early during the analysis from 0kN to 750kN. In this analysis, only material non-linearities

are taken into account. A response analysis and response sensitivity analysis using the

DDM are first performed at the mean values  of the random parameters . A MCS

analysis based on 1000 realizations is then carried out based on the Nataf model used as

joint PDF of the random parameters . Finally, gross sensitivities of the response quanti-

ties r are evaluated through FFD and BFD analysis, perturbing one material parameter at a

time by plus and minus one standard deviation, respectively. Finite element response,

response sensitivity and probabilistic response computations are performed using the

finite element analysis framework OpenSees (Mazzoni et al. 2005), in which the constitu-

tive model for the soil was augmented for response sensitivity analysis (Gu et al., 2006a)

and the response sensitivity algorithm for imposing multipoint constraints (in this case

required for connecting the frame elements used to describe the structure with the quadri-

lateral elements employed to model the squat footings) was implemented (Gu et al.,

2006b). The results of the analysis are presented in a similar way as for the first applica-

tion example.

G4 ρ 0.0=

�� �

�
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Figure 5.13 shows a comparison of estimates of the mean and mean  standard devi-

ation of the force - response curve for the horizontal roof displacement at the top of the

central column, u1, obtained through FOSM analysis using the DDM to compute the

response sensitivities and MCS, respectively. Figure 5.14 displays the standard deviation

estimates of u1 obtained through MCS and FOSM analysis using different methods to

compute the response sensitivities. For the given structure subjected to quasi-static push-

over, the condition of failure is defined as (near) singularity of the structure stiffness

matrix or u1,fail = 0.28m (i.e., roof displacement over roof height ratio equal to 3.9%),

whichever happens first. It is found that, until the load level  is reached, no

failure case is observed in the MCS performed, while nearly one quarter of the Monte
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Figure 5.13 Probabilistic response of the two-dimensional SFSI system 
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Carlo realizations reach failure below load level . In Figs. 13 and 14, hori-

zontal dashed lines mark the load levels  and , which denote

the load levels below which the response is almost linear and no failure occurs, respec-

tively. In Figure 5.13 and Figure 5.14, for load levels above , both the

unconditional (denoted as “MC”) and conditional to survival (“MCS cond. surv.”) MCS

estimates of the mean value and standard deviation of u1 are plotted. The results obtained

using FOSM and MCS are qualitatively very similar to the ones presented for the first

application example.

Figure 5.13 shows that the FOSM approximation is in excellent agreement with the

MCS results when the structural response is nearly linear (for load levels below

), while the FOSM results slightly underestimate the MCS results when the

structure undergoes low-to-moderate non-linear inelastic deformations (for load levels

between  and ), with differences increasing with increasing

non-linearities. In this case, the maximum level of non-linearities reached in the analysis

is less pronounced at the global level than in the previous example and the differences

between FOSM analysis and MCS analysis are relatively small also for load levels

( ) for which MCS realizations start to reach failure. It can be concluded that,

also for the second application example considered in this chapter, FOSM analysis pro-

vides, at very low computational cost, very good estimates of the mean of response quan-

tities for low-to-moderate levels of material non-linearity in the structural response. 

Ptot 750kN=

Ptot 375kN= Ptot 630kN=

Ptot 630kN=

Ptot 375kN=

Ptot 375kN= Ptot 630kN=

Ptot 630kN≥
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The different techniques employed for computing response sensitivities used in FOSM

and shown in Figure 5.14 are: (1) DDM; (2) BFD analysis with perturbations 

; (3) FFD analysis with perturbations  ; and (4)

FD average of gross sensitivities computed using BFD and FFD. It is observed that these

four methods produce similar results, but in this case the estimates of the standard devia-

tion of u1 obtained using BFD, FFD and FD average slightly overestimate the standard

deviation computed through MCS for load levels below , while the DDM

estimate is extremely close to the MCS value for load levels up to . For

higher load levels, all the four sensitivity-based methods underestimate the MCS results.

Figure 5.14 Standard deviation of the two-dimensional SFSI system 
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As for the mean of the response, FOSM analysis using DDM provides, at very low com-

putational cost, very good estimates of the standard deviation of response quantities for

low-to-moderate levels of material non-linearity in the structural response also in the case

of probabilistic pushover analysis of SFSI systems.

Figure 5.15 plots, on a semilogarithmic scale, the coefficient of variation (C.O.V.) of

the mean of the response quantity u1 for different load levels as a function of the number

of simulations performed. At 1000 simulations, the C.O.V. for

 are 0.20%, 0.49% and 0.91%, respectively, and thus the

MCS results are very reliable. In this case, the number of simulations required to obtain a

Figure 5.15 Coefficient of variation of the mean response at different load levels
computed using MCS for the two-dimensional SFSI system 
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C.O.V. lower than 10% are less than 10 for  and , and about 50

for , showing a faster convergence than in the previous application example.

Table 5.5   Normalized sensitivities computed by DDM of u1 to material parameters 
and their relative contribution to variance of u1 at different load levels (two-

dimensional SFSI system) 

Deterministic sense Probabilistic sense  [%]

Ptot 
[kN]

375 630 750 375 630 750 375 630 750

fc,core -
0.039
4

-
0.054
2

-
0.138
8

-
0.007
9

-
0.010
8

-
0.027
8

0.67 0.56 0.69

εc,core 0.037
3

0.047
8

0.107
5

0.007
5

0.009
6

0.021
5

0.60 0.43 0.41

fcu,core 0 0 0 0 0 0 0 0 0

εcu,core 0 0 0 0 0 0 0 0 0

fc,cover -
0.280
1

-
0.392
9

-
0.942
5

-
0.056
0

-
0.078
6

-
0.188
5

33.93 29.22 31.65

εc,cover 0.240
1

0.249
2

0.214
5

0.048
0

0.049
8

0.042
9

24.93 11.76 1.64

εcu,cove
r

0 0 -
0.027
0

0 0 -
0.005
4

0 0 0.03

fy -
0.042
8

-
0.671
8

-
2.259
9

-
0.004
5

-
0.071
2

-
0.239
5

0.22 24.00 51.11

E0 -
0.461
6

-
0.391
8

-
0.337
3

-
0.015
2

-
0.012
9

-
0.011
1

2.51 0.79 0.11

Ptot 375kN= Ptot 630kN=

Ptot 750kN=

∆ σux3

2( ) σux3

2⁄
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Hkin 0 -
0.002
6

-
0.021
4

0 -
0.000
5

-
0.004
3

0 <0.01 0.02

τ1 -
0.048
8

-
0.076
5

-
0.091
2

-
0.012
2

-
0.019
1

-
0.022
8

1.61 1.73 0.46

G1 -
0.017
3

-
0.012
8

-
0.006
7

-
0.005
2

-
0.003
8

-
0.002
0

0.29 0.07 <0.01

τ2 -
0.053
1

-
0.084
5

-
0.100
6

-
0.013
3

-
0.021
1

-
0.025
2

1.90 2.11 0.56

G2 -
0.023
5

-
0.018
2

-
0.012
0

-
0.007
0

-
0.005
5

-
0.003
6

0.54 0.14 0.01

τ3 -
0.087
4

-
0.146
2

-
0.178
7

-
0.021
8

-
0.036
6

-
0.044
7

5.16 6.32 1.77

G3 -
0.049
0

-
0.047
8

-
0.044
9

-
0.014
7

-
0.014
3

-
0.013
5

2.34 0.97 0.16

τ4 -
0.029
5

-
0.064
5

-
0.084
6

-
0.007
4

-
0.016
1

-
0.021
1

0.59 1.23 0.40

G4 -
0.030
0

-
0.036
0

-
0.034
4

-
0.009
0

-
0.010
8

-
0.010
3

0.87 0.55 0.09

Table 5.5   Normalized sensitivities computed by DDM of u1 to material parameters 
and their relative contribution to variance of u1 at different load levels (two-

dimensional SFSI system) 

Deterministic sense Probabilistic sense  [%]

Ptot 
[kN]

375 630 750 375 630 750 375 630 750

∆ σux3

2( ) σux3

2⁄
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Table 5.5 provides the sensitivities of u1 to the random material parameters computed

at the nominal/mean values of the latter and normalized both in a deterministic sense and

probabilistic sense respectively, together with the relative contributions (or marginal con-

tributions) to the variance  of u1 of each of the material random parameters, expressed

as per cent of  for different load levels.

Table 5.6   Contribution (%) of the cross-correlation terms to the variance of the 
response quantity u1 (two-dimensional SFSI system) 

Ptot [kN] 375 630 750

εc,core εcu,core 0 0 -0.13

εc,core εc,cover 6.19 3.61 1.32

εc,core εcu,cover 0 0 0

fc,core fcu,core 0 0 0

fc,core fc,cover 7.63 6.45 7.46

εcu,core εc,cover 0 0 0

εcu,core εcu,cover 0 0 0

fcu,core fc,cover 0 0 0

εc,cover εcu,cover 0 0 -0.33

τ1 τ2 1.40 0.28 0.03

τ1 G1 0.55 1.53 0.41

τ2 τ3 2.51 2.92 0.80

τ2 G2 0.81 0.44 0.06

τ3 τ4 1.40 2.23 0.67

τ3 G3 2.78 1.98 0.42

σu1

2

σu1

2
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Table 5.6 shows the contributions to the variance  of u1 due to the cross-terms (for

all pairs of correlated parameters) expressed as per cent of  for different load levels.

From Tables 5.5 and 5.6, the following pieces of information can be obtained:

1. The parameters  and  do not influence the response, since the core con-

crete does not reach its peak strength at any load level and in any fiber in which the

structure is discretized.

2. The parameter  is the most important for load levels  and

 and is the second most important parameter for . The

parameter  is very important at lower load levels and its importance decreases

sensibly for increasing load levels. In fact, at lower load levels, the parameter 

influences the response mainly through its effects on the stiffness of the cover concrete

(i.e., higher values of  imply lower stiffness of the cover concrete for a fixed

value of  and thus higher displacements), while at higher load levels, when the

fibers of cover concrete start to reach their peak strength, higher values of 

have the effects also of reducing the number of fibers which reach the peak strength

for a given load level, thus reducing the displacement. This shows that the structural

τ4 G4 0.57 0.66 0.16

Table 5.6   Contribution (%) of the cross-correlation terms to the variance of the 
response quantity u1 (two-dimensional SFSI system) 

Ptot [kN] 375 630 750

σu1

2

σu1

2

fcu core, εcu core,

fc cover, Ptot 375kN=

Ptot 630kN= Ptot 750kN=

εc cover,

εc cover,

εc cover,

fc cover,

εc cover,
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response behavior strongly depends on the cover concrete material parameters, in par-

ticular for low-to-moderate load levels.

3. The parameter  increases its importance for increasing load levels. Its effects are

almost negligible for , when very few steel reinforcement fibers have

reached yielding, while  is the second and first most important parameter for load

levels  and , respectively. In particular, for ,

 contributes with about 51% of the variance of the structural response u1.

4. The variability of the soil properties has a small effect on the variability of the

response u1 and, in general, this effect decreases for increasing load levels. The only

parameter which effect is significant at all load levels is the parameter , which influ-

ences the sliding of the foundation over the soil layer on which they are posed.

5. The effects due to modeling parameter correlation are small and, in general, they

decrease for increasing load levels. The only significant effects are due to the correla-

tion between  and  and between  and .

fy

Ptot 375kN=

fy

Ptot 630kN= Ptot 750kN= Ptot 750kN=

fy

τ3

εc core, εc cover, fc core, fc cover,
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Figure 5.16 provides the tornado diagrams referred to the structural response u1 for

different load levels. These tornado diagrams reproduce the information about the relative

importance of the several random material parameters and also show that at higher load

levels the variability of the response increases significantly. In fact, varying the most

important parameters of  standard deviation produce a variation in the response of less

than 10%, about 10% and almost 50% for load levels , 630kN and 750kN,
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Figure 5.16 Tornado diagrams for the two-dimensional SFSI system: (
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respectively. Results obtained through FOSM compare favorably with the one obtained by

BFD and FFD for  and , while differences are evident for

, in particular because of the strong non-symmetry of the BFD and FFD

responses with respect to the mean response which cannot be captured by FOSM. These

tornado diagrams plot also the swings of the response quantity u1 due to the variability of

each parameter when all the others are kept constant at their mean values. The importance

ranking of the parameters obtained considering the swings matches very well the one

obtained by FOSM analysis at all the load levels considered.

Ptot 375kN= Ptot 630kN=

Ptot 750kN=
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Figure 5.17 CDF, PDF and relation of the response u1 of the three-story R/C
building as function of fc,cover for Ptot 630kN=
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Figures 5.17 and 5.18 compare the approximate probability distributions of u1 as func-

tion of  and , respectively, for load level  with the corresponding

distributions obtained via direct simulation. In these figures, PDFs and CDFs are plotted

together with the relation between the response and the parameter considered, when all the

other parameters are kept fixed with values equal to the mean values. It is found that the

proposed procedure can provide probability distributions in reasonable agreement with the

ones computed by direct simulation at very small computational cost also for SFSI sys-

tems for low-to-moderate response non-linearities. For increasing non-linearities, the

Figure 5.18 CDF, PDF and relation of the response u1 of the three-story R/C
building as function of τ3 for Ptot 630kN=
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agreement between probability distributions obtained through the proposed approximation

and direct simulations degrades rapidly.

5.4.3   Conclusions

This chapter presents a comparison between probabilistic response analysis results

obtained through Monte Carlo simulation and Mean Centered First-Order Second-

Moment (FOSM) analysis using non-linear finite element response and response sensitiv-

ity analyses of a reinforced concrete building subjected to quasi-static pushover. The

effects on FOSM analysis results of using different methods for computing response sensi-

tivities are also investigated. It is found that FOSM approximation using the Direct Differ-

entiation Method for computing response sensitivities provides, at very low computational

cost, very good estimates of the mean and standard deviation of the response quantity con-

sidered herein for low-to-moderate levels of material non-linearity in the response of

structural systems and SFSI systems subjected to quasi-static pushover analysis. Further-

more, the relative importance (in both the deterministic and probabilistic sense) of the

material parameters on the structural response is obtained as by-product of a FOSM analy-

sis at negligible additional computational cost. In addition, FOSM results can be used to

obtain approximate probability distributions of response quantities of interest as function

of a single random parameters which are in reasonable agreement (in the low-to-moderate

range of non-linearities in the response) with the corresponding distributions obtained

through direct simulation at a much higher computational cost. For high non-linearities in

the structural system considered, agreement between FOSM and MCS results deteriorates

but qualitative information, such as importance ranking of the material parameters in
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influencing the response variability, can still be obtained. It is noteworthy that in cases

where non-convergence of the simulations occur before the failure threshold of the

response is reached, estimating of mean and variance of the response using MCS can lead

to some difficulties and is not uniquely defined.

It can be concluded that FOSM analysis provides a large amount of probabilistic infor-

mation at a very low computational cost and can provide satisfactory accuracy for proba-

bilistic analysis of structural and SFSI systems subjected to quasi-static pushover analysis,

provided that the level of non-linearities exhibited by the system considered are low-to-

moderate. For large non-linearities, FOSM can be used effectively to obtain qualitative

information on the importance ranking of modeling parameters on the system response.

5.5   APPENDIX A

The problem of finding the optimal point to which linearize the (scalar) response func-

tion r for obtaining the best estimate of the mean response can be formulated as follows

(A 1)

The objective function  can be written as follows

(A 2)

Imposing the first order optimality conditions, we obtain

min r �0( ) r�∇
� �0=

� �0–( ) r �( )–+[ ]p� �( ) �d
�
∫

subject to:  �0 �   p� �( ) �d
�
∫ 1=;∈

f �0( )

f �0( ) r �0( ) r�∇
� �0=

� �0–( ) r �( )–+[ ]p� �( ) �d
�
∫=

r �0( ) r�∇
� �0=

�� �0–( ) µr–+=
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(A 3)

which is always satisfied for .

f�0
∇ �0( ) r�0

∇ �0( ) r�∇
� �0=

( )�0
∇ �� �0–( ) r�∇

� �0=
–+=

Hr � �0=
�� �0–( ) 0= =

�0 ��=



 CHAPTER 6

RELIABILITY ANALYSIS FOR 
STRUCTURAL AND GEOTECHNICAL 

SYSTEMS

6.1   Introduction and Background

6.1.1   Classical Time Invariant Reliability Analysis in Performance Based 
Engineering

Recently, structural reliability methods have been employed in performance-based

engineering (PBE) as a powerful tool to estimate the probability for various failure events.

“Performance” herein in general denotes the structural response such as first floor drift,

the maximum stress or strain in a column, due to design or earthquake loads. 

During an earthquake, the structural system usually reaches the nonlinear state before

the soil structure systems fails. Typically the nonlinear response can not be obtained as a

closed-form solution. Furthermore it is not possible to predict the soil behavior without

considering its strong nonlinear nature. The nonlinear FEM is a powerful tool to simulate

these nonlinear responses. (Zienkiewicz and Taylor 2000, Hughes 1987, Bathe 1996,

Cook et al. 1989). The merging of advanced reliability methods with the state of the art

Finite Element Method leads to “Finite Element Reliability Methods“. (Haukaas and Der

Kiureghian 2003).
396
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Random variable distribution and correlation coefficient matrix.

In Finite Element Reliability Methods, one important task is to measure the uncertain-

ties in the FE model by defining random variables. The vector of basic random variables

(RVs) are defined to characterize the state of the computation, e.g.,

loads and environmental actions, material properties, geometric properties, boundary con-

ditions, model uncertainty parameters. 

Every random variable θ has a probability distribution function fθ (or marginal pdf,

e.g. normal, lognormal, beta distribution, etc.). The relationship between two random vari-

ables θi and θj is specified by the correlation coefficient ρij, , with a value between -1 and

1. ρij is defined as 

(6.1)

where the covariance of θi and θj is defined as,

(6.2)

Here E[ ] is the expectation,  is the mean of . 

The variance of  is 

(6.3)

� θ1 θ2 ... θn, , ,[ ]=

ρij
cov θi θj,[ ]

var θi[ ]var θj[ ]
-----------------------------------------=

cov θi θj,[ ] E θi µi–( ) θj µj–( )[ ]=

µi θi

θi

var θi[ ] E θi µi–( )2[ ] σθi
( )2= =
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And  is the standard deviation of . It is easy to shown that the covariance matrix

 , correlation coeffcient matrix , and

 are related by,

(6.4)

Performance function g(θ) and failure probability

In reliability analysis in PBE, the performance criteria are very important in describing the

failure of a structural or geotechnical system. Failure is generally defined as not meeting

performance criteria. To define the failure, a performance function is defined in terms of

engineering demand parameters, damage measures, or decision variables. The perfor-

mance function is also called the Limit state function (LSF). 

Performance functions (limit state functions) for structural components are commonly

denoted g(�), where � is the vector of basic random variables. The dependence of g(�) on

� is usually implicit through structural response quantities. The function g(�) must be a

continuous and differentiable function of �. The value of the performance function distin-

guishes the failure state from the safe state by:

(6.5)

A general form taken by performance functions is:

σθi
θi

Cθ cov θi θj,[ ]= Rθ ρij[ ]=

Dθ

σ1

σ2

.
.

σn

=

Cθ DθRθDθ=

g �( ) 0           safe domain>
g �( ) 0 limit state surface=
g �( ) 0        failure domain<
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g(�) = threshold - response quantity (6.6)

where the response quantity is computed from a finite element solution, which may

involve stresses, strains, displacements and accumulated damage, etc. 

In dynamic problems, it may be not very meaningful to define the performance func-

tions g(�) in terms of response quantities at an individual time point during the process.

Rather, the mean out-crossing rate may be of interest, or accumulated response/damage

measures may be employed. This will be described in detail later.

In structural reliability analysis, a primary concern is to estimate the failure probability

in order to achieve the pre-defined performance. In a component reliability problem, the

failure probability is,

(6.7)

where g(�) is the performance function and f(�) is the joint PDF of �. As shown in Figure

6.1, the integration of the darker area is the failure probability.

Pf f �( ) �d
g �( ) 0≤

∫=
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Estimation of the failure probability is a component reliability problem. However, fail-

ure according to one performance criterion may not constitute failure of an entire struc-

tural system. It is therefore of interest to define so called system reliability problems by

sets of components and rules as to which combinations of component failures constitutes

system failure. This is not the focus of this dissertation.

FORM, SORM and simulation techniques

The closed-form solution of Equation (6.7) is not available except for in a few special

cases. To get the failure probability in Equation (6.7), several methods have been devel-

oped. These methods include the first order reliability method (FORM), second order reli-

ability method (SORM), and sampling methods, including Monte Carlo simulation(MCS),

Importance sampling (IS) method, Subset simulation method, etc. 

θ1

( )g 0=θ

( )g 0 :   Failure domain<θ

( )g 0:  Safe domain>θ

θ2
pF

Contour lines of fΘ(θ)

Figure 6.1 Failure probability in 2 random variable case
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In general, the number of random variables is large, at least a few dozen, and the crude

MCS is not feasible due to the high computational cost of the limit state function evalua-

tion. This makes methods such as FORM, SORM and IS attractive. While these methods

are based on the so-called design point, which is defined as the closest point on the limit

state surface to the origin in the standard normal space. The design point is denoted as u*,

while the unit vector in the direction from origin to u* is the design point direction as

shown in Figure 6.2. 

The standard normal space (U space) is used to simplify the integration of Equation

(6.7). As shown in Figure 6.2, in the original physical space, the joint pdf f�(�) is irregular

as are the contour lines. Through a probability transformation, the irregular joint pdf is

mapped into standard normal space, where the joint pdf  decays exponentially in

θ1

contour lines of fΘ(θ)

( )g 0=θ

*θ

( )g 0<θ

( )g 0>θ

θ2 Standard Normal Space

( )U = T Θ

( )-1Θ = T U

( ){ }
F

g   0

p f ( ) d
≤

= ∫ Θ
θ

θ θ
( ){ }

F
G   0

p ( ) d
≤

= φ∫ U
u

u u

• First-order estimate of the reliability index:
• First-order estimate of probability of failure: ( )

1F FORMp = βΦ −

Physical/Original Space

β FO
RM

u1

u2

FORM

SORM

contour lines of φU(u)

( )G 0=u

*u

Region of most
contribution to pF

α̂ Design Point

( )G 0<u

( )G 0>u

Probability Transformation:

*
FORMβ = u

Figure 6.2 FORM and SORM methods

φU u( )
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the outward radial direction (Figure 6.3). The limit state function (LSF) in the standard

normal space is expressed as,

(6.8)

The integration Equation (6.7) then becomes,

(6.9)

In the standard normal space, the closest point u* to the origin is extremely important

because the greatest contribution to the failure probability is due to the dark region shown

in Figure 6.2. If the limit state surface (LSS) in the standard normal space G(u)=0 is

approximated by its linearized plane at point u* (the dashed blue line in Figure 6.2 repre-

sents the plane), then the first order estimate of the failure probability is computed by inte-

gration the Equation (6.9) along the plane as,

(6.10)

where β is defined as the first order estimation of the reliability index:

(6.11)

This method is also referred to as the first order reliability method (FORM). 

If the limit state surface (LSS) in the standard normal space is highly nonlinear,

FORM may be inaccurate. In this case the second order estimate of the failure probability

may be employed, which considers two independent contributions from the LSS, one lin-

ear and the other quadratic, in the U-space (Fiessler et. al., 1979, Madsen et al., 1986.).

The second order polynomial fit at point u* is represented by the dashed red line in Figure

G u( ) g � u( )( )=

Pf φ u( ) ud
G u( ) 0≤

∫=

Pf Φ β–( )=

β u*=
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6.2. The failure probability is computed by integration of Equation (6.9) along the surface.

This method is referred to as the second order reliability method (SORM).

Joint distribution model and probability transformation

Taking advantage of the information of the marginal distributions and the correlation

structures of the random variables, several models can be used to obtain the joint pdf in

standard normal space, including Rosenblatt, Nataf, Hermite, or Morgenstern etc. (see Liu

and Der Kiureghian 1986, Haukaas 2001). The Nataf model allows a relatively wide range

of correlation values, depending on the distribution type. The Nataf model is used in this

dissertation. 

-4 -2 0 2 4
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4
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u

u u

• One-to-one mapping/transformation between 

the physical space and the standard normal space

• Isoprobabilistic transformation

• Rosenblatt, Nataf, Hermite
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U = T

-1
= T U

Figure 6.3 Probability transformation
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In the Nataf model, the joint distributions are completely defined by specifying the

marginal distributions and the correlation structures of the random variables. The joint

normal distribution  obtained by the marginal pdf  and correlation coefficient

matrix  is,

(6.12)

where  is a n-dimensional joint pdf of variables with zero mean, unit variance

and correlation coefficient matrix ,  is the standard normal pdf, and

 is the one-to-one mapping of RV θi with any pdf to RV zi with stan-

dard normal distribution.  and  denote the cumulative distribution

function (cdf) of variables with any distribution  and standard normal pdf .

Here  , while  and  are related by,

(6.13)

 is a bi-variate normal pdf with zero means, unit variances, and correla-

tion coefficient . By iteration,  can be solved for in terms of given values of .

(Conte, reliability notes)

Design point search algorithm 
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In structural reliability analysis methods based on design point(s), like FORM, SORM,

and IS, one crucial step is in finding the design point(s). An efficient and robust design

point searching algorithm is very important. The design point searching process is also a

minimum searching process, because the design point u* is the point on the limit state sur-

face that has the closest distance from the origin in the standard normal space.

(6.14)

Several methods exist to obtain the design point(s). The so called HLRF algorithm

originally developed by Hasofer and Lind (1974) and later extended to non-normal ran-

dom variables by Rackwitz and Fiessler (1978) is a very popular method. In this method

the design point is obtained by an iterative process. The updating rule for the ith iteration

is,

(6.15)

where . 

During each iteration, the LSF G(u) is computed by Equation (6.8). i.e., 

(6.16)

where T is the probability transformation from original physical space to U space.

Thus,

(6.17)

u*=
min  12

---uTu

s.t. G u( ) 0=⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

ui 1+ �i ui
G ui( )

G ui( )u∇
---------------------------+⋅ �i=

�i
G ui( )u∇
G ui( )u∇

-----------------------–=

G u( ) g � u( )( ) g T 1– u( )( )= =

G u( )u∇ g �( )θ∇ Ju �,
1–⋅=
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where  is the inverse of Jacobi matrix . This gradient is obtained from the sen-

sitivity algorithm mentioned in previous chapters. Accurate and efficient computation of

the gradient by using DDM is essential.

The value of the LSF must be computed in the original physical space as in Equation

(6.16), while the gradient  is obtained by Equation (6.17), which depends on val-

ues  in the physical space. Thus the new obtained must be transformed back

into the physical space by the probability transformation during each iteration. This back

and forth transformation is shown in Figure 6.4. 

Other methods to find the design point include Gradient Projection algorithm,,

Sequential Quadratic Programming (SQP), Augmented Lagrangian Method, Gradient Pro-

jection Method. etc.

In this chapter, a general purpose optimization tool box SNOPT (Sparse Nonlinear

Optimization) is implemented into OpenSees for design point searching purposes.

Ju �,
1– du

d�
------

G u( )u∇

g �( )θ∇ ui
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6.2   SNOPT Based Design Point Search Algorithm 

SNOPT is a software package developed by Philip Gill, Walter Murray and Michael

Saunders (http://cam.ucsd.edu/~peg/; Gill 2005) for solving large-scale optimization prob-

lems (linear and nonlinear programs).

SNOPT is an efficient software toolbox for solving optimization problems with

smooth nonlinear functions in the objective and constraints. Compared with other Sequen-

tial Quadratic Programming (SQP) algorithms, SNOPT provides a number of desirable

features for civil engineering applications (e.g., structural reliability problems, optimiza-

tion problems in model updating, etc.). These features include:

(1) Applicability for large scale problems. 

( )U = T Θ

( )-1Θ = T U

θ1

θ2

θ*

( )g 0<θ

( )g 0>θ

2θ
1θ

3θ

( )g 0=θ

u1

u2

FORM

SORM

( )G = 0u

*u

α̂

1u
2u

3u

Figure 6.4 Design point search algorithm
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In contrast to general SQP methods using a full transformed Hessian of the

Lagrangian, SNOPT exploits sparsity in the constraint Jacobian and uses a limited mem-

ory quasi-Newton method. The QP subproblems are solved efficiently using an advanced

‘inertia-controlling reduced-Hessian active-set method’(Gill 2005) that allows for vari-

ables appearing linearly in the objective and constraint functions. These are a few of the

many features that make SNOPT suitable for solving large scale problems with many

thousands of constraints and variables, and a moderate number of degrees of freedom

(thousands of degree of freedom, dof = number of variables - number of constraints).

On large problems, SNOPT is most efficient if only some of the variables enter nonlin-

early, or there are relatively few degrees of freedom at a solution (i.e., many constraints

are active). 

(2) Economical computation. 

SNOPT uses techniques like early termination of the QP subproblems, and requires

relatively few evaluations of the problem functions. Hence it is especially effective if the

objective or constraint functions (and their gradients) are expensive to evaluate. In reli-

ability problems, SNOPT requires relatively few evaluations of the limit state functions.

Considering the high cost of evaluating the limit state function, SNOPT is especially

effective and suitable for design point searching problems. 

(3) Tolerance of discontinuities in the function gradients. 

When computing the gradient of the LSF, discontinuities are inevitable when the mate-

rial model is nonsmooth, or when the integration time step is large. For SNOPT, these dis-
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continuities in the function gradients can often be tolerated if they are not too close to an

optimum. This feature of SNOPT makes the design point searching algorithm very robust.

(4) Flexible options help customize SNOPT for design point searching problems.

SNOPT has many options that make the toolbox easily customizable for special prob-

lems like design point searching. These options include: whether sensitivity results need to

be verified by Finite Difference Method (FDM), the perturbation size in FDM. The Basis

file may be backed up as a safeguard against losing the results of a long run. Many toler-

ance selections such as the major feasibility tolerance setting for target nonlinear con-

straint violations, major optimality tolerance for target complementarity gap, the Minor

feasibility tolerance for satisfying the QP bounds. These features are very useful for com-

plicated problems like structural reliability problems. 

6.2.1   Integration of SNOPT into OpenSees as Reliability Tool

OpenSees is an Object Oriented Finite Element software developed using the C++ lan-

guage. In the existing reliability framework in OpenSees, several classes are defined for

the purpose of finding design point(s) as shown in the red box in Figure 6.5. 
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In Figure 6.5, there are several existing classes in OpenSees cooperating to perform

the reliability analyses, such as FORM and SORM analysis (Haukaas 2001). In this chap-

ter, a new class called SNOPT is created to wrap the SNOPT tool box as shown in Figure

6.6. This SNOPT class inherits the class FindDesignPoint, and implements the same inter-

faces of FindDesignPoint by calling the Fortran function inside the SNOPT tool box.

SNOPT has its own sub-routines which have the same function as the four classes in

OpenSees mentioned in Figure 6.5 (i.e., SearchDirection, MeritFunctionCheck, StepSiz-

eRule, ConvergenceCheck). Thus it is unecessary for the user to create objects for these

classes.

FORMAnalysisFORMAnalysis

SORMAnalysisSORMAnalysis

SamplingAnalysisSamplingAnalysis

FOSMAnalysisFOSMAnalysis

SystemsAnalysisSystemsAnalysis

OutCrossingAnalysisOutCrossingAnalysis

VisualizationAnalysisVisualizationAnalysis
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Figure 6.5 Linking of SNOPT with OpenSees as Reliability Analysis Tool

The five classes are replaced by SNOPT tool box
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Following are the functions of these classes: 

1, SearchDirection.

The SearchDirection class determines a direction that the searching process should

take at each searching step. 

In SNOPT, search directions are obtained from QP subproblems that minimize a qua-

dratic model of the Lagrangian function subject to linearized constraints. 

In SNOPT, an augmented Lagrangian function is taken as,

(6.18)

where u is the variable,  is a multiplier estimate and  is a nonnegative penalty parame-

ter,  is the objective function taken as  in reliability problems,  are

MeritFunctionCheckMeritFunctionCheck

FindDesignPointFindDesignPoint

SearchDirectionSearchDirection StepSizeRuleStepSizeRule

ConvergenceCheckConvergenceCheck

SNOPT

……

(new optimization tools)

Figure 6.6 Wrap of SNOPT tool box as a design point searching tool

L u � ρ, ,( ) f u( ) �
Tc u( )– ρ

2
---c u( )Tc u( )+=

λ ρ

f u( ) f u( ) 1
2
---uTu= c u( )



412
constraints here taken as the LSF .  and  may be adjusted automatically by

SNOPT. 

An augmented Lagrangian merit function should be reduced at each step along direc-

tions that ensure convergence from the starting point.

2, MeritFunctionCheck

This class evaluates the augmented Lagrangian merit function at each searching step,

then determines whether a selected step size is acceptable. 

3, ConvergenceCheck

This class checks at each step whether the new point satisfies the minimum condition

and constraint functions. If the answer is ‘yes’, it will terminate the searching process. 

4, StepSizeRule

This class obtains a step size in the line search along a search direction. SNOPT has its

own rule to control the steplength (Gill 2004). The user is allowed to select the limit of the

change in u during a line search.

It is worthy mentioning that this interface is very flexible and user-friendly. The tcl

commands used in OpenSees are the same as before except (1) the user does not need to

create these four objects; (2) the user needs to specify the type of findDesignPoint to

‘SNOPT’. SNOPT based design point(s) searching is very flexible due to the various

choices offered to the user by SNOPT as mentioned above.

G u( ) λ ρ
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6.3   Sampling Analysis 

As mentioned above, one major goal in structural reliability analysis is to estimate the

failure probability for a given performance function. i.e.,

(6.19)

where Pf is the probability of failure, � is the random variable vector use to indicate

the uncertainties of the structure, g(�) is the limit state function, f(�) is the joint pdf of �.

This definition can be further expressed as, 

(6.20)

where I(�) is the indicator function, which is defined as,

(6.21)

The closed-form solution of (6.19) is not easy to obtain unless the format of g(�) is

simple (e.g., linear elastic case). One solution to this problem is using Monte Carlo Simu-

lation (MCS), a technique for sampling a probability density function based on computer

generated random numbers. 

6.3.1   Zero-One Indicator-Based Monte Carlo Simulation, or Crude Monte Carlo 
Method

In this method, the sampling distribution is centered at the mean point. By performing

N-times simulations of the vector � with the pdf f(�), and the failure probability is

obtained by,

Pf f �( ) �d
g �( ) 0≤

∫=

Pf f �( ) �d
g �( ) 0≤

∫ I �( ) f⋅ �( ) �d
�
∫ E I �( )[ ]= = =

I �( ) 0 The system is safe, or g �( ) 0>
1 The systems fails, or g �( ) 0 ≤⎩

⎨
⎧

=
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(6.22)

where 

The variance of the Pf can be computed by, 

(6.23)

And so the coefficient of variation is,

(6.24)

In reliability problems, since failure events often occur in the tail regions of probabil-

ity distributions, a large number of samples may be required in order to obtain good failure

probability estimates. The number of MCS needed is computed as,

(6.25)

According to this estimation, if c.o.v. = 0.10, N is about 100/Pf . For example, if Pf =

1.0e-4, then the MCS needed is about 1.0e6. The computational cost for the large number

of evaluations of the performance function may be too high or even inacceptable, thus it is

necessary to develop new techniques instead of the crude MCS.

6.3.2   Importance Sampling Method (IS)

One technique to improve the simulation efficiency is to bias the choice of the random

vectors by using a designed sampling distribution h(�), called the importance sampling

Pf
1
N
---- pi

i 1=

N

∑=

pi I �( )=

var Pf[ ] E Pf E Pf[ ]–( )2[ ]
Pf 1 Pf–( )⋅

N
----------------------------= =

c.o.v. Pf[ ]
Pf 1 Pf–( )⋅

N
---------------------------- Pf⁄

1 Pf–( )
N P⋅ f

-------------------= =

N
1 Pf–

Pf
-------------- 1

c.o.v. Pf[ ]( )2
--------------------------------⋅= 1

Pf
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c.o.v. Pf[ ]( )2
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distribution, which has a greater portion of the pdf than the actual pdf f(�) in the failure

domain (i.e., the region  ). Then,

(6.26)

In this chapter, the h(�) is selected to be a Gauss distribution centered at the design

point, see Figure 6.7.

g �( ) 0≤

Pf I
x
∫ �( ) f �( )
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Figure 6.7 The importance sampling distribution h(x) is such that it emphasises
a sub-part of the failure region in which f(�) is relatively small

G(x)<0
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The failure probability is computed as,

(6.27)

where 

The variance of the Pf can be computed by, 

(6.28)

while the coefficient of variation is,

(6.29)

This method could be combined together with FORM or SORM by selecting the cen-

ter of h(x) as the design point, which is the most likely failure point. 

In this dissertation, the Importance Sampling process is combined with the design

point to estimate the failure probability: (1) the sampling is performed in the standard nor-

mal space (U space) instead of the � space. In this case, everything is the same as

described in equations (6.26) to (6.29) except that the distribution of  is a standard

normal distribution. (2) the center of h(u) is taken as the design point u*. This is shown in

Figure 6.8.
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Figure 6.8 Importance sampling combined with the design point in standard
normal space
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6.3.3   Orthogonal Plane Sampling Method (OPS)

In this section, the direction of the design point is used as a guide for selecting the

sampling direction. 

After the design point  and its corresponding negative normal vector � is obtained

(i.e., using FORM or SORM). The orthogonal plane is defined as the plane normal to �

u'n

u'n h u′n 1–( )=

u′n 1–

�

u∗

Sampling Space u′n 1–

u'1

u'2 G u( ) 0=

�
T u⋅ 0=

Figure 6.9 Sampling in the orthogonal plane

B
A

C

O

u*
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 and passing through the origin O. Let  be an orthonormal

transformation of a point u in the standard normal U space, such that the axis un' coincides

with �. Here an assumption is made that after this transformation, the limit-state surface

G(u')=0 can be written in the form of a single-valued function , which is

defined as the distance from the orthogonal plane to the limit state surface at the point u.

This assumption sometimes does not hold( i.e., when the limit state surface is spherically

shaped, there are two values satisfying ). However this assumption may

hold over a reasonable neighborhood of the design point (Koo 2003). For points far from

the design point (if the distance of this point to the orthogonal plane is more than ) in

the failure domain, the contribution of this point to the failure probability is very small

(less than ).

In the standard normal U space, for any sampling point , the first step is to project

the point  onto the orthogonal plane  to obtain the projection point .

The resulting distance from the orthogonal plane to the limit state surface  is computed

by solving G(u')=0 after which the failure probability can be computed as,

�
T u⋅ 0= u′ u'1 u, '2…u'n( )=

u'n h u′n 1–( )=

u'n h u′n 1–( )=

β 3+

Φ β 3+( )–[ ]

un

un �
T u⋅ 0= u′n 1–

u'n
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(6.30)

Where  denotes the expectation of the argument with respect to the distri-

bution of . Define the random quantity p as, 

(6.31)

In the orthogonal plane sampling method, the failure probability is computed as,

(6.32)

where pi is the ith sampling point as defined in Equation (6.31).

The variance of the Pf can be computed by, 

(6.33)

And so the coefficient of variation is,

(6.34)

In practice, the orthogonal plane sampling method has five steps as follows:
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1, in U space, simulate n-D standard normal vector .

2, project this point  onto the orthogonal plane  to get .

3, compute  by solving  by zerofinding algorithm.

4, compute  as shown in Equation (6.31). compute mean and

coefficient of variation of the failure probability as shown in Equation (6.32) and Equation

(6.34).

5, repeat step 1-4 untill the maximum number of the simulation is reached or the

designed coefficient of variation is satisfied.

The advantage of the orthogonal plane sampling method is that it is not necessary for the

design point to be very accurate, which saves steps in the design point searching process.

For each sampling point, the limit state function has to be evaluated repeatly in order to

get the point on the limit state surface. Thus, it is necessary to figure out an efficient zero-

finding algorithm for reducing the number of evaluations of the LSF. 

Trust region zero finding method.

This algorithm is designed especially for orthogonal plane sampling method. i.e., to

solve this problem:

(6.35)

Where x is a scalar value to be determined.

The properties of the orthogonal plane sampling analysis problem are: 

un

un �
T u⋅ 0= u′n 1–

h u′n 1–( ) G u'n u′, n 1–( ) 0=

p Φ h u′n 1–( )–[ ]=

G u'n u′, n 1–( ) G u′n 1– xu'n+( ) 0= =
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1) the limit state function should be evaluated as few times as possible. For this pur-

pose, the safeguarded zero-finding algorithm together with the secant method is employed

(Gill E. 2004) . Assume the trust region is [a,b], where G(a)>0 G(b)<0. The starting point

of the zerofinding algorithm is ‘a’. 

2) the starting trial point  (or lower bound) should be chosen as close as

possible to the (estimated) limit state surface. The starting point is selected as A in Figure

6.9; then if point A is already in the failure domain, point B is selected instead, which has

the distance β to the origin. If B is still within the failure domain, it means the design point

is a local minimum and is not the true design point, the design point should be re-evalu-

ated. 

3). If x is larger than , the random quantity p in Equation (6.31) is extremely

small and is negligible. No further zerofinding process is needed(e.g., if ,

). 

4.)If the trial point goes too far (i.e., x too big) into the failure domain such that finite

element code could diverge. The zerofinding algorithm will take this case same as the

structural failure case (i.e.,  ). 

The FE divergence is checked for every evaluation of the limit state function. In case

of FE divergence, the bisection method is used instead of the Newton method to continue

the zero point searching process. The lower bound a of the trust region is compared with

 each time it is changed, to make sure it’s ‘contribution’ to Pf is not negligible. This

could save a number of evaluations of the LSF as well as computational time. 

u′n 1– xu'n+

β 2+

β 3=

Φ β 2+( )–[ ] 2.87e 7–=

G u( ) 0≤

β 2+
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6.4   Application Examples of Time Invariant Reliability Analysis of 
SFSI System

In this section, the methodology mentioned above is implemented in OpenSees. An

example of a 2D SFSI application is presented to perform the time invariant reliability

analysis. 

6.4.1   2D SFSI Example

The first application example consists of a two-dimensional Soil-Foundation-Structure

Interaction (SFSI) system, a model of which is shown in Figure 6.10. The structure is a

two-story two-bay reinforced concrete frame with section properties given in Figure 6.10.

The foundations consist of reinforced concrete squat footings at the bottom of each col-

umn. The soil is a layered clay, with stiffness properties varying along the depth.
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The frame structure of this SFSI system is modeled by using displacement-based

Euler-Bernoulli frame elements with distributed plasticity, each with four Gauss-Legendre

integration points. Section stress resultants at the integration points are computed by dis-

cretizing the frame sections by layers. Foundation footings and soil layers are modeled

through isoparametric four-node quadrilateral finite elements with bilinear displacement

interpolation. The soil mesh is shown in Figure 6.10. The constitutive behavior of the steel

reinforcement is modeled by using a one-dimensional Menegotto-Pinto model (ref). The

concrete is modeled by using a smoothed popovics-saenz model. Different material

parameters are used for confined (core) and unconfined (cover) concrete in the columns.

The soil is modeled by using a pressure-independent multi-yield surface J2 plasticity

material model (Elgamal et al. 2003), specialized for plane strain analysis (Figure 6.10).

Different material parameters are used for each of the four layers considered. The material

parameters are considered as random variables. 

The soil under a condition of simple shear has its bottom nodes fixed and the corre-

sponding boundary nodes at same depth tied together (Figure 6.11). The node of the beam

(3 DOF) and the corresponding node on the foundation concrete block (2 DOF), at the

same location, are tied together in both the horizontal and vertical directions as shown in

Figure 6.11.
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 The two corresponding nodes are tied together

Figure 6.11 Boundary conditions and multipoint constraints

Soil

Column

Foundation concrete block

 Node on beam and node on soil are tied together
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In this analysis, after static application of the gravity loads, the structure is subjected to

a quasi-static pushover analysis, in which an upper triangular distribution of horizontal

forces is applied at the floor levels (see Figure 6.10). The total base shear force, Ptot =

1.5P. The maximum load P is considered a random variable. 

All material and load RVs have lognormal distributions and the probabilistic proper-

ties are shown in Tables 6.1 through 6.3. The correlation between RVs are shown in Table

6.4. 

Table 6.1   Probabilistic properties of structure material (all has lognormal 
distribution except for the ones without c.o.v., unit: kPa)

Concrete Steel

Mat 
Core Cover

Mat mean c.o.v.
mean c.o.v. mean c.o.v.

fc 3.447e4 0.2 2.758e4 0.2 E 2.1E8 0.033

fcu 2.572e4 0.2 1.0e3 - s 2.482e5 0.106

εc 0.005 0.2 0.002 0.2 b 0.02 0.2

ecu 0.02 0.2 0.012 0.2

Ec 2.785e7 - 2.491e7 -

Table 6.2   Probabilistic properties of soil material (all have lognormal 
distributions, unit: kPa )

layer mean c.o.v. layer mean c.o.v.

#1
(top)

G 54450 0.3 #3 G 61250 0.3

τmax 99.0 0.25 τmax 105.0 0.25
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Two kinds of limit state functions (LSF) are considered. One employs the criterion of

the first floor drift, 

(6.36)

#2 G 33800 0.3 #4
(bottom)

G 96800 0.3

τmax 78.0 0.25 τmax 132.0 0.25

Table 6.3   Probabilistic properties of load pattern ( 
lognormal distribution, unit: kN )

mean c.o.v.

Pmax 250.0 0.2

Table 6.4   Correlation between RVs)

RV RV correlation RV RV correlation

fc,core fc,cover 0.8 fcu,core fc,cover 0.64

εc,core εc,cover 0.8 G1 tmax,1 0.4

ecu,core εcu,cover 0.8 G2 tmax,2 0.4

εc,core εcu,core 0.8 G3 τmax,3 0.4

fc,core fcu,core 0.8 G4 τmax,4 0.4

εc,cover εcu,cover 0.8 τmax,1 tmax,2 0.4

εc,core εcu,cover 0.64 τmax,2 τmax,3 0.4

εcu,core εc,cover 0.64 τmax,3 τmax,4 0.4

Table 6.2   Probabilistic properties of soil material (all have lognormal 
distributions, unit: kPa )

layer mean c.o.v. layer mean c.o.v.

g1 ∆limit ∆1– ∆limit u2 u3–( )–= =
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The other considers the total structural displacement, where the  is taken as

2.5cm, 5.0cm, and 7.5 cm or approximately 2% of the height of the first floor. 

(6.37)

where the  is taken as 5.0cm, 7.5 cm, 10 cm, and 14.4 cm or 2% of the height of

the building. The design point obtained from a LSF is used as a ‘warm’ starting point’ for

the design point search of the subsequent LSF with higher criterion.

The design points, normalized by their means, of the two LSF are shown in Figures

6.12 and 6.13.

∆limit

g2 ulimit u1 u3–( )–=

ulimit
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These figures show that as the limit criterion increase, the design points evolved along

similar directions. (i.e., some RVs always increase while others always decrease). This

path is also marked out by arrows denoted as ‘evolution direction’ in Figures 6.12 and

6.13. This shows that the design points from lower criterion are very meaningful for the

design point search of higher criterion. A lower-criterion design point may serve as a

‘warm’ starting point for the design point search for a higher criterion. This searching

method is also called the ‘sequential design point searching method’ by author. 
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The responses of the first floor drift at the design points for the LSF g1 and g2 at vari-

ous  and  are shown in Figure 6.14, and Figure 6.15 respectively. It is obvious

that the system yields significantly at the design points.
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After obtaining the design points, IS and OPS analysis is performed based on the

design points. The results are reported in Tables 6.5 and 6.6 for the LLF defined by first

floor drift and total structure displacement, respectively. 
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Figure 6.15 Design points of  corresponding to various
criteria
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Table 6.5   Comparison of various methods for computing the Pf ( 
LSF:  )

 (cm) 5.0 7.5 10.0

FORM Pf 8.94e-2 8.19e-4 1.59e-4

Number of 
evaluations

19 18 18

MCS Pf 9.03e-2 5.00e-4 0

c.o.v. 0.032 0.447 -

Number of 
evaluations

10000 10000 10000

IS Pf 8.62e-2 8.27e-4 1.42e-4

c.o.v. 0.1 0.1 0.1

Number of 
evaluations

185 397 524

OPS Pf 8.85e-2 7.01e-4 1.05e-4

c.o.v. 0.1 0.1 0.1

Number of 
samplings

109 128 168

Number of 
evaluations

586 860 1454

g1 ∆limit ∆1–=

∆limit
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From this data it is observed that:

1, the failure probability is consistent for FORM, IS, OPS, and MCS except when the

MCS can not reach a small enough c.o.v. with acceptable computational cost.

2, Crude MCS is accurate but very expensive. When the failure criterion is set to be large

enough such that the failure becomes an event with extremely small probability, MCS is

not viable due to the computational cost.

Table 6.6   Comparison of various methods for computing the Pf ( 
LSF:  )

 (cm) 5.0 7.5 10.0 14.4

FORM Pf 1.07e-1 5.37e-3 8.10e-4 1.69e-4

Number of 
evaluations

10 10 12 18

MCS Pf 1.08e-1 5.7e-3 5.0e-4 0

c.o.v. 0.029 0.132 0.045 -

Number of 
evaluations

10000 10000 10000 10000

IS Pf 1.14e-1 5.17e-3 7.65e-4 1.53e-4

c.o.v. 0.1 0.1 0.1 0.1

Number of 
evaluations

155 307 404 506

OPS Pf 9.13e-2 4.94e-3 7.39e-4 1.27e-4

c.o.v. 0.1 0.1 0.1 0.1

Number of 
samplings

123 119 120 150

Number of 
evaluations

613 696 784 1270

g2 ulimit u1 u3–( )–=

ulimit
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3, FORM results are always reasonable and require a far less number of evaluations than

IS and OPS. However it is not guaranteed to be accurate, especially when the LSS is

highly nonlinear, as will be discussed in a later chapter.

4, IS is better than OPS in the sense that it requires fewer LSF evaluations. The results

from IS and OPS are nearly consistent.

6.5   Time Variant Reliability Analysis

6.5.1   Background

There are two types of failure caused by random vibrations. (1) First excursion failures

(or yield failures), which are defined as when the stochastic structural response ‘x(t)’ first

reaches an upper level . (2) Fatigue failures, which occur when the accumulated dam-

age due to several response cycles of small or moderate amplitudes reach a fixed total

limit as shown in Figure 6.16. In this dissertation only the first type of failure is studied.

The failure probability can be defined as,

(6.38)

One challenge is that the time and location of the maximum response itself is a random

variable and can not be specified a priori by the user. 

ζ+

Pf T( ) P min g x t( ) t,( )( ) 0≤[ ] 0 t T< <( )=
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Later it will be demonstrated that in practice a solution to this problem is to define a

limit state function at many time steps, and solve it as a series system reliability problem.

At each time step, the problem becomes a time invariant reliability problem and may be

solved by time invariant reliability methods such as FORM, SORM or sampling methods.

To compute the probability of failure at a specific time point t (i.e., , or

more generally, , where y(t) is an uncertain quantity), Rice gives a formula to esti-

mate the failure probability. 

F 0 t T
p (T) P[{min g(u(t, ), )} 0]

≤ ≤
= ≤θ θ

F(t,θ)F(t,θ)
u(t,θ)u(t,θ)Nonlinear inelastic system

(t, ) (t, ) ( (t, ), ) (t, )+ + =Mu θ Cu θ R u θ θ PF θ

Time-variant probability of failure:

0

gg(t) g f (g 0,g)dg
−∞

ν = =∫

Mean out-crossing rate (Rice formula, 1944):

Upper-bound for time-variant probability of failure:
T

F
n 1 n 10

p (T) P[N(T) n] (t)dt E[N(T)] nP[N(T) n]
∞ ∞

= =

= = ≤ ν = = =∑ ∑∫

ggf (g,g) :  joint probability distribution of g and g

N(T): number of out-crossings in the interval of time [0,T]

g > 0

g < 0

Out-crossing events

θ1

θ2

g(u(θ),θ) = 0
g > 0

g < 0

Out-crossing eventsOut-crossing events

θ1

θ2

g(u(θ),θ) = 0

Figure 6.16 Mean upcrossing rate analysis

g x t( )( ) 0<( )

y t( ) ζ>
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6.5.2   Rice’s Formula

Define  as the probability corresponding to the out crossing level  in (t,

t+dt). Then, 

(6.39)

where  and  are two random variables at a fixed time t. 

As shown in Figure 6.18, 

(6.40)

t

y

T0

ζ+

Figure 6.17 The first excursion failure event

P ζ+ t,[ ] ζ+

P ζ+ t,[ ] P y t( ) ζ<( ) y t( ) y· t( )dt+ ζ>( ) y· t( ) 0>( )∩ ∩[ ]=
P ζ y· t( )dt– y< t( ) ζ<[ ]=

y t( ) y· t( )

P ζ+ t,[ ] fxx· y y· t, ,( )
ζ y· t( )dt–

ζ

∫ yd y·d
0

∞

∫=



439
Using the mean value theorem, and considering the time dt as infinitesimally small, 

(6.41)

From Equation (6.40) and (6.41), 

(6.42)

Let  be the number of outcrossings of level  in (t, t+dt). Define the

mean outcrossing rate of level  at time t as, 

y·

y·dt

y

Figure 6.18 The contour of fyy· y y· t, ,( )

fyy· y y· t, ,( )
ζ y· t( )dt–

ζ

∫ xd fyy· ζ y· t, ,( )y·dt=

P ζ+ t,[ ] dt fyy· ζ y· t, ,( )y· y·d
0

∞

∫=

dN ζ+ t t dt+, ,( ) ζ+

ζ+
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(6.43)

Then 

(6.44)

Since the higher order terms of the failure probability

can be ignored compared with the first order

. From Equations (6.42) to (6.44), consider the sign of x(t),

(Rice, 1945)

(6.45)

The mean outcrossing (upcrossing) rate can be a very good upper bound for the proba-

bility of failure as shown below:

(6.46)

since the events (n crossings) are mutually exclusive events. 

And, from Equation (6.44), 

ν ζ+ t,( ) E dN
dt
-------=

E dN[ ] 0 P 0 outcrossing in t t dt+,( )[ ]×=
1 P 1 outcrossing in t t dt+,( )[ ]×+
2+ P 2 outcrossing in t t dt+,( )[ ]× .+
P 1 outcrossing in t t dt+,( )[ ]≈

P 2 or more outcrossing in (t,t+dt)[ ]

P 1 outcrossing in (t,t+dt)[ ]

ν ζ+ t,( ) fyy· ζ y· t, ,( ) y· y·d
0

∞

∫=

P Failure in t1 t2,( )[ ] P 1 crossing 2 crossings 3 crossings ...∪ ∪[ ]=

P n crossings[ ]
n 1=

∞

∑=
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(6.47)

From Euqation (6.46) and (6.47)

(6.48)

This is a very good upper bound when the failure probability is small. In this case,

term n=1 dominates the whole failure probability. Reference (Bolotin, 1967)

6.5.3   Estimation of Mean Out Crossing Rate

The rate of out crossing of x(t) into a component domain of failure per unit time is

. Based on the Rice equation (6.45), the mean value of the out-

crossing rate is

(6.49)

where  is the joint probability density function of the limit state function 

at time t. This joint density function is extremely difficult or nearly impossible to obtain

for a general nonlinear inelastic system. Alternatively, the mean out crossing rate can be

computed from the limit formula (Hagen, O., 1991). 

E N ζ+ t1 t2, ,( )[ ] ν ζ+ t,( ) td
t1

t2

∫=

0 P 0 upcrossing in t1 t2,( )[ ]×=

1 P 1 upcrossing in t1 t2,( )[ ]×+

2+ P 2 upcrossing in t1 t2,( )[ ]× ...+

P  Failure in t1 t2,( )[ ] ν ζ+ t,( ) td
t1

t2

∫≤

D g x t( ) x· t( ),[ ] 0≤{ }=

ν t( ) g· fgg· 0 g· t, ,( ) g·d
∞–

0

∫–=

fgg· g x t( ) x· t( ),[ ]
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(6.50)

where  and . This equation is under-

stood as one or more outcrossing events having happened during the time . In

practice, equation (6.50) is solved using a perturbation method, i.e., 

 for small (6.51)

To get an accurate result, the perturbation  must be small enough. However, the two

events  and  are occur nearly at the same time (only  apart from

each other) and with opposite inequality signs. If we use too small a , the correlation

coefficient between the two linearized events approaches -1, causing a singularity in solv-

ing the , and a loss in accuracy. In practice, 

may be a good enough choice. where  is the interval used to discretize the excitation.

(Heonsang koo, 2003)

6.5.4   FORM Approximation of the Mean Upcrossing Rate and Failure Probability

To solve the in equation (6.51),the first order reliability

method (FORM) is employed for computing the mean upcrossing rate. As shown in Fig-

ure 6.19, the mean up-crossing rate is represented by the shaded area. The two design

ν t( ) lim
δt 0→

P g1 x( ) 0 g2 x( ) 0<∩>
⎩ ⎭
⎨ ⎬
⎧ ⎫

δt
----------------------------------------------------------------

=

g1 x( ) G x θ t,( )[ ]= g2 x( ) G x θ t δt+,( )[ ]=

t t δt+,[ ]

ν t( ) P g1 x( ) 0 g2 x( ) 0<∩>[ ]

δt
--------------------------------------------------------------

≈ δt

δt

g1 x( ) 0> g2 x( ) 0< δt

δt

P g1 x( ) 0 g2 x( ) 0<∩>[ ] δt ∆t
10
------ ∆t

100
---------∼=

∆t

P g1 x( ) 0 g2 x( ) 0<∩>[ ]
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points at time t and  are  and , with design point directions  and . In the

FORM approximation, the two limit state surfaces linearized at design points  and ,

are  and . The real upcrossing rate is then approxi-

mated by the area between these two planes as shown in Figure 6.19.

t δt+ u1
* u2

*
�1 �2

u1
* u2

*

h1( )Linearized 0= h2( )Linearized 0=

Figure 6.19 Failure domain of the parallel system for computing the mean
out-crossing rate 

G1 u( ) 0 G1 u( ) 0≤∩>

FORM Approximation

u1
*

u2
*

G1 u( ) 0=

G2 u( ) 0=
h1( )Linearized 0=

h2( )Linearized 0=

ui

ui 1+

θ cos 1–
�1 �2⋅( )=
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The probability content in the failure domain defined by the intersection of the two lin-

earized limit state surfaces is given by (Madsen, 1986)

(6.52)

where  is the correlation coefficient between the two linearized failure

modes, and  is the bi-variate normal joint PDF with zero means, unit vari-

ances and correlation coefficient , i.e.,

(6.53)

In practice,  and . Writing a first order

approximation for 

(6.54)

In order to obtain the design points on these two limit state surfaces, the gradients

 and  are required and are computed by using the chain rule:

(6.55)

(6.56)

For the simplest limit state function,

P Φ β1–( )Φ β2–( ) φ2 β1 β2 ρ,–,–( ) ρd
0

ρ12

∫+≈

ρ12 �1 �⋅ 2=

φ2 β1 β2 ρ,–,–( )

ρ

φ2 β1 β2 ρ,–,–( ) 1
2π 1 ρ2–( )
--------------------------

β1
2 β2

2 2ρβ1β2–+

2 1 ρ2–( )
------------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

g1 x( ) G x θ t,( )[ ]= g2 x( ) G x θ t δt+,( )[ ]=

g2 x( )

g2 x( ) G x θ t,( )[ ] ∇xG x θ t,( )[ ]x· x t,( )δt+≈

g1 x( )∂
θ∂

----------------
g2 x( )∂

θ∂
----------------

g1 x( )∂
θ∂

---------------- G x θ t,( )( )∂
x∂

---------------------------- x∂
θ∂

------⋅=

g2 x( )∂
θ∂

---------------- G x θ t,( )( )∂
x∂

---------------------------- x∂
θ∂

------⋅
∇∂ xG x θ t,( )[ ]

θ∂
-----------------------------------x· x t,( )δt ∇xG x θ t,( )[ ] x·∂ x t,( )

θ∂
------------------δt++=
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, , then equation (6.56) becomes,

(6.57)

otherwise, the following equation is used to compute 

(6.58)

However, as mentioned before, the high correlation between g1 and g2 (or,

) and the fact  will cause the  in Equation

(6.53) to be almost singular, thus the integration in Equation (6.52) requires the two design

points to be very accurate. In the real SFSI problem, this requirement is very difficult to

meet. 

Koo’s Equation

Considering the close relation of the two limit state functions 

and , the problem can be solved in a more simple alternative

manner. The second limit state function (LSF)  is almost identical to the first one

, however the second LSF has a very small time shift . After the design point

excitation of the first component is found, f1(t), we can approximate the second design

point excitation by shifting the first design point by the small time increment . i.e.

. This is the case for the stationary excitation since the design point

G x θ t,( )[ ] xlimit xi θ t,( )–=
∇∂ xG x θ t,( )[ ]

θ∂
----------------------------------- 0=

g2 x( )∂
θ∂

---------------- G x θ t,( )( )∂
x∂

---------------------------- x∂
θ∂

------⋅ ∇xG x θ t,( )[ ] x·∂ x t,( )
θ∂

------------------δt+=

∇∂ xG x θ t,( )[ ]
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excitations at different time points have the same shape but are shifted by the time interval

 between these time points. For the non-stationary case, this equation also gives a good

approximation when time interval  is much smaller than the time scale of changes of the

probabilistic structure of the non stationary process. (Koo dissertation). Under this

assumption, the second reliability index is , and the second designpoint direction

�2 is obtained by shifting �1 in time by . Equation (6.53) can then be estimated directly

by: (Koo, H. 2003). 

(6.59)

where 

Compared with the method of separately obtaining the two design points for 

and , Koo’s equation (6.59) has several advantages: the design point is computed

only once cutting computational costs in half. Further more, the design point does not

need to be extremely accurate as required by the “two design points method”. 

The Koo’s equation are very useful in practical engineering problems, especially in

large scale SFSI problems. In SFSI problems, in order to save computational time, the tol-

erance of the convergence of FEM is usually set to be large ( e.g., for norm of incremental

displacement vector, the tolerance is usually set to be 1.0E-3 [m], for satisfying the engi-

neer’s requirement). Then the design point is not possible to be extremely accurate. Koo’s

equation is very powerful in these problems.

δt

δt

β1 β2≈

δt

φ2 β β ρ,–,–( ) 1
2π
------ β2

2
-----–⎝ ⎠

⎛ ⎞ sin 1– ρ( ) sin 1– 1–( )–[ ]exp≈

ρ �1 �⋅ 2=

g1 x( )

g2 x( )
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6.5.5   Discrete Representation of Stochastic Excitation

To solve structural random vibration problems, the input processes are represented in

terms of a finite number of random variables. In current stochastic models, general nonsta-

tionary stochastic processes Q(t) are typically expressed as,

(6.60)

where  is a deterministic time-varying mean function and parameter c2 is a determin-

istic constant. The sequence y1 y2 ... yN is a train of pulses in which each yi is defined as a

standard normal random variable at time point ti, and yi are equally spaced along the time

axis. This sequence y1 y2 ... yN represents the intermittent ruptures at the fault, and

approaches a Gaussian white noise process as the number N approaches infinity. qk(t) is

the kth deterministic modulating function, used to control the variance of the process along

the time axis. The deterministic filter function h(t-ti), generally selected as the unit

impulse response function with damping, can represent the ground medium through which

the wave travels. (Der Kiureghian 2000, Koo, H., 2003. Koo, H. and Der Kiureghian,

2003) .

Q t( ) µ t( ) c1 qk t( ) yikhk t ti–( )

i 1=

N

∑
k 1=

K

∑+=

µ t( )
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In this dissertation, the Gaussian white noise is employed to represent the earthquake

input. By selecting , ,  in Equation (6.60), Q(t) is

simplified to a Gaussian white noise with zero mean and standard deviation c1.

In practice, the integration time step of the Finite Element analysis is often shorter than

the time interval ∆t between two neighboring impulses. In this case, the linear interpola-

tion for discrete Gaussian white noise is employed. Assuming the random excitation pro-

cess varies linearly between the values yi (i=1,2,...) as shown in the figure 6.20.

∆t

t

Q(t)

∆t

t

Q(t)

y1 yi

Figure 6.20 Discrete representation of a white noise

µ t( ) 0= qk t( ) 1.0= hk t ti–( ) 1.0=



449
It can be shown that the standard deviation of the white noise, the time interval ∆t, and

the intensity  are related by, (Conte P., 1998)

(6.61)

6.6   Application Examples of Time variant Reliability Analysis of SFSI 
System

6.6.1   2D SFSI System

The example of a non-smooth model mentioned in section 4.6.1 is studied for the time

variant case. The natural frequency is approximately f=5.5 Hz. The properties of the SSI

system are considered to be determinant, while the only uncertainties are assumed in the

earthquake input. This stochastic excitation takes the simple form of white noise, i.e., an

impulse train  with constant time interval . The

system is initially at rest. The integration time step is taken as , and the

time increment used to evaluate the mean out-crossing rate is taken as .

The intensity of the white noise is . The system does not have Rayleigh

damping, however equivalent damping is observed by the strongly nonlinear plastic

behavior or the soil and structure systems. If assuming the damping ratio  of the SSI sys-

tem is between 10% and 20%, using Mile’s equation, the root mean square acceleration in

g's is:

φ0

σ2 t∆
2π

----------- φ0=

fiδ t ti–( )

0

n

∑ t∆ ti ti 1–– 0.02 sec= =

dt 0.005 sec=

δt 0.0001 sec=

φ0 0.0275=

ζ
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(6.62)

The performance function is defined as,

(6.63)

where  is the first floor drift.  is taken as 3.6 cm, which is 1% of the height of the

first floor. 

The mean upcrossing rate analysis is performed from a time t=0.5sec, to t = 3.0sec, at

 time increments. The design point at a time t is shifted along the time axis to

 and filled with zeros between . This shifted point is used as the ‘warm’ start-

ing point of the design point searching algorithm at . As will be shown later, the

shape of the design points at two sequential times are very similar except the values are

shifted along the time axis. This provides a proof that the shifted design point may serve as

a good ‘warm’ starting point for the design-point-searching at the next time point.

The FORM and OPS results are shown in Figure 6.21. From this figure, it is clear that

after 2.0 sec, the mean upcrossing rate obtained by both methods tend to be stable, while

FORM and OPS give significantly different mean upcrossing rates. This difference is due

to the fact that the LSS, close to the design point is highly non-linear, the FORM results

consider only the first order contribution of the mean upcrossing rate and thus are poten-

tially very inaccurate. 

The mean upcrossing rate obtained by FORM at point t=2.5 sec is higher than its

neighbors because at this point, the design point can not be obtained with the same accu-

racy (1.0e-5) as at other points, instead a relaxed criterion (1.0e-4) is used to obtain an

u··g
π
4ζ
------ f φ0⋅ ⋅ 0.7~1.1 g[ ]= =

g1 ∆limit ∆1–=

∆1 ∆limit

t∆ 0.5sec=

t t∆+ 0 t∆,( )

t t∆+
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approximate design point. As previously mentioned the OPS does not require a highly

accurate design point. As a result the design point at t=2.5 sec, while inaccurate, is still

acceptable.

A Crude MCS method is used to check the mean of the upcrossing events and the fail-

ure probability. The comparison results for the mean of the upcrossing events and the fail-

ure probability by different methods are shown in Figure 6.22. From these results, it is

clear that the OPS gives a much better approximation of the mean upcrossing events than

that obtained by FORM. 
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Figure 6.21 Comparison of the FORM approximation of the mean
upcrossing rate and OPS results
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The estimate of the mean upcrossing events and failure probability are reported in

Table 6.7. The OPS greatly improved the accuracy of the mean upcrossing events obtained

by FROM. For example, at time t=3.0 sec, the tolerance of OPS is 19.64%, while FORM

is 208%. 
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Figure 6.22 Mean upcrossing events and failure probability estimates
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The design points at different times are shown in Figure 6.23. It is observed that the

shape of the design points at two sequential times are very similar except the values are

shifted along the time axis. This provides a proof that the shifted design point may serve as

a ‘warm’ starting point for the design-point-searching at the next time point.

The responses of the first floor drift at design points are shown in Figure 6.24. 

Table 6.7   Comparison of mean upcrossing rate and mean upcrossing events 
obtained by using FORM, OPS and MCS

Time 
[sec]

Mean upcrossing 
rate Failure probability (%) Number of 

simulations

FORM OPS FORM OPS MCS OPS MCS

0.5 2.62e-2 1.57e-2 0.66 0.39 0.14 1631 2800

1.0 7.99e-2 5.56e-2 3.31 2.17 1.99 1809 2800

1.5 1.28e-1 5.37e-2 8.51 4.91 4.05 2398 2800

2.0 1.61e-1 6.47e-2 15.73 7.87 6.75 2300 2800

2.5 1.22e-1 7.34e-2 22.81 11.32 9.24 3058 2800

3.0 1.25e-1 6.57e-2 28.98 14.80 12.37 2800
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The local moment-curvature and stress-strain responses at Gauss points A and B (Fig-

ures 6.25) are shown in Figures 6.26 and 6.27. It is obvious that the system yields signifi-

cantly at the design points.
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Figure 6.25 Points where the local responses are recorded
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In nonlinear SSI systems time variant reliability analyses, the OPS combined with

design points provides a good estimate of the upper bound of the failure probability, which

is much more accurate than the FORM estimate. 

6.7   Multi-Dimensional Visualization in Principle Planes (MVPP)

In this chapter, a new visualization technique is provided to study the limit state sur-

face in standard normal space. One motivation for a new visualization technique comes

from the results that in the nonlinear case, the FORM approximation of the mean upcross-
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ing rate analysis is hardly accurate as previously mentioned. This suggests that the LSS at

the design point is highly nonlinear and cannnot be approximated by a plane. The LSS is

usually a surface in a multi-dimensional space. The dimension depends on the number of

random variables which could range from a few to several thousands. Knowledge of the

topology of the LSS is valuable in the following sense: (1) it aids in understanding the rea-

sons for potential divergence in the design point search process, and thus may suggest

ways to develop more robust and efficient design point search algorithms; (2) it may

explain the inaccuracies of the FORM/SORM approximations for time-invariant probabil-

ity of failure probability and mean out-crossing rate computations, leading to the develop-

ment of more efficient and accurate algorithms for these computations.

However, only limited studies may be found in the literature (Der Kiureghian 2000,

Haukaas and Der Kiureghian 2004), probably because of the difficulties encountered in

the study of the topology of the LSS in high-dimensional spaces. In this dissertation, a

new method is developed for the visualization of LSF or LSS in high-dimensional spaces,

denoted here as Multi-Dimentional Visualization in Principle Planes (MVPP), for both

time-invariant and time-variant finite element reliability analysis.

The basic idea of MVPP is to visualize the LSF (LSS is one contour of the LSF) at the

design point in each principal plane, which is defined by the DP direction u* and one of

the eigenvectors (or Principal Direction) of the normalized and reduced Hessian matrix A

defined as (see MB dissertation Chapter 11, Section 11.4):

(6.64)A
Hreduced

G
u∗u∇

----------------------=
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in which  is the reduced Hessian with dimension , defined as

 with i, j = 1, 2, ..., n-1; The rotation matrix R is such that the

DP direction is coincident with the last axis of the rotated coordinate system. H is the

 Hessian matrix of the LSF at the DP in the standard normal space, and 

denotes the Euclidean norm of the gradient of the LSF at the DP. It is worth noting that the

hessian matrix H exists only if the LSF is twice differentiable, which is the case when the

constitutive material models are smooth such that they are differentiable with respect to

the sensitivity parameters.

In each Principal plane, a grid is created and on each grid point the value of the LSF is

computed by FE simulations. The LSF is then visualized in the principal plane by using

the grid values. 

Obtaining the principal directions of the LSF is a crucial task in this MVPP method or

the new DP-RS-Sim method mentioned later. It is possible to compute these directions by

applying an existing algorithm (Der Kiureghian and De Stefano 1991) without computing

the Hessian matrix. However, these methods are not yet available for the SNOPT based

design point search algorithm. In this dissertation, the Hessian matrix H is computed by

combining the FFD with the DDM based sensitivity results. That is,

(6.65)

Hreduced n 1–( ) n 1–( )×

Hreduced[ ]ij R H R⋅ ⋅[ ]ij=

n n× G
u∗u∇

Hi j,

G∂
ui∂

-------∆

uj∆
-----------≈
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where the sensitivity of the LSF to u, , is obtained by DDM. Determining the principal

directions by using this method as shown in Equation 6.656.65 is expensive and consid-

ered only as a temporarily solution. More advanced algorithms need to be developed to

compute the principal directions. 

6.8   Design Point-Response Surface Method-Simulation (DP-RS-Sim) 
Technique

Knowledge obtained by MVPP about the the topology of the LSS near the DP(s) is

valuable for improving FORM’s approximation of the failure probability or mean upcross-

ing rate when accounting for nonlinearities in the LSF. It is observed that the LSS is highly

nonlinear and cannot be approximated by a plane in nonlinear FE reliability problems. In

this case the FORM/SORM approximations of nonlinear LSS(s) can be very inaccurate

and may be a major source of error in estimating time-invariant and time-variant failure

probabilities for structural systems exhibiting nonlinear behavior. 

A new hybrid reliability method, referred to as Design Point-Response Surface-Simu-

lation (DP-RS-Sim) method, is developed and implemented into OpenSees to solve the

general reliability problems. The DP-RS-Sim method combines three steps ( and thus

combines the strength of these three component/method): 

(1) the design point(s) search, 

(2) the RS method to approximate the LSF in a neighborhood around the DP, by an

analytical or polynomial form,

G∂
ui∂

-------
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(3) a simulation technique (Sim) used to evaluate the failure probability based on the

RS representation of the actual LSF. 

Steps (1) and (3) have previously been described while step (2) is developed in the fol-

lowing section. 

6.8.1   Response Surface Method 

In structural reliability analysis, the dimension of the LSS is usually between a few

dozen to many thousands. It is therefore difficult to fit the LSF in the original high dimen-

sional space. From the knowledge of the topology of the LSF obtained by MVPP, it is

observed that only a few (5-7 at most) of the principal curvatures of the LSF at the DP are

non-negligible, while the others are small enough that their nonlinear contributions may

be ignored. Thus, the response surface method developed herein considers the nonlinear-

ity only along the first several principal directions. Along all other directions the LSF is

approximated by a linear function. Therefore, it is assumed that the contributions to the

LSF along the first several principal directions of the LSF can be decoupled from those of

the remaining principal directions, along which the LSF can be linearized with little or

negligible loss of accuracy in representing the LSF. 

Decomposition of the hyperdimensional space

For any point u in the standard normal space, we may rewrite u as 

(6.66)u u1′ê1 u2′ê2 …uN′êN uN 1+ ′êN 1+ … uM′êM+ + ++ +=
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where M is the total number of the RVs, N is the number of principal axes along which

the LSS is considered nonlinear.  is the direction of the ith principal direction of the LSS

at the DP. Note that the DP direction is considered to be the first principal direction, while

other directions are defined according to the decreasing magnitude of the principal curva-

tures of the LSS at DP. M is usually much larger than N.  is the projection of u on 

and may be expressed as

. (6.67)

If a new local coordinate system Y’ is set up such that the new origin is at the DP ,

and each local axis Yi coincident with , then in the new system Y’, u may be expressed

as a vector consisting of nonlinear and linear parts in vector format:

(6.68)

where,

 and (6.69)

êi
ˆ

ui′ êi
ˆ

ui′ u êi⋅=

u*

êi

u
unon′

ulin′

u1′

:
uN′

----
uN 1+ ′

:
uM′

= =

M 1×

unon′
u1′

:
uN′

N 1×

= ulin′
uN 1+ ′

:
uM′

M N–( ) 1×

=
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are vectors in the subspace. In practice, these vectores are related to the corresponding

vectors in the original space as,

(6.70)

where 

(6.71)

and 

(6.72)

are vectors with dimension . N is the total number of RV, M is the number of non-

linear axes. The LSF G(u) is assumed to be expressed as,

(6.73)

in other words, the nonlinear part  and the linear part  are

assumed decoupled and thus are evaluated separately. 

6.8.2   Nonlinear Surface Fitting 

To fit the nonlinear part of the LSF , two general methods are used, i.e.,

Univariate Decomposition Method (UDM) and Bivariate Decomposition Method (BDM).

u
unon′

ulin′
unon ulin+= =

unon
unon′
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i N 1+=
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i N 1+=

M
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Gnon unon′( ) Glin ulin′( )

Gnon unon′( )



464
Considering a nonlinear function G(y) of the N-dimensional vector y = [y1 ... yN]T, the

UDM assumes the approximation , in which  is given by

(6.74)

where  is the DP, while the univariate component function is

. 

The BDM assumes the following approximation , in which  is

given by

(6.75)

where  is the

bivariate component function. 

It is assumed that the function evaluations  are available from FE simulations.

Using Lagrangian interpolation, each univariate component function is given by

(6.76)

G y( ) G̃1 y( )≅ G̃1 y( )
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G̃ y( ) Gi1 i2, yi1
yi2
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where nP is the number of function evaluations,  denotes the following shape func-

tion

(6.77)

In a similar way, the bivariate components is

(6.78)

where the coefficients  are given by

(6.79)

It is clear that a bivariate approximation first requires the development of the univari-

ate approximation.

6.8.3   Linear Part Estimate

The linear part of the LSF  is: 

(6.80)
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The contribution from the linear part  for the time invariant reliability

case, because the gradient of the LSS at design point  ( ) is oppo-

site to the DP direction, while the vector  does not have any compo-

nent in the DP direction (because the component in DP direction is counted in the

nonlinear part). However this does not hold for the second LSF in time variant reliability

analysis case. This will be explained later. 
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Figure 6.28 Response surface fitting method
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6.8.4   Estimation of Values on the Second LSF

For the time variant reliability analysis, the second LSS is approximated by the

response surface method. The DP is obtained by shifting a very small time shift  of the

first DP as mentioned in Koo’s equation in section 6.5.4. The value of G2 is computed by

Eq. (6.54), while the gradient  is assumed to have the same magnitude as

 yet with opposite direction as the second DP. The nonlinear contribution to the

second LSF is the same as that when evaluating the first LSF. For the linear part, the con-

tribution is finite and can not be ignored. To get the contribution of the linear part to G2,

following equation is used, 

(6.81)

The contribution from the linear part  is nonzero because the gradient of

the LSS at design point  ( ) is not normal to the vector

. 

6.8.5   The Fitting Process in OpenSees

As shown in Figure 6.28, the global coordinates are X-Y. On each grid plane, defined

by the vectors ( , ), a local coordinate system x-y is set up by setting DP as the new
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origin and translating the X-Y axes. In the local coordinate system x-y, every point on the

grid in the local coordinate system ( , ) is translated back into the global system as:

(6.82)

where  and  are the two axes expressed in the global system. Eq. (6.82) may be

further understood in the local coordinate system Y’, as described in Eq. (6.68) as,

(6.83)

Thus, From Eq. (6.73)

(6.84)

Thus, 

(6.85)

And so, 

(6.86)
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The prime here has the same meaning as in Eq. (6.69), i.e., with reduced dimension.

For the time invariant case, . 

6.8.6   FE Divergence Case

In practice, FE divergence is inevitable when the simulation point is far from a realis-

tic value. In this case a linear extrapolation algorithm is used to obtain the value of the

LSF by taking advantage of values at previous neighboring grid points (pre-values). In

other words,

(6.87)

where f is a linear extrapolation function. In some cases only one set of pre-values on

either the x or y axes are available. 

In this case the value of the LSF is extrapolated by only one set of values. If no pre-values

on the two axes are available, the user is requested to reset the region of the grid plane.

Because of the possibility of FE divergence and extrapolation, the LSF is evaluated in a

special sequence. The points on the axes are evaluated first, while the other points are

evaluated in a sequence such that those closer to the origin are evaluated first. This

approach ensures that the extrapolation is possible. 

6.8.7   Application Example

In this section, the 2D two story frame used as the superstructure in section 6.4 is stud-

ied to verify the newly developed MVPP and DP-RS-Sim methods. The structures are

Glin 0′( ) 0=

G xi yi,( )
f G xi 2–( ) G xi 1–( ),( ) f G yi 2–( ) G yi 1–( ),( )+[ ]

2.0
----------------------------------------------------------------------------------------------------------------=
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shown again in Figure 6.29. The material parameters are set as random variables and their

distribution properties are shown in Table 6.8. The LSF is set the same as before as,

(6.88)g 0.144  {roof displacement}–=
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Figure 6.29 2-D Frame model: geometry, section properties and material model
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After the DP is found, the hessian matrix is computed by using the forward finite dif-

ference (FFD) perturbation method combined with the DDM based sensitivities results.

The principal curvatures are then computed as shown in Table 6.9.

Table 6.8   Material properties

parameters distribution
mean

c.o.v.
core cover

concrete [kPa] lognormal 27579.0 34473.8 0.2

[kPa] lognormal 1000.0 25723.0 0.2

[kPa] lognormal 2.491e7 2.785e7 0.2

lognormal 0.002 0.005 0.2

lognormal 0.012 0.02 0.2

steel [kPa] lognormal 2.1e8 0.033

[kPa] beta 248200.0 0.106

lognormal 0.02 0.2

maximum 
distributed-
force

 [kN] lognormal 250 0.2

Table 6.9   Principal curvatures

Index of principal 
curvature curvature

1st -0.0414268

2nd -0.0239904

fc

fcu

Ec

εc

εcu

E

σy

b

P
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The visualization of the LSS at the DP in the first to fourth principal planes are shown

in Figures 6.30 through 6.37.

3rd -0.0122722

4th -0.0022057

5th and more absolute value < 0.001

Table 6.9   Principal curvatures

Index of principal 
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Figure 6.31 Contour of response surface at DP on the first principal plane
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Figure 6.33 Contour of response surface at DP on the second principal plane
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Figure 6.35 Contour of response surface at DP on the third principal plane
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DP-RS-Sim time invariant reliability analysis

After obtaining the design points, DP-RS-Sim time invariant analysis is performed by

using one to four principal directions as the nonlinear directions, and the failure probabil-

ity obtained is compared with those from FORM, SORM and IS analysis. The results are

reported in Tables 6.10. 

Figure 6.37 Contour of response surface at DP on the fourth principal plane
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From this data it is observed that:

Table 6.10   Comparison of various methods for computing the Pf 

Methodologies Pf c.o.v.

number 
of 

simulati
ons

number of 
simulations 
based on the 

fitted 
response 
surface

FORM 0.020305 - - -

SORM (1 curv.) 0.021574 - - -

SORM (all curv.) 0.022114 - - -

IS 0.022927 - 40830 -

DP-RS-Sim 
Univariate 
Decomposition 
method

one nonlinear 
direction

0.023507 0.01 16 22345

two nonlinear 
directions

0.023865 0.01 24 21451

three nonlinear 
directions

0.023956 0.01 32 19185

four nonlinear 
directions

0.023963 0.01 40 20915

DP-RS-Sim 
Bivariate 
Decomposition 
method

one nonlinear 
direction

0.0253316 0.005 80 70189

two nonlinear 
directions

0.0220717 0.005 240 84248

three nonlinear 
directions

0.0211082 0.005 480 91471

four nonlinear 
directions

0.022472 0.005 800 92019
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1, the failure probability obtained by FORM is 10% smaller than the real failure probabil-

ity obtained by IS. This may be undersood by the visualization results as shown in Figure

6.31. The curvature at the DP is negative, i.e., the LSS is concave with respect to the fail-

ure domain at DP. Thus the FORM estimation, that uses a plane tangent to the LSS at the

DP to approximate the failure probability, underestimates the failure probability. 

2, DP-RS-Sim is accurate and efficient in the sense that it obtains good resuls with much

fewer simulations in comparison to IS. Although it requires many simulations based on

the fitted response surface LSF, the computations are so cheap that the simulations may be

done in almost no time. 

3, In DP-RS-Sim Univariate decompositon analysis, as the number of principal directions

is increased (the LSF is considered nonlinear along these directions), the failure probabil-

ity increases, which is consistent with the fact that the first four principal curvatures are all

negative. While these are not observed in Bivariate decomposition analysis. 

6.8.8   Conclusion of DP-RS-Sim Method

In this section, a new visualization method MVPP is developed and used to understand

the sources of inaccuracy in FORM. Based on the insight obtained, a new method DP-RS-

Sim reliability analysis is developed and applied to a real structural system. The method is

accurate and efficient, and greatly improves the failure probability obtained by FORM. 
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6.9   Conclusions

In this chapter, several advanced reliability analysis methods are further developed and

applied to SFSI systems for both time invariant and time variant reliability analysis.

Except for crude Monte Carlo simulation, these methods are based on the knowledge of

the design point(s). In order to obtain a robust design point(s) search algorithm, the gen-

eral-purpose optimization toolbox SNOPT is adopted, customized to reliability analysis

problems and interfaced with the finite element analysis software framework OpenSees

used in this research. SNOPT offers significant advantages for solving large-scale design

point search problems, such as robustness, efficiency, and flexibility. In order to estimate

the failure probability accurately, several sampling methods have been implemented in the

reliability framework of OpenSees. These methods include crude Monte Carlo Simulation

(MCS), Importance Sampling (IS), and Orthogonal Plane Sampling (OPS) combined with

a robust line search root finding algorithm. 

Based on the newly developed/modified/extended reliability analysis methods and the FE

response sensitivity analysis framework, a realistic nonlinear SFSI application example is

studied for time invariant reliability analysis. The failure probability estimates obtained

using different methods (FORM, IS, OPS, and MCS) are consistent, thus validating the

software implementation of these methods. For cases in which the failure probability is

very small (e.g., pF < 10-3), or when a small coefficient of variation (e.g., < 5%) of the

failure probability estimate is required, the use of MCS is not feasible due to its unaccept-

able computational cost. In the present work, it was found that FORM results for time-

invariant reliability analysis are of acceptable accuracy and require far fewer evaluations



483
than IS and OPS. However, in general, FORM is not guaranteed to be accurate. In time-

invariant reliability analysis, IS is more efficient than OPS in the sense that it requires sig-

nificantly fewer evaluations of the performance function. 

An existing algorithm for computing the mean upcrossing rate in time variant reliability

analysis, already implemented in the reliability framework of OpenSees, was further

refined and improved for example to deal with non-converging cases in limit-state func-

tion evaluation. This algorithm was then used to solve SFSI time variant reliability analy-

sis problems. In time variant reliability analysis of nonlinear SFSI systems, it was found

that the FORM approximation for mean upcrossing rate is significantly inaccurate, espe-

cially in the case of highly nonlinear response behavior of the system. In this case, the

OPS based on the design point(s) provides a good estimate of the mean up-crossing rate

time history and, therefore, of an upper bound of the failure probability. It provides signif-

icant improvement on the FORM results. 

In order to study the topology of limit state surfaces (LSS) for both time invariant and time

variant structural reliability problems, a new visualization method called Multi-dimen-

sional Visualization in Principal Plane (MVPP) is developed and implemented in OpenS-

ees. It was found that LSSs for typical nonlinear structural and SFSI systems are

significantly nonlinear along only a few principal directions (i.e., 3-5 directions) and the

nonlinearity along the remaining directions is small and can be ignored without significant

loss of accuracy in estimating the failure probability. The geometrical insight gained from

the MVPP has led to the development and implementation of a new hybrid computational

reliability method, called the DP-RS-Sim method, which combines the design point (DP)
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search, the response surface methodology (RS), and simulation techniques (Sim). This

method is applied for the time invariant reliability analysis of a nonlinear structural system

subjected to quasi-static pushover. Based on the experience gained so far, it is observed

that the DP-RS-Sim method is accurate and efficient in the sense that it yields very good

results with significantly less simulations compared to IS or OPS. The efficiency of the

DP-RS-Sim method is still hindered by the expensive computation of the Hessian matrix

of the limit-state function at the design point. 



 CHAPTER 7

NONLINEAR MODEL UPDATING AND 
PARAMETER CALIBRATION FOR 

STRUCTURAL AND GEOTECHNICAL 
SYSTEMS

7.1   Overview of Finite Element Model Updating

The Finite Element (FE) method is commonly used in design and analysis of structural

and geotechnical systems. Due to incomplete knowledge of structural and/or geotechnical

systems and simplifying modelling assumptions based on engineering judgment, an initial

FE model can be unable to represent the actual system behaviour with a required level of

accuracy. This inaccuracy could be particularly significant for dynamic cases, when com-

paring actual vibration data, obtained from dynamic tests or from earthquake records, with

numerical simulations. The objective of FE model updating is to correct the initial FE

model in order to tune it to the experimental vibration data, obtaining an updated FE able

to better predict the response of the considered structural/geotechnical system. (“Inverse

modelling of civil engineering structures based on operational model data”, Anne

Teughels, dissertation 2003, Katholieke University Leuven). 

Two general methods used in FE model updating, i.e. direct methods and sensitivity

based methods. Direct methods update the global stiffness or mass matrices based on the
485
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structural equations of motion as well the orthogonality equations (Baruch M. 1982, Wei

F.S. 1990). This method is straightforward but has drawbacks. The updated matrices

reproduce the measured structural modal properties exactly but do not generally maintain

structural connectivity. The corrections suggested may not have any physical meaning

since all the elements in the stiffness or mass matrices are changed separately. The result-

ing matrix is not guaranteed to be positive difinite. 

Sensitivity based methods can overcome these problems since they adjust only a set of

physical parameters, keeping the connectivity of the original model(Link M. 1999). A

major problem in sensitivity based model updating is the relatively low information con-

tent of the measured data, which may cause the model updating procedure to converge to

local solutions. To solve this problem, either the information content of the data is

increased by further testing the system in different configurations(Nalitolela et al. 1992),

or the number of uncertain parameters must be reduced(Fritzen and Bohle 1999).

The proper selection of these parameters (parameterization) is a key issue in FE model

updating. It is important that the chosen parameters be able to clarify the ambiguity of the

model, and the model output should be sensitive to these parameters.(Mottershead 1995,

Link 1999 and Shi et al. 2000).)

A general optimization framework based on the integration of the SNOPT(Sparse

Nonlinear Optimization) optimization tool box into OpenSees, is developed and applied

for nonlinear FE model updating purpose in this chapter. This framework is refered as

SNOPT-OpenSees framework, has very flexible user interface and can therefore be used
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for multiple purposes: such as model updating by either direct or sensitivity based meth-

ods. 

The following two sensitivity based model updating studies have been performed uti-

lizing this framework: (1) The response data generated from a FE model was used as the

‘experimental’ data in calibrating a FE model with different initial parameters. Two meth-

ods for computing gradients, DDM and FFD, were used. A comparison of the conver-

gence rate of the model updating procedure is made between the use of DDM and FFD. It

is found that the convergence rate of the updating procedure when using DDM is signifi-

cantly faster than when using FFD. (2) By using the downhole acceleration records

obtained during the Lotung Taiwan earthquake of 1986, an example of the actual applica-

tion of soil model updating is provided.

7.2   SNOPT as a General Optimization Tool Box for Structural and Geo-
technical Model Updating

As mentioned in chapter 6.1, the SNOPT optimization toolbox has several features

that make it suitable for strucutral and geotechnical systems model updating: (1) It is

applicable to large scale problems such as geotechnical models which may easily include

over a million degrees of freedom. The capacity of SNOPT to deal with such problems

makes it especially suitable for solving optimization problems in civil engineering. (2)

SNOPT needs relatively few evaluations of the objective function. In FE soil and struc-

tural model updating problems, one of the most time consuming steps is the evaluation of

the objective function. This is particularly true when the entire response history is desired.

This feature makes the optimization process when using SNOPT very efficient. (3)
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SNOPT can tolerate the discontinuity of gradients close to the optimization point. In nons-

mooth plastic FE models, the discontinuity of the gradients is inevitable due to the state

transition of the material point (i.e., between elastic to plastic). This feature makes SNOPT

a robust algorithm for model updating. (4) SNOPT has many flexible selections allowing

for its customization for special problems. 

As described in chapter 6.1, SNOPT has its own rules for determining the search direc-

tion, performing the merit-function and convergence checks, and deciding on the step size.

In the following section, the method by which SNOPT is integrated into OpenSees as a

general optimization tool is explained. 

7.3   Integration of SNOPT into OpenSees as a General Optimization 
Tool

The SNOPT interface is very simple as seen below:

In the optimization process, following SNOPT’s output of a Design Variable vector

(DV) x, values of the objective function F(x) and the constraint function(s) G(x) are

MeritFunctionCheckMeritFunctionCheck

SearchDirectionSearchDirection StepSizeRuleStepSizeRule

ConvergenceCheckConvergenceCheck

SNOPT

……

New DV X

F and G
(& gradients)

Figure 7.1 Interface of SNOPT tool box as a general optimization tool 
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required. If the gradients of F(x) and G(x) are provided, SNOPT takes advantage of them

directly, otherwise SNOPT will perform the Finite Difference (FD) method to get the

approximate gradients. i.e., by perturbing the DV x by ∆x, to get the gradients as:

 and (7.1)

By default the pertubation ∆x/x is , a value which can be specified by the user.

In order to integrate SNOPT into OpenSees, a main C++ class ‘SNOPTAnalysis’ is

created while four other classes (e.g., ‘DesignVariable’, ‘DesignVariablepositioner’,

‘ObjectiveFunction’ and ‘ConstraintFunction’) are created to achieve the communication

between SNOPT and OpenSees as shown below in Figure 7.2. 

The role of ‘SNOPTAnalysis’ is: 

(1) when the command is received from SNOPT to obtain new values of the objective

and constraint functions using the new DV x, it will call the domain components ‘Design-

Variable’ and ‘DesignVariablePositioner’ to update the DV x. In structural or geotechnical

systems, DV x can generaly be material, geometric or loading properties, etc. The

‘DesignVariablePositioner’ is responsible for finding all corresponding components in the

FE model with the DV x, and update them. 

F x( )∂
x∂

-------------- F∆ x( )
x∆

---------------≈ G x( )∂
x∂

--------------- G∆ x( )
x∆

----------------≈

5.5e 7–
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(2) After updating the parameters to the new DV x, ‘SNOPTAnalysis’ will rerun the

OpenSees analysis using the updated parameters. The analysis’ requirements such as the

analysis type or the number of steps, are specified in user defined tcl files and saved in

‘SNOPTAnalysis’, which allow user to customize the analysis. According to the user’s

requirements, ‘SNOPTAnalysis’ can perform the sensitivity analysis in order to obtain the

gradients of the constraint and objective functions in step (3).

(3) After performing the analysis in OpenSees, ‘SNOPTAnalysis’ calls functions of

classes ‘ConstriantFunction’ and ‘ObjectiveFunction’, to update the values of the objec-

tive and constraint functions. These values are stored in the objects of the ‘Constriant-

Function’ and ‘ObjectiveFunction’ classes.

DomainDomain

DesignVariableDesignVariable DesignVariablePositionerDesignVariablePositioner

lowerBoundlowerBound

upperBoundupperBound

startPointstartPoint

ConstraintFunctionConstraintFunction

lowerBoundlowerBound

upperBoundupperBound

getValuegetValue

ObjectiveFunctionObjectiveFunction

lowerBoundlowerBound

upperBoundupperBound

getValuegetValue

getGradientgetGradient

MeritFunctionCheckMeritFunctionCheck

SearchDirectionSearchDirection StepSizeRuleStepSizeRule

ConvergenceCheckConvergenceCheck

SNOPT

……

getGradientgetGradient

SNOPT
Analysis
SNOPT
Analysis

New DV X

ElementElement

MaterialMaterial

Load PatternLoad Pattern

DV: design variable
F   : objective function
G  : constraint functions

Reliability DomainReliability Domain

F and G
(& gradients)

1. Update DV X

2. Run OpenSees analysis

3. Update
ConstraintFunction &
ObjectiveFunction

4. Get F and G (& gradients)

Figure 7.2 Integration of SNOPT tool box into OpenSees as a general
optimization tool box



491
(4) ‘SNOPTAnalysis’ gets the values and possibly the gradients of the objective and

constraint functions from the objects of ‘ConstriantFunction’ and ‘ObjectiveFunction’.

These values and gradients are then returned to SNOPT.

In order to make the optimization as flexible as possible, a ‘Do It Yourself’ (DIY) con-

cept is used to allow users to match whichever quantities that OpenSees can output (i.e.

natural frequencies, response histories, force-displacement curves). In steps (3) and (4),

users are capable of freely defining the objective and constraint functions, F and G, in the

TCL input file. The C++ based classes ‘ConstraintFunction’ and ‘ObjectiveFunction’ will

run the TCL file and obtain values from the TCL memory as shown in Figure 7.3. These

functions F and G (and their gradients) are computed by using the responses (and response

sensitivities) recorded from the OpenSees analysis results. This implementation takes

advantage of the flexibility of the TCL language in order to allow a general-purpose opti-

mization using SNOPT. 

A simple example of how to write this TCL file is shown in Figure 7.3.

ConstraintFunctionConstraintFunction

ObjectiveFunctionObjectiveFunction

Call TCL

C++ Example of user-defined F in TCL

#steps
exp 2

i i
i 1

1F (u u )
2=

= −∑

#steps
exp i

i i
i ii 1

F u(u u )
=

∂ ∂
= −

∂θ ∂θ∑

set fileId_1 [open "nodes_exp.out" "r"]
set fileId     [open "nodes.out" "r+"]
set F 0
while {[gets $fileId_1    u_exp] >= 1} {

if {[gets $fileId   u] >= 1} {
scan $u_exp "%e " u_1 
scan $u  "%f  %e " time  u1
set F [expr $F + .5*($u_1-$u1)*($u_1-$u1)]
}; #if

}; #while
close $fileId
close $fileId_1

set fileId_1 [open "nodes_exp.out" "r"]
set fileId     [open "nodes.out" "r+"]
set F 0
while {[gets $fileId_1    u_exp] >= 1} {

if {[gets $fileId   u] >= 1} {
scan $u_exp "%e " u_1 
scan $u  "%f  %e " time  u1
set F [expr $F + .5*($u_1-$u1)*($u_1-$u1)]
}; #if

}; #while
close $fileId
close $fileId_1

F and G
(+ gradients)

Figure 7.3 Communication between C++ class and user defined funciton in
TCL
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The user tries to match empirical valuse of the entire acceleration process . The

quantity  is recorded by OpenSees. The objective function is defined as,

(7.2)

If the gradients are provided by the user, they are done so in the following form,

(7.3)

where  is obtained from the sensitivity algorithm. 

The TCL implementation when the gradients are not provided by the user is shown in

Figure 7.3 as,

set fileId_1 [open "nodes_exp.out" "r"]; # file containing experimental recorder

set fileId     [open "nodes.out" "r+"]; # file containing OpenSees simulation recorder

set F 0.0 ;# objective function initialized to 0

while {[gets $fileId_1    u_exp] >= 1} {;# read line ‘u_exp’ from experimental data

file

  if {[gets $fileId   u] >= 1} { ; # read line ‘u’ from OpenSees recorded data file

   scan $u_exp "%e " u_1 ; # split line ‘u_exp’ and save acceleration into u_1

   scan $u  "%f  %e " time  u1; # split line ‘u’ and save acceleration into u1

   set F [expr $F + .5*($u_1-$u1)*($u_1-$u1)]; compute the objective function

u·· exp

u··

F x( ) 1
2
--- u··i x( ) u··i

exp–( )
2

i 1=

#steps

∑=

F∂ x( )
x∂

-------------- u··i x( ) u··i
exp–( )

u··i∂ x( )
x∂

---------------
i 1=

#steps

∑=

u··i∂ x( )
x∂

---------------
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  }; #if

}; #while

close $fileId

close $fileId_1

This interface is flexible for the following reasons: 

(1) it allows users to match various quantities such as frequency, modeshape, stress-

strain relationship, or force-displacemnt relationship, etc. (2) it allows the design variable

to be any input quantity such as node coordinates, material parameters, loads, and damp-

ing paramenters etc. (3) It can easily take advantage of the existing sensitivity results to

obtain the gradients of F and G by performing the chain rule as shown in Equation (7.3). 

7.4   Nonlinear Model Updating for Soil Column

7.4.1   Numerical Example 1. Nonlinear Model Updating of a Soil Column Subjected 
to Weak Ground Motions

In this section, taking advantage of the new developed optimization system, a numeri-

cal example is studied by using the gradients obtained from both DDM and FFD. The

‘experimental’ data herein are generated by using OpenSees. In this example, a 3D clay

soil column beginning at the ground surface and extending below ground to a depth of 17

m, is studied. The column, under simple shear, is fixed along its lower boundary while

corresponding nodes at the same elevation on the two lateral boundaries are tied together

(i.e., their horizontal and verticle displacements are forced to be the same). Three investi-

gation points at the surface, and at depths of 6m and 11m are ‘monitored’ while their acce-
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lation histories are ‘recorded’(simulated by OpenSees). In simulating the base excitation,

the downhole acceleration records at the depth of 17m below ground surface, at a site near

Lotung, China, with station code FA1-5, no.6 oriented in N-S direction, during the earth-

quake of February 8th 1986, are used. (A. Elgamal. Identification and Modeling of Earth-

quake Ground Response I: Site Amplification, Soil Dynamics and Earthquake

Engineering, Volume 15, Number 8, December 1996, pp. 499-522(24) ). 

The model and acceleration are shown in Figure 7.4 below. The maximum accelera-

tion is 0.14 . The FFT of the acceleration is shown in Figure 7.5. No signal filter

process is used for this acceleration input. No Rayleigh damping is considered.

The soil column is modeled using a 3D pressure independent multi-yield surface clay

model (A. Elgamal and Yang, 2002) with three sets of material properites as shown in

Table 7.1. Nine 2D four-node quadratic elements are used.

m s2⁄[ ]
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As shown in Table 7.1, the parameters to be updated are the low strain shear moduli

and the max shear strength of the soil. The actual values of the parameters used to generate

the experimental responses in Figure 7.6 are refered as ‘real’ values. The initial values of

these parameters, used by SNOPT, are shown in Table 7.1. 

The ‘experimental’ structural responses are shown in Figure 7.6. The stress-strain rela-

tions at a Gauss point at the bottom of the column is shown in Figure 7.4. From this figure,

it is clear that the bottom of the soil is in the plastic state.

The comparison between the ‘experimental’ acceleration response and the acceleration

response obtained by using the initial values in Table 7.1 is shown in Figure 7.7. From

Table 7.1   Real parameters and initial parameters used in model updating

Parameter 
[kPa]

G1 G2 G2 �1 �2 �3

‘real’ 
values

28800 39200 57800 31 33 34

initial
values

30000 30000 30000 30 30 30

0 5 10 15 20 25 30
0

100

200

300

400

500

Freq Hz[ ]

Figure 7.5 FFT of the acceleration
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these curves, it is clear that before model updating, the FE responses are very different

from the experimental ones. 
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Objective and constraint functions

Among the various possible approaches for solving FE model updating problems, the

least squares approach is a commonly used and efficient way. (Link 1999) The objective

function in an ordinary least squares problem is then defined as,

(7.4)

where  and  are simulated and experimental accelerations respectively at

time step tn, at the jth station. F is defined as the square of the difference between the sim-
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Figure 7.7 Comparison of ‘experimental’ soil responses with those
obtained by using ‘initial’ parameter values
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ulated and experimental accelerations, summed over all time steps n and all downhole sta-

tions j.

In this example, the ranges of the parameters are,

 and (7.5)

The major feasibility tolerance is set to .

Gradients of the objective function

In this example the Direct Differetiation Method (DDM) and the Finite Difference

Method (FDM) are used to compute the gradients. A comparison of the convergence rates

when using the two methods is performed. When using FDM, the gradients of the objec-

tive function are computed as,

(7.6)

The perturbation  is taken as , which is equal to square root of the full

function precision (User’s Guide for SNOPT Version 7, A Fortran Package for Large-

Scale Nonlinear Programming. Philip E. GILL, Department of Mathematics, UCSD,

November 24, 2004). 

When using the DDM algorithm, the gradients of the objective function are,

(7.7)
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where  is computed by the DDM algorithm which is efficient and gives ‘exact’

gradients (Gu, Conte, 2001). It can be shown that when using Forward Finite Difference

(FFD) method with a decreasing perturbation , the gradients  approach the

DDM results. However, too small a perturbation  will lead to erroneous results due to

round off error.(Gu, Conte, 2001)

Comparison of the results obtained by FFD with DDM when using noise-free ‘experi-

mental’ date.

In contrast to data including numerical noise, to be shown in a later section, in this

example, the ‘experimental’ data is noise-free as shown in Figure 7.6. Both FFD and

DDM give good results as shown in Table 7.2.

The convergence rates are compared in terms of the objective function values at each

major iteration of the updating procedure as shown in Table 7.3.

Table 7.2   Parameters obtained by updating procedure when using DDM and FFD

Parameter 
[kPa]

G1 G2 G2 �1 �2 �3

‘real’ 
values

28800 39200 57800 31 33 34

DDM 28800 39200 57800 31 33 34

FFD 28800.02 39200.02 57799.93 30.99999 33.00020 34.00028

u··j tn( )∂
θ∂

----------------

θ∆
u··j tn( )∂
θ∂

----------------

θ∆
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From the values of the objective function listed in Table 7.3, it is obvious that the con-

vergence rate of the model updating procedure is faster when using DDM than FFD. In

order to reach the criterion F=1.0E-2, DDM requires 15 iterations while FFD requires at

least 30. The efficiency of DDM over FFD is clear from Figure 7.8 below where the

results in Table 7.3 are plotted.

Table 7.3    Comparison of objective function values when using DDM 
or FFD

iteration # DDM FFD iteration # FFD

1 8.8E01 8.8E01 16 2.42E00

2 7.87E01 7.69E01 17 2.40E00

3 1.67E01 4.36E01 18 2.39E00

4 8.53E00 4.30E01 19 2.35E00

5 8.42E00 2.00E01 20 2.35E00

6 6.06E00 1.99E01 21 2.29E00

7 5.25E00 1.89E01 22 2.12E00

8 4.93E00 1.71E01 23 2.03E00

9 3.54E00 1.69E01 24 1.72E00

10 2.50E00 1.46E01 25 1.14E00

11 1.08E00 1.46E01 26 1.14E00

12 6.18E-1 1.46E01 27 3.80E-1

13 1.52E-1 1.31E01 28 1.06E-1

14 3.62E-2 3.12E00 29 7.02E-2

15 7.07E-3 2.96E00 30 5.60E-2
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Comparison of the results obtained by FFD and DDM when the ‘experimental’ data

includes artificial white noise

In order to better simulate the ‘real’ experimental data, 2% noise was included in the

‘experimental data’ (i.e., white noise with a PSD = 2% of the standard deviation of the

original noise-free response signal during the whole process) while all other conditions

were kept the same. 
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A comparison of the ‘experimental’ data between the noise-free and 2% noise cases

are shown in Figure 7.9.

The model updating procedure (SNOPT) obtains the values of the parameters by using

DDM or FFD methods as shown in Table 7.4. 
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Figure 7.9 ‘Experimental’ responses with 2% noise
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A comparison of the convergence rate in terms of the objective function values, when

using FFD and DDM, are shown in Table 7.5.

Table 7.4   Parameters obtained by updating procedure when using DDM and FFD

Parameter 
[kPa]

G1 G2 G2 �1 �2 �3

‘real’ 
values

28800 39200 57800 31 33 34

DDM 28799.58 39199.93 57799.58 30.98898 33.00695 34.00770

FFD 28799.57 39199.92 57799.60 30.98897 33.00695 34.00773

Table 7.5   Comparison of objective function values by using DDM or 
FFD

iteration # DDM FFD iteration # FFD

1 8.81E01 8.81E01 16 8.77E-

01

2 7.87E01 7.70E01 17 7.56E-

01

3 1.68E01 4.35E01 18 6.27E-

01

4 8.54E00 9.32E00 19 5.75E-

01

5 8.42E00 8.67E00 20 5.31E-01

6 6.06E00 8.35E00 21 4.85E-01

7 5.26E00 7.33E00 22 4.85E-01

8 4.94E00 3.87E00 23 4.82E-01
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From the values of the objective function listed in Table 7.5, it is observed that the

convergence rate of the model updating procedure (SNOPT) when using DDM is faster

than with FFD when 2% white noise is added to the ‘experimental’ data. 

Studies of various initial values 

Here the problem is reevaluated by using different initial values while other conditions

are kept the same, as in the noise free case. The computational results are shown in Table

7.6.

9 3.55E00 3.73E00 24 4.69E-01

10 2.51E00 3.52E00 25 4.52E-01

11 1.09E00 3.39E00 26 4.09E-01

12 6.18E-1 2.76E00 27 3.97E-01

13 1.52E-1 2.32E+00 28 3.84E-01

14 3.63E-2 1.55E+00 29 3.67E-01

15 7.07E-3 1.26E+00 30 3.42E-01

Table 7.6   Parameters obtained by updating procedure when using DDM and FFD

Paramete
r [kPa]

G1 G2 G2 �1 �2 �3

‘real’ 
values

28800 39200 57800 31 33 34

Initial 
values

40000 40000 40000 40 40 40

SNOPT 
results

32468.05 30319.71 72127.28 39.92503 27.66459 33.35095

Table 7.5   Comparison of objective function values by using DDM or 
FFD

iteration # DDM FFD iteration # FFD
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In the above cases, the model updating procedure converges to local minimums when

the initial values are far from the ‘real’ values. One way to alleviate this problem is to add

more constraints. 

As shown in Table 7.7, when the bounds of the parameters are restricted, SNOPT can

find the global minimum. There are global optimization methods, such as the method of

coupled local minimizers (CLM) by Suykens et al.(2001, 2002), however this is beyond

the scope of this chapter. 

Initial 
values

20000 20000 20000 20 20 20

SNOPT 
results

131554.8 30332.77 24814.41 20.87335 20.00000 20.00000

Table 7.7   Parameters obtained by updating procedure when using DDM and FFD

Parameter 
[kPa]

G1 G2 G2 �1 �2 �3

‘real’ 
values

28800 39200 57800 31 33 34

Initial 
values

40000 40000 40000 40 40 40

Con-
straints

SNOPT
results

28800.00 39200.00 57800.00 31.00 33.00 34.00

Table 7.6   Parameters obtained by updating procedure when using DDM and FFD

Paramete
r [kPa]

G1 G2 G2 �1 �2 �3

G1 G2 G3< <

G1 G2– 100000<

G2 G3– 100000<

τ1 τ2 τ3< <

τ1 τ2– 10<

τ2 τ3– 10<
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7.4.2   Numerical Example 2. Nonlinear Model Updating for a Soil Column Subjected 
to Strong Ground Motions

The model considered in section 7.4.1 is reevaluated however it is now subjected to a

strong ground excitation taken as the real downhole acceleration records at the depth of

17m below the ground surface, at a site near Lotung, China during the earthquake of July

30th, 1986. (station code DHB17, no.12 oriented in N-S direction). (A. Elgamal. Identifi-

cation and Modeling of Earthquake Ground Response I: Site Amplification, Soil Dynam-

ics and Earthquake Engineering, Volume 15, Number 8, December 1996, pp. 499-522(24)

). The maximum acceleration was 1.86  as shown in Figure 7.10. 

As in section 7.4.1, the parameters to be calibrated are the low strain shear moduli and

the max shear strength of the soil. The ‘real’ values and the initial values of these parame-

ters are the same as in Table 7.1.

m s2⁄[ ]
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The ‘experimental’ structural responses are shown in Figure 7.11. The stress-strain

relations at a Gauss point at the bottom of the column is shown in Figure 7.10. From the

stress-strain relations at the bottom of the soil, it is clear that the soil yields significantly

duing the earthquake. 

The comparison between the ‘experimental’ acceleration response and the acceleration

response obtained by using the initial values in Table 7.1 is shown in Figure 7.12.
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The objective and constraint functions are the same as in Equations (7.4) and (7.5),

while the gradients using FFD and DDM are the same as in Equations (7.6) and (7.7)

respectively.

Comparison of the results obtained by FFD and DDM when using noise-free ‘experi-

mental’ data.

In this example, the ‘experimental’ data is noise free as shown in Figure 7.11. Both

FFD and DDM give good results as shown in Table 7.8.
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The convergence rate is compared in terms of the values of the objective function at

each major iteration of the updating procedure as shown in Table 7.3.

Table 7.8   Parameters obtained by updating procedure when using DDM and FFD

Parameter 
[kPa]

G1 G2 G2 �1 �2 �3

‘real’ 
values

28800 39200 57800 31 33 34

initial 
values

30000 30000 30000 30 30 30

DDM 28800.03 39199.89 57800.08 31.0 33.0 34.0

FFD 28797.40 38941.76 57977.04 31.145 33.660 34.156

Table 7.9   Objective function values comparison 
between using DDM and FFD

iteration # DDM iteration # FFD

1 3.981E+02 1 3.981E2 

2 1.687E+02 5 1.017E2

3 1.321E+02 10 7.482E1

4 4.429E+01 15 6.993E1

5 2.644E+01 20 5.210E1

6 2.253E+01 25 2.066E1

7 1.221E+01 30 1.944E1

8 8.829E+00 40 1.887E1

9 5.909E+00 50 1.789E1

10 8.577E-01 60 1.779E1

11 3.924E-01 70 4.043E0
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From the values of the objective function listed in Table 7.9, it is observed that the

convergence rate of the model updating procedure when using DDM is tremendously

faster than when using FFD. In order to reach the criterion of F=1.0E-2, DDM requires 14

iterations while FFD requries over 100. The efficiency of DDM over FFD is clear from

Figure 7.13 below where the results in Table 7.9 are plotted.

12 1.225E-01 80 2.676E-1

13 1.239E-02 90 1.546E-1

14 2.778E-04 100 1.253E-1

Table 7.9   Objective function values comparison 
between using DDM and FFD

iteration # DDM iteration # FFD
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Comparison of the results obtained by FFD and DDM when the ‘experimental’ data

includes artificial white noise

In order to better simulate the ‘real’ experimental data, 2% noise was included in the

‘experimental data’ (i.e., white noise with a PSD = 2% of the standard deviation of the

original noise-free response signal during the whole process) while all other conditions

were kept the same. 
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A comparison of the ‘experimental’ data between the noise-free and 2% noise cases

are shown in Figure 7.14.

The model updating procedure (SNOPT) obtains the values of the parameters by using

DDM or FFD methods as shown in Table 7.11. 

A comparison of the convergence rate in terms of the objective function values, when

using FFD and DDM, are shown in Table 7.11 and are plotted in Figure 7.15.

Table 7.10   Parameters obtained by updating procedure when using DDM and FFD

Parameter 
[kPa]

G1 G2 G2 �1 �2 �3

‘real’ 
values

28800 39200 57800 31 33 34

initial 
values

30000 30000 30000 30 30 30

DDM 28794.41 39208.08 57796.08 31.012 32.992 33.997

FFD 28751.71 39365.45 57781.26 30.662 32.662 33.970

Table 7.11   Objective function values comparison 
between using DDM and FFD

iteration # DDM iteration # FFD

1 3.981E+02 1 3.981E2

2 1.682E+02 10 2.262E2

3 1.423E+02 20 2.108E2

4 3.118E+01 30 1.281E2

5 1.875E+01 40 5.460E1

6 7.964E+00 50 4.770E1
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7 3.314E+00 60 4.758E1

8 1.655E+00 70 3.895E1

9 1.035E+00 80 3.110E1

10 4.236E-01 90 3.103E1

11 3.108E-01 100 2.050E1

12 2.698E-01 120 7.691E0

13 2.579E-01 140 2.658E0

14 2.548E-01 160 1.325E0

180 6.664E-1

200 5.777E-1

Table 7.11   Objective function values comparison 
between using DDM and FFD

iteration # DDM iteration # FFD
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Figure 7.15 Comparison of objective function values resulting from the use of
DDM and FFD
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From the values of the objective function listed in Table 7.11 and Figure 7.15, it is

observed that the convergence rate of model updating procedure (SNOPT) when using

DDM is significantly faster than FFD. To reach the same accuracy (i.e., value of objective

function less than 5.0e-1), the model updating procedure using FFD needs about 20 times

more iterations than when using DDM!

7.4.3   Real Example 1, Linear Model Updating

In this example, the soil at a site near Lotung, China (Tang 1987) was studied. The

Electric Power Research Institute (EPRI) in cooperation with the Taiwan Power Company

(TPC) conducted a Large-Scale Seismic Test (LSST) at this site. Field exploration showed

that the upper layer (30-40m thick) consists predominantly of interlayered silty-sand and

sandy-silt with some gravel (Lotung downhole array. I: Evaluation of site dynamic proper-

ites. A. Elgamal et al. Journal of Geotechnical Engineering vol 121, no.4, Apr. 1995.).

Taking advantage of the data obtained by downhole triaxial accelerometers at ground sur-

face and at depths of 6m, 11m and 17m, model updating was performed to dertemine the

soil properties in this example. 

The FE model used in this example consists of twenty 3D-brick elements containing

lateral nodes fixed in the E-W direction to simulate a plane strain case. The soil behavior

is simulated using a pressure dependent multi-yield surface model (Elgamal et al, 2002),

the acceleration is considered the same as in section 7.4.1. The model is described below

in Figure 7.16.
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The parameters (Design Variables, or DVs) to be updated are chosen as 

(1) the shear wave velocity v at a reference mean effective confining pressure (Frank,

OpenSees manual). For the linear elastic case, the shear wave velocity is related to the low

strain shear modulus G as , where  is the mass density.

(2) the Rayleigh damping parameter . The damping used in this model is stiff-

ness proportional Rayleigh damping.
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Figure 7.16 Soil column subject to base excitation
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(3) pressure dependent coefficient d, a positive constant defining variations of G and B

as a function of instantaneous effective confinement p' as,  and

, where the subscript r denotes the reference value. (http://opensees.berke-

ley.edu/OpenSees/manuals/usermanual/index.html).

These three parameters are most sensitive for determing the response. The recorded

response of the soil at different depths is shown in Figure 7.17.
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Figure 7.17 Recorded soil responses at different depths
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Here the objective function is taken to be the same as in Equation (7.4). The objective

function, defining an ordinary least squares problem, minimizes the difference between

the recorded and FE simulated acceleration histories at different stations.

Field exploration results suggest that the bounds of the DVs may be defined as,

 (7.8)

and

(7.9)

corresponding to a damping ratio . The natural frequency of the simulated

soil column is 2.367 Hz. and 

(7.10)

Parameter values obtained by SNOPT and the values of the objective function are

listed in Table 7.12.

The value of the objective function decreased from an initial value of 360.2 to 5.34. The

damping ratio corresponding to  is about 5%. 

Table 7.12   SNOPT optimization results

DVs and 
Objective 
function

initial value lower bound upper bound SNOPT 
results

210 150 250 176.2

0 0 0.0067 0.0067

d 0.5 0 1.0 0.383

F 360.23 0 None 5.34

150 v 250< <

0 βk init, 0.0067< <

0 ζ1 5%< <

0 d 1.0< <

v m s⁄[ ]

βk init,

m s2⁄[ ]

βk init, 0.0067=
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Before model updating, the reponses between recorded responses and FE simulations

using initial values at different soil depths(stations) are compared as shown in Figure 7.18.

It can be observed that the two responses are totally different. 

After model updating, using the values obtained by SNOPT, the comparison between

actual and simulated responses are shown in Figure 7.19 below. The comparison of accel-

eration histories between seconds 4 and 10 in Figure 7.19 are zoomed in and shown in Fig-

ure 7.20.
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Figure 7.18 Comparison of real soil responses with responses obtained by
using initial values of parameters
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Figure 7.19 Comparison of actual soil responses with FE simulated responses
after model updating
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A comparson is also made in the frequency domain as shown in Figure 7.21. Unlike

the generaly applied linear model updating method, which matches the first several fre-

quencies, this model updating method tries to match all frequencies as shown in Figure

7.21. This is due to the fact that it tries to match the entire response history, including con-

tribution from all frequencies. 
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In order to check whether the parameters obtained in Table 7.13 are physicaly accept-

able, the set of parameters are used to check another earthquake response at the same site,

Site no. 8 oriented in N-S direction, during the earthquake of May 20 1986, is used in this

case. The maximum acceleration was recorded as 0.13 . The comparison is shown in

Figure 7.22. From this figure, it can be seen that the parameters obtained by SNOPT are an

excellent estimation of the physical values. 
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7.4.4   Real Example 2, Nonlinear Model Updating

In this section, the same soil model is reconsidered for strong earthquake inputs (max

base excitation close to or large than 0.1g). The model parameters are re-evaluated by

SNOPT during the earthquake of Nov. 14, 1986 at site 16N. The maximum acceleration

was 0.84 .

The recorded soil responses at different depths are shown in Figure 7.23.
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It was discovered that the most sensitive parameters in the nonlinear model updating

case were the same as those in the linear case in section 7.4.3. The data obtained from the

linear model updating case, shown in Table 7.12, was used as the initial values of the

parameters in the nonlinear case. Responses at different soil depths are compared between

actual ground motion records and FE simulations as shown in Figure 7.24. Comparisons

of the responses in the frequency domain are shown in Figure 7.25. It is observed that the

responses close to 5 Hz are not modeled well. The high frequency(5Hz) predicted by the

FE model is not observed in the actual response history. These high frequencies are not
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observed due to the liquefaction caused by the intense ground motion. This suggests that

either the effect of soil-fluid interaction should be considered or the soil parameters should

be re-calibrated to fit the case of strong earthquakes. In the current model, no soil-fluid

coupling is considered. Liquefaction effects were simulated by adjusting the soil proper-

ties and damping parameter.
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using SNOPT results in Table 7.12 as initial parameter values
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The objective function is same as section 7.4.1 as shown in Equations (7.4). The

bounds are defined similarly as before with,

 (7.11)

and 

(7.12)

corresponding to damping ratio . 

and,

(7.13)
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Figure 7.25 Comparison of actual soil responses with responses obtained by
using SNOPT results in Table 7.12 as initial parameter values in
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The parameter results obtained by SNOPT are shown in Table 7.13. The objective

function F changes from 660.05 to 165.74, and can not be further reduced. This is due to

the fact that the model is not accurate enough to simulate the sand behavior during liq-

uifaction. 

The damping ratio corresponding to  is about 5%. 

After model updating, using the values obtained by SNOPT, the comparison between

real records and simulated responses are shown in Figure 7.26 below. Figure 7.27 focuses

on the time interval between seconds 15 through 25 in Figure 7.26. The comparison in the

frequency domain is shown in Figure 7.28. The shear-stress shear-strain relations at point

A (Figure 7.16) are shown in Figure 7.29 where the nonlinear behavior of the soil is

observed. 

Table 7.13   Parameters obtained by SNOPT

DVs and 
Objective 
function

initial value lower bound upper bound results by 
SNOPT 

176.2 120 220 133.729

0.0067 0.001 0.0067 0.0067

d 0.383 0 1.0 0.6316

F 660.05 0 None 165.74

v m s⁄[ ]

βk init,

βk init, 0.0067=
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From these results, it is observed that the parameters obtained by SNOPT in Table 7.13

are excellent when simulating the actual soil behavior during strong earthquakes.

In order to verify the parameters obtained in Table 7.13, records during another strong

earthquake (No. 7, May 20, 1986, Lotung, the maximum acceleration was 0.89 ) is

compared with the FE simulations. The comparison is shown in Figure 7.30. It is seen that

the parameters are very good when modeling the soil during strong earthquakes. The shear

stress-strain relations at point A (see Figure 7.16) are shown in Figure 7.31.
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7.5   Conclusion

In this chapter, a general-purpose OpenSees-SNOPT framework for solving optimiza-

tion problems in nonlinear structural and/or geotechnical systems is developed and pre-

sented. Several application examples in nonlinear soil FE model updating are studied

using this framework and presented.

Based on the numerical examples considered, the OpenSees-SNOPT framework

allows to obtain the global minimum of the objective function provided the initial parame-

ter values are not far from their actual (“true”) values, or when appropriate constraints are

added. The convergence rates obtained using OpenSees-SNOPT combined with FE
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response sensitivities computed using the DDM and FFD methods, respectively, were

compared. It was found that the DDM-based computation of the gradients of the objective

and constraint functions increased drastically the rate of convergence (as measured by the

number of iterations to achieve convergence) of the nonlinear finite element model updat-

ing process as compared to when using FFD-based gradient computation. This advantage

of the DDM-based over FFD-based gradient computation increases with the nonlinearity

in the system response behavior. Furthermore, it was observed that this advantage is even

more significant when artificial numerical noise is added to the simulated ‘experimental’

response data so as to model measurement noise. 

The OpenSees-SNOPT based nonlinear FE model updating strategy was then applied

to a real world example consisting of a multi-layered nonlinear soil column at the Lotung

downhole array in Taiwan. A linear soil FE model was calibrated (through FE model

updating) to best represent the Lotung soil behavior during a low intensity earthquake,

while a nonlinear FE model was calibrated to capture the actual nonlinear soil behavior

during a strong earthquake. The calibrated linear and nonlinear soil FE models with

parameters obtained from OpenSees-SNOPT were then used to simulate the response of

the Lotung soil to other recorded earthquakes. In both the linear and nonlinear cases, the

simulated soil response is very close to the recorded response. This demonstrates that the

calibrated/optimum soil FE models obtained using the OpenSees-SNOPT framework are

physically meaningful. 



 CHAPTER 8

USER’S GUIDE TO RESPONSE 
SENSITIVITY AND RELIABILILY 

ANALYSES OF SSI SYSTEM IN OPENSEES

In this chapter, a complete set of commands for performing sensitivity and reliability

analyses for SSI systems are described. Performing the analyses in OpenSees requires cre-

ating and running a set of TCL commands. Fundamental reliability commands can be

found in Haukaas disertation (2001). New TCL commands are integrated into the TCL

library, allowing for the use of new models, methodologies and algorithms in OpenSees. 

8.1   SSI Model Development

8.1.1   Basic Requirements

The modeling of SSI systems may include structure, foundation, and soil components

and considers their interaction. The focus of this chapter is to show how to apply the sen-

sitivity and reliability commands. While the vast number of options in Opensees allow for

the development of highly complex models, simple examples are offered here for peda-

gogical purposes. The structure consists of simple beam/column elements with various

sections and materials. The foundation described bellow is modeled with beam/column

elements when considering pile foundations, and brick elements when considering shal-
536
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low foundations. The soil here is modeled as a multi-yield surface J2 plasticity model. A

complete model may be found at http://opensees.berkeley.edu/ or may be available from

the author.

In this chapter, commands are specified in italic format, while new or updated com-

mands are denoted in bold format.

The first command the user must apply is

reliability

which creates the reliability domain in which the sensitivity, reliability, and optimization

components, are kept (e.g. random variables, FORMAnalysis, etc.)

The model is then created as with response-only analyses. For details regarding model

creation, please refer to the OpenSees manual at http://opensees.berkeley.edu. From this

point on only new or updated commands are explained in detail.

8.1.2   Structure Model

Both 2D and 3D RC concrete material models are described herein to simulate struc-

tural behavior. The sensitivity framework is extended to the following elements, sections,

and materials. 

1. Elements 

Sensitivity framework is extended to the following elements in order to model SSI

systems:

Quad Element: 2D four-node quadrilateral bilinear isoparametric element. 
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zeroLength Element: used to construct a 1D zeroLength element object.

DispBeamColumn2d & DispBeamColumn3d element: displacement based beam col-

umn element. 

bbarBrick Element: an 3D eight-node mixed volume/pressure brick element object,

using a trilinear isoparametric formulation

The commands to create these elements are available online in the OpenSees manual

(http://opensees.berkeley.edu/OpenSees/manuals/usermanual/index.html). 

2. Sections

The sensitivity framework has recently been extended to the following existing sec-

tions in OpenSees: 

ElasticSection3d, FiberSection2d, FiberSection3d, sectionAggregator.

To specify the random variables for these sections, the user must create the random-

VariablePositioner object, which specifies the location of a previously defined random

variable. For example:

randomVariablePositioner $pos -rvNum $gradNumber -element $ele -sectionAggrega-

tor $secAgg -section $section -material $mat $h

$pos: This argument indicates the identification number or tag, of a random variable posi-

tioner.

NOTE: Within the reliability model, $pos should begin with 1 and increase sequentially

by 1.
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$gradNumber: The tag of a random variable, previously created by the ‘randomvariable’

command created in the reliability model.

$ele: The element tag, previously created by the ‘element’ command in the FE model.

$secAgg: The tag of a section aggregator previously created by the ‘section Aggregator’

command in the FE model.

$section: The tag of a section within the aggregator, previously created by the ‘section’

command in the FE model. 

$mat: The tag of a material previously created by the ‘material’ command in the FE

model.

$h: The material parameter defined as the random variable. 

$h is a string variable in TCL, representing different parameters of various uniaxial

materials that can be used in the fiber sections. The available materials and their material

parameters are shown in Table 8.1. For example, if the user wished to compute the

response sensitivity w.r.t. the elastic modulus of material ‘steel01,’ following command

should be performed before the randomVariablePositioner command. 

set h E

randomVariablePositioner.....

Table 8.1   Sensitivity parameters available in uniaxial materials

concrete01 steel01 Elastic Hardening steelMP smoothPSC
oncrete

fc sigmaY E sigmaY sigmaY fc
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In which the steelMP and smoothPSConcrete build the Menegotto-Pinto model and

the smoothed Popovics-Saenz model (refer to Michele dissertation). The sensitivities of

these two models are developed and implemented into OpenSees by the author and co-

workers. For more information regarding other material models, please refer to the

OpenSees manual at http://opensees.berkeley.edu. 

3. 1D uniaxial materials

From the materials available for sensitivity analysis in Table 8.1, the ‘steelMP’ and

‘smoothPSConcrete’ models have recently been implemented into OpenSees. To create

these material models, the following commands are required:

uniaxialMaterial    SmoothPSConcrete     $tag $fc $fu $Ec $eps0 $epsu $eta

uniaxialMaterial SteelMP $tag $fy $E $b <r=20.0 coeffR1 =18.5 coeffR2 =0.15

a1=0 a2=0>

....

epsco E eta E E epsco

fcu b H_kin b epsu

epscu a1 H_iso fcu

a2 Ec

a3 eta

a4

Table 8.1   Sensitivity parameters available in uniaxial materials

concrete01 steel01 Elastic Hardening steelMP smoothPSC
oncrete
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8.1.3   Soil Model

In this dissertation, a pressure independent multi-yield surface J2 plasticity model is

used to simulate soil behavior: 

2D & 3D pressureIndependMultiYield material

After this material is created, user needs to run ‘updateMaterialStage -material $mat -

stage 101’ to change the material model to an elastoplastic model before the loading

begins. The sensitivity parameters may then be set as,

randomVariablePositioner $pos  -rvNum $gradNumber   -element $ele -material  $h

‘h’ is a string variable in TCL, representing different parameters. (e.g., set h equal to ‘G’,

‘cohesion’, or ‘K’ to specify the random variables as the low strain shear modulus, maxi-

mum shear strength, and bulk modulus, respectively. For example:

set h G

randomVariablePositioner ....

8.1.4   Connection between Structure and Soil 

The nodes in shallow or pile foundations may have different dof as the soil nodes at

the same location. The corresponding nodes may be tied together either by using the zero-

length elements, or the equalDOF command. When using the zerolength element, each

pair of nodes (e.g., pile node and soil node) must be tied at corresponding dof by a single

zerolength element. When using the equalDOF command, two kinds of constraints, whose

sensitivites have been implemented, may be available: 
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constraint transformation 

constraint penalty 

In the reliability analysis for SSI, not only may random variables be material parame-

ters, but also forces within a load pattern. This is explained in the next section.

8.1.5   Load Pattern

The random variable may be a point load (terje’s dissertation), or the maximum load of

a load pattern. In the latter case, the random variable is defined as,

randomVariablePositioner $pos -rvNum $gradNumber -loadPattern $numPattern -

maxLoad $p_max

where $pos and $gradNumber are defined as above, while $numPattern is the load pattern

tag, and $p_max is the value of the maximum load in the loadpattern.

For large scale SSI problems, FE divergence may happen occasionally. In this case, an

adaptive time step may be used to achieve the convergence of this step. 

8.1.6   Adaptive Integration Time Step

In OpenSees, the following command is used to construct a VariableTimeStepDi-

rectIntegrationAnalysis object, which may manage the adaptive time step. 

analysis VariableTransient

The sensitivity framework is extended to accomodate this case.
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In OpenSees, several sensitivity recorders are added for global response and local vari-

able sensitivities as described in the next section.

8.1.7   Response Sensitivity Recorder

The global response sensitivities include the sensitivities of the node displacement,

velocity, and acceleration. To record these quantities, the following commands may be

used:

recorder Node -file $filename -time -node 4 5 6 -dof 1 2 “sensitivity 1 2“

recorder Node -file $filename -time -node 4 5 6 -dof 1 2 “velSensitivity 1 2“

recorder Node -file $filename -time -node 4 5 6 -dof 1 2 “accSensitivity 1 2“

which record the displacement, velocity, and acceleration sensitivities for nodes 4

through 6, along dof 1 and 2, w.r.t. random variables 1 and 2. The sensitivities are

recorded in file $filename. In the same manner, the local responses, such as stress and

strain sensitivities, at a single Gauss point, may be recorded as:

recorder Element 23 -time -file stressS23G3.out material 2 stressSensitivity 1

recorder Element 23 -time -file strainS23G3.out material 2 strainSensitivity 1

Here the stress and strain sensitivities at the second Gauss point of element 23 w.r.t. the

random variable 1 are saved into files ‘stressS23G3.out’ and ‘strain23G3.out.’
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8.2   Response Sensitivity Analysis

In OpenSees, a two stage analysis (e.g., gravity and seismic stages) is commonly per-

formed for the response analysis. In the next section, an example of a two stage analysis

for both response and response sensitivities are described.

8.2.1   Two Stage Analysis

The following is an example of a two stage analysis (e.g., first static, then dynamic):

integrator LoadControl 1 1 1 1

sensitivityIntegrator -static

sensitivityAlgorithm -computeAtEachStep

analysis Static 

analyze 1

wipeAnalysis

integrator NewmarkWithSensitivity  0.55 0.275625  0. 0. 0. 0.

sensitivityIntegrator -definedAbove

sensitivityAlgorithm -computeAtEachStep

analysis Transient

analyze $nsteps $dt
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It is worth mentioning that the dynamic analysis follows the static one, without reset

the time for the entire analysis. Thus the commands to reset time such as “setTime 0.0” or

“loadConst”, do not work for sensitivity analysis. 

In some cases, the user needs to modify the values of the RVs (model updating case),

or check the values of the RVs in either the physical or standard normal spaces. The fol-

lowing section will address these commands.

8.2.2   Random Variable Updating

The following command is used to update RV values by the starting point, which must

be previously defined by the command ‘startPoint’ (Terje’s dissertation).

updateParameter -startPoint

If the user wants to update a single RV, the following command is used:

updateParameter -rv $rv -value $v

where $rv is the tag-number of RV, and $v is the new value given to the RV. 

The command transformXtoU transforms a point in the physical space (saved in

pointX.out) into the standard normal space (output to the file pointu.out). 

transformXtoU  -fileX PointX.out  -fileU pointu.out 

A ‘probabilityTransformation’ must be previously defined before this command is

used. 

The command transformUtoX transforms a point in the standard normal space (saved

in the file pointu.out) to the physical space (output to pointX.out).
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transformUtoX  -fileX PointX.out  -fileU pointu.out 

8.3   Reliability Analysis

In reliability analysis, an important task is searching for the design point(s). For this

purpose, SNOPT is integrated into OpenSees as an optimization tool.

8.3.1   Design Point Search

When using SNOPT as the optimization tool to seek out a design point, the tcl com-

mands are the same as when using other optimization algorithms (e.g., HLRF, SQL, etc.).

However in the SNOPT based design point search (1) users do not need to create the fol-

lowing four objects: convergence check, search direction, meritFunctionCheck, and step-

SizeRule. (2) Users do need to specify the type of findDesignPoint to ‘SNOPT’. A simple

example of FORM analysis using SNOPT as the design point search algorithm is shown in

Figure 8.1. The strikethrough commands used by other existing findDesignPoint algo-

rithms in OpenSees are unnecessary.
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The text file ‘sntoya.spc’, used with SNOPT, allows users to customize optimization

parameters (e.g., set tolerances, whether the sensitivity results are verified). The details of

the file ‘sntoya.spc’ can be found in reference of Professor Philip Gill (Gill 2004). SNOPT

may be used for any existing reliability analysis, like first order and second order reliabil-

ity analysis (FORM and SORM), for design point search purposes.

8.3.2   FORM, SORM and Mean Upcrossing Rate Analyses

The format of commands runFORMAnalysis, runSORMAnalysis is the same as that in

the OpenSees Manual. If SNOPT is specified as the optimization algorithm, SNOPT will

be called implicitly.

If the HLRF algorithm is used to find the design point, then after the design point is

found, the first principal curvature of the LSS at the design point may be obtained with the

command:

performanceFunction 1 "0.15-{u_55_1}"
randomNumberGenerator        CStdLib
probabilityTransformation    Nataf -print 0
reliabilityConvergenceCheck Standard         -e1 5.0e-3    -e2  5.0e-3  -print 1
gFunEvaluator                OpenSees -file tclFileToRun450.tcl
gradGEvaluator               OpenSees
searchDirection              iHLRF
meritFunctionCheck           AdkZhang -multi 2.0    -add 0.1    -factor 0.5
stepSizeRule                 Armijo -maxNum 10    -base 0.5   -initial 0.5 2 -print 0
startPoint Mean
findDesignPoint      StepSearch -maxNumIter 100 -printDesignPointX designPoint.out
runFORMAnalysis FORMresults450.out  -relSens 1

SNOPTSNOPT

Figure 8.1 SNOPT based design point search algorithm
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findCurvatures  firstPrincipal -exe

With this command the first principal curvature is saved into a file with the name

“principalAxes_.out”. 

In time variant reliability analysis, the FORM approximation of the mean upcrossing

rate is computed by using the following command:

runOutCrossingAnalysis $filename -results $stepsToStart $stepsToEnd $freq $sam-

pleFreq -littleDt $little_dt -Koo

The use of this command is shown in Figure 8.2. Three integers $stepsToStart, $steps-

ToEnd, and $freq, corresponding to the nstart, nend and freq in the Figure 8.2, specify the

points at which the mean upcrossing rate is performed. 

nstart nend

freq

sampleFreq t ∆

t

u··g

Figure 8.2 Mean upcrossing rate analysis command

dt
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where $stepsToStart, $stepsToEnd, and $freq are parameters (i.e., , ,  in

terms of the integration time step , in Figure 6.20) determining at which time point the

mean upcrossing rate is evaluated. These time points are: 

$stepsToStart, $stepsToStart+$freq, $stepsToStart+2*$freq, ... until $stepsToEnd

$sampleFreq is the time interval ∆t (refer to Figure 6.20) between two neighboring

impulses. The $little_dt ( ) is the small time increment by which the the second design

point excitation  is obtained through shifting the first design point , i.e.

.

For the design point search at time tn, a “warm” initial point may be used by shifting

the previous design point at time tn-1 to the current time point as follows:

startPoint -file designPointX.out -shiftStartPt

in which the file designPointX.out should have the previous design point stored. Since

the dimensions of the previous design point and current design point are not same, zeroes

are added at the beginning of the previous design point.

To specify white noise input, which is a special case of the general nonstationary stochas-

tic processes expressed as Equation (6.60), the following two commands are used

together: 

filter $filterTag delta

modulatingFunction $functionTag constant $filterTag 1

nstart nend freq

dt

δt

f2 t( ) f1 t( )

f2 t( ) f1 t δt+( )=
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Where the $filterTag and $functionTag values must begin with 1. In the modulating-

Function, the ‘constant’ is the type, and the ‘1’ is the number of filters (Haukaas disserta-

tion, 2001). For white noise only 1 filter is necessary. 

8.3.3   Sampling Analysis

Several sampling methods are developed, including Importance Samplint (IS),

Orthogonal Plane Sampling (OPS), and crude Monte Carlo Sampling (MCS), and the cor-

responding commands are:

runImportanceSamplingAnalysis $filename -type failureProbability -variance $var -

maxNum $maxNum -targetCOV $cov -print $printflag

where $maxNum denotes the maximum number of simulations, $cov denotes the target

coefficient of variation of the estimate (default = 0.05), $var denotes the standard devia-

tion of the sampling distribution (default = 1.0) and $printflag is a print flag with the fol-

lowing meaning: 0, the status of the sampling analysis is not printed to the screen or file;

1, the status after each sample is printed only to the screen; 2, the status after each sample

is printed only to the screen, while necessary information is printed into a file as well such

that the sampling analysis may be restarted (i.e., analysis will continue from current point

at the next run). The selection 2 is very useful for computational cases that need a large

number of FE simulations. 

runOrthogonalPlaneSamplingAnalysis -fileName $fileName -maxNum $maxNum -

type $type -targetCOV $cov -print $printFlag < -funcTol $funTol -varTol $varTol -max-

Iter $NumIter -littleDt $little_dt> 
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where $type may be ‘failureProbability’ or ‘outCrossing’, corresponding to the time

invariant (failure probability computation) and time variant reliability (upcrossing rate

computation) reliability analysis, respectively. The parameters $fileName, $maxNum,

$cov, $printFlag are the same as those in the ‘runImportanceSamplingAnalysis’ command.

$funTol is the tolerance of LSF (G), such that the zerofinding algorithm stops when |G|<

$funTol. $varTol is the tolerance criterion between two neighboring x in Equation (6.35):

when |xi+1-xi|<$varTol, the zerofinding algorithm will also stop. $NumIter is the maxi-

mum number of iterations in the zerofinding algorithm. The default values for $funTol,

$varTol, and $NumIter are 1e-5, 1e-3, and 20 respectively. The $little_dt ( ) is the small

time increment between the two LSF as shown in Equation (6.50).

runMonteCarloResponseAnalysis  -outPutFile  $fileName -maxNum $maxNum -

print $printFlag -tclFileToRun $tclfile

The $fileName, $maxNum, $printFlag are the same as before, while the $tclfile is the

name of a tcl file that specifies the analysis. An example of such a tcl file is:

test EnergyIncr 1.0e-16   20         2

algorithm Newton

system BandSPD

constraints Transformation

numberer RCM

integrator Newmark  0.55 0.275625  0. 0. 0. 0.

analysis Transient

δt
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analyze   20   0.01

In the context of reliability analysis, a new visualization method called multidimen-

sional visualization in principal plane (MVPP) is developed, which visualizes the LSF and

thus the LSS in each principal plane defined by the design point direction and the principal

direction of the LSS as mentioned in Chapter 6. From the results obtained from MVPP

method, a new reliability analysis method named ‘DP-RS-Sim’ is developed, which com-

bining the design point, and approximation of the LSF by response surface method, and

simulation techniques. The necessary commands are described in next section.

8.3.4   Response Surface Method

It is first necessary to compute the Hessian matrix at the design point. The Hessian is

computed by perturbation of the sensitivity results. i.e.,  (refer to chapter 6).

The Tcl command is:

computeHessian -FDM -file $fileName -designPoint $designPtFile -perturbation

$perturbSize

where $fileName is the name of the file in which the hessian matrix will be stored.

$designPtFile is provided by the user and contains the previously computed design point

in a single column(i.e., each value of RVs saved in one line). $perturbSize is the size of the

perturbation , default value is 1e-5.

Hi j,

G∂
ui∂

-------∆

uj∆
-----------≈

uj∆
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The visualization command may be performed by the ‘runMultiDimVisualPrinPlane’

command, which may take advantage of the hessian matrix obtained by ‘computeHessian’

command. In case that hessian matrix is not available, it will call the ‘computeHessian’

command implicitly to obtain the hessian matrix. An example of using the ‘computeHes-

sian’ command is:

runMultiDimVisualPrinPlane -funSurf function -designPt designPointX.out  -ndir

2 -output vis.out -gridInfo {0  -0.1  0.1  21    1   -0.2 0.2 11     2  -2.0   2.0 5}

where the previously computed design point is stored in the file designpointx.out. The

LSF will be visualized in the first two principal planes, the visualization results will be

saved in the file vis.out. Along the design point axis, there are 21 points between [-0.1,

0.1]; Along the first principal axis, there are 11 points between [-0.2, 0.2]; Along the sec-

ond principal axis, there are 5 points between [-2.0 2.0]. The output data format inside

vis.out is: ‘ x y G(x,y) ’ for each point in each line. 

The format of the newly developed ‘runDP_RSM_SimTimeInvariantAnalysis’ com-

mand will work only after the following commands are used:

performanceFunction 

probabilityTransformation

gFunEvaluator 

randomNumberGenerator

An example of the use of ‘runDP_RSM_SimTimeInvariantAnalysis’ is:
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runDP_RSM_SimTimeInVariantAnalysis -designPt designPointX.out -output

results.out  -ndir 2 -experimentalPointRule Uniform -gridInfo {  -1  -2.0  2.0  9     0  -1.0

1.0  9 }   -saveHessian hessian.out -surfaceDesign $type -simulation $SamplingMethod

-tarCOV $cov -numSimulation $maxNum

where designPointX.out contains the previously computed design point; results.out saves

the output; ‘ndir =2’ indicates that the first 2 principal axes and the design point direction

are used to fit the response surface (i.e., along these three directions, LSF is nonlinear,

while along all other axes, the LSF is considered as linear plane), thus the number of grid

planes is computed by  (refer to chapter 6). Note that the design

point direction is an extra direction used to fit the response surface; ‘Uniform’ means that

the grid point is uniformly distributed along each axis; gridInfo is the same as in the run-

MultiDimVisualPrinPlane command; hessian.out saves the hessian matrix, in case the

Hessian matrix is not provided by the user, the command comupteHessian is called; $type

specifies how to fit the response surface, currently ‘UnivariateDecomposition’ and

‘BivariateDecomposition’ are available; $samplingMethod describes which sampling

method is used to get the failure probability after the response surface is obtained, cur-

rently only ‘ImportanceSampling’ is available; $cov, $maxNum are the same as those in

the runOrthogonalPlaneSamplingAnalysis command. 

The runDP_RSM_SimTimeVariantAnalysis command is used to compute the mean

upcrossing rate for time variant reliability analysis. An example is:

ndir ndir 1+( )×
2

------------------------------------------ 3=
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runDP_RSM_SimTimeVariantAnalysis -designPt designPointX.out  -output

results.out  -ndir 2 -experimentalPointRule Uniform -gridInfo {  -1  -2.0  2.0  9     0  -1.0

1.0  9 }   -saveHessian hessian.out -surfaceDesign $type -simulation $SamplingMethod

-tarCOV $cov -numSimulation $maxNum -littleDt $little_dt -ImpulseInterval $delt_t

Most of the parameters in this command are the same as for the command

runDP_RSM_SimTimeVariantAnalysis, while two more parameters are necessary:

$little_dt is the same as that in runOrthogonalPlaneSamplingAnalysis. $delt_t is the time

interval between two sequential random variables (or impulse in white noise excitation

case). 

8.4   General SNOPT Based Optimization 

The framework of the general SNOPT based optimization is described in chapter

seven. In order to take advantage of the framework, the user may need to use the following

commands: designVariable, designVariablePositioner, constraintFunction, objectiveFunc-

tion, and runSNOPTAnalysis. The format of designVariable is:

designVariable $gradNumber -name $nameDV -startPt $startPoint -lowerBound

$lBound -upperBound  $upperBound

where $gradNumber is the design variable (DV) tag; $nameDV is the unique TCL

variable name given to this DV by the user, $startPoint is the initial point from which the

optimization begins; $lBound and $uBound are lower and upper bounds of this DV. 
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For the command designVariablePositioner, most parameters are the same as for the

command randomVariablePositioner, except that the $gradNumber is the tag of the DV

instead of a RV. An example of designVariablePositioner is as follows:

designVariablePositioner $pos   -dvNum $gradNumber  -element 1  -sectionAggre-

gator 2 -section 1 -material 1 $h

The user has to define the objectiveFunction as follows:

objectiveFunction  $tag -name $nameF -tclFile $tclFile -lowerBound $lBound -

upperBound $uBound < -gradientName $gradF >

where $tag is the tag of the objectiveFunction begining from 1 (in the current version

of SNOPT only one objective function), $nameF is the unique name of the objective func-

tion, $tclFile is the TCL file provided by the user in which the values of the objective

function (and its gradient if available) are computed, and saved in the TCL variables

$nameF (and $gradF). $lBound, $uBound are the same as in the designVariable command.

$gradF is the unique name that user gives to gradients of the F. 

In case that the constraint function is used, the following command may be performed:

constraintFunction $tag -name $nameG <-gradientName $gradG> -tclFile $fileG -

upperBound $uBound -lowerBound $lBound

where $tag is the tag of the constraint function begining with 1 (in the current version

of OpenSees there is only one constraint function). $nameG and/or $gradG are unique

names of the constraint function and its gradient. $fileG is the file including TCL script

that computes values of $nameG and/or $gradG. $uBound and $lBound are upper and
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lower bounds of the constraint function. It is worth mentioning that the TCL variables

$uBound and $lBound are arrays of the same size as the number of constraints in the con-

straintFunction. A typical way to set these two arrays for the case number of constraints=2

are (refer to TCL user manual): 

array set uBound {1 4.0 2 5.0}  

array set lBound {1 -1e20 2 -1e20}  

After designVariable, designVariablePositioner, constraintFunction, objectiveFunc-

tion, runSNOPTAnalysis are defined, the command runSNOPTAnalysis may be performed

to find the optimum as:

runSNOPTAnalysis -maxNumIter $maxNumber -printOptPointX $resultFile -

printFlag $printFlag < -tclFileToRun $tclFile> 

where $maxNumber is the limit of the number of iterations of the optimization pro-

cess; $resultFile is the file to save the optimization results. $printFlag is the same as that in

the command runOrthogonalPlaneSamplingAnalysis; $tclFile is the file containing the

analysis information such as: static or dynamic analysis, how many steps to run, etc, the

same as that in the command runMonteCarloResponseAnalysis. 

In order to adopt SNOPT based optimization to various realistic problems, more com-

mands are developed such that users may have greater control over the software. These

command are described below:

updateParameter -dv $numDV -value $newValue
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where $numDV is the tag of the DV whose value needs to be updated, while

$newValue is the new value assigned to this DV. 

tryOneStep <$dt>

This command will run one integration time step in OpenSees without commit state.

That is: The global equilibrium of the current step is achieved with the converged state

variables (e.g. node displacement, element trial stress, etc.) stored in the trial variables;

while the commited-variables are not updated to trial variables. This allows users to revert

to the last step if necessary. The optional parameter <$dt> is the size of the time step in the

dynamic case. 

revertToLastCommit

This command reverts the whole system to the last committed state and cancels the

operation from ‘tryOneStep’. That is, the trial state variables are updated by the last con-

verged state variables, and the system time reverts to the last committed time. 

commitOneStep 

This command will perform the operation that updates the committed variables with

the trial variables, and updates the system time to the current time. The combined com-

mands trialOneStep and commitOneStep in succesion are equivalent to the command ana-

lyze 1 <$dt>. 
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 CHAPTER 9

CONCLUSIONS

9.1   Summary of Findings and Contributions

The research work described in this thesis makes significant contributions in the fol-

lowing areas: (1) extension of the finite element response sensitivity framework based on

the direct differentiation method (DDM) to Soil-Foundation-Structure Interaction (SFSI)

systems. (2) Computational probabilistic and reliability analysis of structural and/or geo-

technical systems. (3) Nonlinear finite element model updating for structural and/or geo-

technical systems. 

The specific contributions and major findings of this research work are summarized

below:

1. A general DDM-based FE response sensitivity computation algorithm is studied in

detail and extended to SFSI systems. This sensitivity algorithm consists of differentiat-

ing exactly the FE algorithm for response-only computation with respect to material,

geometric, and loading parameters. The algorithm involves the various hierarchical

layers of FE response analysis, namely: structure level, element level, Gauss point

level (or section level), and material level. A number of finite element types, section

and material models, the multi-point constraint model, and the adaptive time stepping

scheme are all extended for response sensitivity computation. Based on several appli-
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cation examples, many issues related to DDM based response sensitivity analysis are

studied. The subjects of these studies include: (1) The effect and acceptable range of

the perturbation size when using forward finite difference (FFD) analysis to approach

and thus validate the DDM results; (2) The convergence of DDM-based response sen-

sitivity results with respect to the temporal and spatial resolutions; and (3) the effect of

damping and strain-hardening (i.e., post-yield material stiffness) on response sensitiv-

ity results. 

2. As one of the main contributions to sensitivity and reliability analysis for SFSI sys-

tems, an existing multi-yield surface J2 plasticity model, a very versatile material

model used extensively in geotechnical engineering, is studied and further developed

as follows: (1) The consistent (or algorithmic) tangent moduli of this plasticity model

are developed and software implemented. (2) A DDM-based response sensitivity algo-

rithm is developed for this model and software implemented. When using consistent

tangent moduli, the decreasing norm of the unbalanced force vector follows the

asymptotic rate of quadratic convergence characteristic of Newton’s process. 

Based on the comparative studies performed between the use of consistent and

continuum tangent moduli, it is observed that in some computational cases (i.e., when

the convergence tolerance is relatively small, or for large time step size in dynamic

analysis), the use of the consistent tangent moduli reduces significantly both the num-

ber of iterations needed per load/time step to achieve convergence and the computa-

tional time. 
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The algorithm developed for response sensitivity analysis based on the DDM and

the material consistent tangent moduli is validated through the Forward Finite Differ-

ence (FFD) method. The computational results indicate that the FFD results converge

to the DDM results as the perturbation of the sensitivity parameter decreases within

an acceptable range which depends on the computational round-off error, thus verify-

ing the DDM results. 

The DDM-based response sensitivity algorithm provides quantitative measures to

evaluate the relative importance of the material parameters in terms of their relative

influence on the structural and/or soil response (both global and local) of interest. It is

found that stiffness related material parameters in both the structure and the soil are

dominant when the system is subjected to low intensity earthquake excitation, while

strength related material parameters are the most important ones when the system is

subjected to strong earthquake excitation. 

(3) A simplified probabilistic response analysis method based on the mean centered First-

Order Second-Moment (FOSM) analysis using non-linear finite element response and

response sensitivity analyses, is applied to structural and/or geotechnical systems sub-

jected to quasi-static pushover loads. The effects on FOSM analysis results of using

different methods for computing response sensitivities are also investigated. It is

found that the FOSM approximation using the DDM for computing response sensitiv-

ities provides, at very low computational cost, very good estimates of the mean and

standard deviation of the response for low-to-moderate levels of material non-linear-

ity in the response of structural and/or geotechnical systems subjected to quasi-static

pushover load.
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Furthermore, the relative importance (in both the deterministic and probabilistic

sense) of the material parameters on the structural response is obtained as by-product

of an FOSM analysis at small additional computational cost. 

It can be concluded that FOSM analysis provides a large amount of probabilistic

information at low computational cost and can provide satisfactory accuracy for prob-

abilistic analysis of structural and/or geotechnical systems subjected to quasi-static

pushover load, provided that the level of material non-linearity exhibited by the sys-

tem is low to moderate. For high level of material non-linearity, FOSM can still be

used effectively to obtain qualitative information on the importance ranking of mate-

rial model parameters on the system response.

4. Several advanced reliability analysis methods are further developed and applied to

SFSI systems for both time invariant and time variant reliability analysis. Except for

crude Monte Carlo simulation, these methods are based on the knowledge of the

design point(s). In order to obtain a robust design point(s) search algorithm, the gen-

eral-purpose optimization toolbox SNOPT is adopted, customized to reliability analy-

sis problems and interfaced with the finite element analysis software framework

OpenSees used in this research. SNOPT offers significant advantages for solving

large-scale design point search problems, such as robustness, efficiency, and flexibil-

ity. In order to estimate the failure probability accurately, several sampling methods

have been implemented in the reliability framework of OpenSees. These methods

include crude Monte Carlo Simulation (MCS), Importance Sampling (IS), and Orthog-

onal Plane Sampling (OPS) combined with a robust line search root finding algorithm. 
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Based on the newly developed/modified/extended reliability analysis methods

and the FE response sensitivity analysis framework, a realistic nonlinear SFSI appli-

cation example is studied for time invariant reliability analysis. The failure probabil-

ity estimates obtained using different methods (FORM, IS, OPS, and MCS) are

consistent, thus validating the software implementation of these methods. For cases in

which the failure probability is very small (e.g., pF < 10-3), or when a small coeffi-

cient of variation (e.g., < 5%) of the failure probability estimate is required, the use of

MCS is not feasible due to its unacceptable computational cost. In the present work, it

was found that FORM results for time-invariant reliability analysis are of acceptable

accuracy and require far fewer evaluations than IS and OPS. However, in general,

FORM is not guaranteed to be accurate. In time-invariant reliability analysis, IS is

more efficient than OPS in the sense that it requires significantly fewer evaluations of

the performance function. 

An existing algorithm for computing the mean upcrossing rate in time variant reli-

ability analysis, already implemented in the reliability framework of OpenSees, was

further refined and improved for example to deal with non-converging cases in limit-

state function evaluation. This algorithm was then used to solve SFSI time variant

reliability analysis problems. In time variant reliability analysis of nonlinear SFSI

systems, it was found that the FORM approximation for mean upcrossing rate is sig-

nificantly inaccurate, especially in the case of highly nonlinear response behavior of

the system. In this case, the OPS based on the design point(s) provides a good esti-
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mate of the mean up-crossing rate time history and, therefore, of an upper bound of

the failure probability. It provides significant improvement on the FORM results. 

In order to study the topology of limit state surfaces (LSS) for both time invariant

and time variant structural reliability problems, a new visualization method called

Multi-dimensional Visualization in Principal Plane (MVPP) is developed and imple-

mented in OpenSees. It was found that LSSs for typical nonlinear structural and SFSI

systems are significantly nonlinear along only a few principal directions (i.e., 3-5

directions) and the nonlinearity along the remaining directions is small and can be

ignored without significant loss of accuracy in estimating the failure probability. The

geometrical insight gained from the MVPP has led to the development and implemen-

tation of a new hybrid computational reliability method, called the DP-RS-Sim

method, which combines the design point (DP) search, the response surface method-

ology (RS), and simulation techniques (Sim). This method is applied for the time

invariant reliability analysis of a nonlinear structural system subjected to quasi-static

pushover. Based on the experience gained so far, it is observed that the DP-RS-Sim

method is accurate and efficient in the sense that it yields very good results with sig-

nificantly less simulations compared to IS or OPS. The efficiency of the DP-RS-Sim

method is still hindered by the expensive computation of the Hessian matrix of the

limit-state function at the design point. 

5. A general-purpose OpenSees-SNOPT framework for solving optimization problems in

nonlinear structural and/or geotechnical systems is developed and presented. Several

application examples in nonlinear soil FE model updating are solved using this frame-

work and presented. 
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Based on the numerical examples considered, the OpenSees-SNOPT framework

allows to obtain the global minimum of the objective function provided the initial

parameter values are not far from their actual (“true”) values, or when appropriate

constraints are added. The convergence rates obtained using OpenSees-SNOPT com-

bined with FE response sensitivities computed using the DDM and FFD methods,

respectively, were compared. It was found that the DDM-based computation of the

gradients of the objective and constraint functions increased drastically the rate of

convergence (as measured by the number of iterations to achieve convergence) of the

nonlinear finite element model updating process as compared to when using FFD-

based gradient computation. This advantage of the DDM-based over FFD-based gra-

dient computation increases with the nonlinearity in the system response behavior.

Furthermore, it was observed that this advantage is even more significant when artifi-

cial numerical noise is added to the simulated ‘experimental’ response data so as to

model measurement noise. 

The OpenSees-SNOPT based nonlinear FE model updating strategy was then

applied to a real world example consisting of a multi-layered nonlinear soil column at

the Lotung downhole array in Taiwan. A linear soil FE model was calibrated (through

FE model updating) to best represent the Lotung soil behavior during a low intensity

earthquake, while a nonlinear FE model was calibrated to capture the actual nonlinear

soil behavior during a strong earthquake. The calibrated linear and nonlinear soil FE

models with parameters obtained from OpenSees-SNOPT were then used to simulate

the response of the Lotung soil to other recorded earthquakes. In both the linear and

nonlinear cases, the simulated soil response is very close to the recorded response.
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This demonstrates that the calibrated/optimum soil FE models obtained using the

OpenSees-SNOPT framework are physically meaningful. 

9.2   Recommendations for Future Work

Based on the research work performed and presented herein, several research areas

have been identified as open to and in need of future work. Most of these can be investi-

gated based on the analysis framework for SFSI systems presented in this dissertation with

little if any new software development. 

(6) In order to fully exploit the advantages of the state-of-the-art finite element technol-

ogy, DDM-based response sensitivity analysis needs to follow the advances of FE

response-only methods. Derivation and implementation of the response sensitivity

algorithms are required for new elements, new integration points (e.g., frame section

models), new material constitutive models (such as sand), two-phase soil models, and

various analysis options (e.g., displacement-control and arc-length solution strate-

gies). 

(7) The role and effect of the soil in SSI problems needs to be further studied in the con-

text of probabilistic and reliability analysis (e.g., difference in results of response sen-

sitivity analysis, probabilistic response analysis, and reliability analysis between SSI

systems with or without soil, which may affect the analysis of such systems in the

new performance-based earthquake engineering methodology). This is particularly

necessary for structures made of new materials or structures with extremely high

safety requirements such as nuclear power plants, or when considering very innova-

tive designs.
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(8) The source of discontinuities (along the parameter(s) axis) in FE dynamic response

sensitivity analysis due to time discretization needs to be investigated.

(9) The proposed DP-RS-Sim reliability analysis method is still in its infancy stage of

development. Further testing and extensions of this method are needed. To compute

the first few principal directions of the limit-state surface without computing the

whole Hessian matrix would lead to a crucial improvement of this method in terms of

computational cost. Application of this newly developed method to SFSI systems will

be very valuable. This DP-RS-Sim method should be extended/adapted to the case of

multiple design points. 

(10) The sensitivity-based nonlinear FE model upating strategy must be applied to SFSI

systems, for which experimental and/or field data is available. Such applications will

allow to evaluate the nonlinear prediction capabilities of state-of-the-art modeling and

analysis tools of structural and geotechnical systems combined. 

(11) Parallel/distributed computing is a promising approach to alleviate the computational

demand in conducting large-scale FE analysis of structural and/or geotechnical sys-

tems. Considering the advantage of OpenSees as a C++ based software, parallel/dis-

tributed computing methods for response-only analysis is already functional. These

high performance computing capabilities should be extended to support response sen-

sitivity, probabilistic response, and reliability analyses of large-scale structural and/or

geotechnical systems. 

(12) Other methods of analysis for SFSI systems besides the direct approach using FE

analysis should be considered. A hybrid method consisting of combining theoretical

closed form solutions for the soil domain (assumed to be linear elastic) and a nonlin-
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ear FE model of the structure has been developed by the author and co-workers,

which does not appear in this dissertation. The response sensitivity and reliability

analysis methods presented herein could be extended to this hybrid method of analy-

sis of SFSI systems. 

(13) The topic of Reliability Based Optimum Design (RBOD) of SFSI systems should be

investigated based on the response sensitivity and reliability analysis framework

developed in this reserch.

(14) The optimization software package SNOPT is a powerful computational tool for local

optimization, but it cannot guarantee finding of the global minimum. Advanced glo-

bal optimization algorithms, such as the coupled local minimizer, may be adopted and

combined with SNOPT for finding the global optimum in structural reliability analy-

sis and FE model updating. 

(15) The numerical difficulties (e.g., numerical divergence) encountered in nonlinear static

and dynamic response analysis of SFSI systems suggest that the soil plasticity models

used need to be further investigated. Furthermore, more refined/realistic modeling of

the interface between soil and (deep) foundations should be considered.
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