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This paper presents the results of a comprehensive comparison study between the ana-
lytically predicted and experimentally identified dynamics of the shaking table system
built recently in the Structural Engineering Laboratory at Rice University in Houston,
Texas. The primary objectives of the research presented here are two-fold: (1) to shed
light into the dynamic performance of a small-to-medium size, uni-axial, servo-hydraulic,
displacement-controlled shaking table system, and (2) to validate a linearised dynamic
model of the system (in the form of the total shaking table transfer function) devel-
oped earlier by the authors from basic principles. The analytical model incorporates the
inherent dynamic characteristics of the various components of the shaking table sys-
tem (i.e. controller, servovalve, actuator, test specimen, and reaction mass) and their
dynamic interaction.

The test-analysis correlation study performed over a wide range of operating and
payload conditions provides useful information on the sensitivity of the shaking table
transfer function to control gain parameters and how it can be used to tune the shaking
table controller for optimum performance under various payload conditions. The good
test-analysis correlation results obtained validate the analytical shaking table model,
show its robustness, and provide keen insight into the underlying coupled dynamics of a
shaking table system. In order to achieve this good test-analysis correlation, it was crucial
to include a time delay in the analytical model of the shaking table system (innovative
feature of the model to account for the time lag in the response of the servovalve-
actuator system). The expected significant dynamic interaction between payload and
shaking table is also confirmed by this study.
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delay.
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1. Introduction

It is known that the reproduction through shaking table of commanded dynamic sig-

nals (e.g. earthquake ground motions) remains imperfect [Rea et al., 1977; Hwang

et al., 1987; Rinawi and Clough, 1991]. The undesired signal distortion depends

on the inherent dynamic characteristics of the various sub-systems (mechanical,

hydraulic, and electronic) of the shaking table — payload system and their in-

teraction. In the past decade, significant research was devoted to both evaluating

the actual performance of existing shaking table facilities [Clark, 1992; Kusner

et al., 1992; Carydis et al., 1995; Crewe and Severn, 2001] and developing advanced

(real-time adaptive) control algorithms to improve the accuracy in time history

reproduction [Stoten and Gomez, 2001].

In order to achieve meaningful and reliable results in performing dynamic tests

with a shaking table, a mere evaluation of the accuracy of the table in motion

reproduction is not sufficient. Indeed, to effectively use a shaking table for struc-

tural dynamic testing, it is necessary to identify and understand the unavoidable

dynamic interaction between the several sub-systems (mechanical, hydraulic, and

electronic) of the shaking table — test structure system. Furthermore, a thorough

understanding of the sensitivities of the shaking table dynamics to control param-

eters/gains provides invaluable guidance in determining the optimal control gain

setting that maximises the table accuracy in motion reproduction for a given pay-

load. A complete and reliable understanding of the shaking table dynamics can

be obtained only through an in-depth test-analysis correlation study, which is the

main focus of this paper.

The first part of the paper briefly describes (1) the characteristics of the shaking

table system, (2) the linear analytical model used to predict the shaking table dy-

namics, (3) the method used to estimate the actual shaking table transfer function

from dynamic experimental data, and (4) the determination of the unknown (not

physically identifiable a priori) model parameters based on experimental results

in order to properly calibrate the analytical model. The dynamic shaking table

model was developed earlier by the authors [Trombetti et al., 1997a; Conte and

Trombetti, 2000]. It incorporates the inherent dynamic characteristics of the var-

ious components of the shaking table system (i.e. controller, servovalve, actuator,

test specimen, and reaction mass) and their dynamic interaction. The second part

of the paper presents the results of an exhaustive comparison study between the an-

alytically predicted and experimentally identified shaking table transfer functions

for a wide range of operating and payload conditions. The experimental results

were obtained by the authors from the uni-axial, servo-hydraulic, stroke controlled

shaking table recently built in the Structural Engineering Laboratory of the Civil

Engineering Department at Rice University in Houston, Texas. This test-analysis

correlation study also serves the purpose of validating the analytical model and

evaluating its robustness, another objective of this paper.
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2. The Rice University Shaking Table

The Rice University uni-directional shaking table shown in Fig. 1 is capable of

reproducing, after scaling for similitude, earthquake ground motions with a peak

acceleration up to 6g’s, a peak velocity up to 90 cm/s (36 in/s), and a peak displace-

ment up to 7.5 cm (3 in), for a maximum payload of 700 kg (1500 lbs). The Rice

table has a frequency bandwidth of approximately 70 Hz (for bare table condition).

The 150 cm by 150 cm (5 ft by 5 ft) and 7.6 cm (3 in) thick aluminium table platform

rides on high precision rails through low friction linear bearings and is driven by a

(a)

(b)

Fig. 1. Rice University shaking table: (a) general configuration, and (b) close-up.
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156 kN (35 kips) linear hydraulic actuator powered by a 114 l/min (30 gpm) hy-

draulic pump. The rail-table system is mounted on a 31850 kg (70 000 lbs) reaction

mass consisting of three layered 366 cm × 366 cm × 30.5 cm (12 ft × 12 ft × 1 ft)

reinforced concrete slabs post-tensioned together and connected to the laboratory

floor through a grid of steel I-beams. The hydraulic actuator is driven by a three-

stage servovalve governed by a digitally supervised analog controller that employs a

proportional-integral-derivative-feedforward-differential pressure algorithm in order

to control the displacement of the actuator arm. Feedback signals are provided by an

actuator mounted LVDT monitoring the displacement of the actuator arm, a servo-

valve mounted LVDT monitoring the actual position of the third stage (main stage)

spool of the servovalve and one differential pressure (∆P ) transducer monitoring

the differential pressure across the actuator piston. Further information and details

concerning the analysis, design, and construction of the Rice University shaking

table are presented in a comprehensive report by Muhlenkamp et al. [1997].
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Fig. 2. Pseudo block diagram representation of the shaking table system.
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3. Analytical Shaking Table Transfer Function Model

The analytical lineara dynamic model of the Rice University shaking table used

herein was developed earlier by the authors [Trombetti et al., 1997a; Conte and

Trombetti, 2000]. It accounts for proportional, integral, derivative, feed-forward,

and differential pressure control gains, time delay in the response of the servo-

valve main stage spool to a given electrical signal, compressibility of the actuator

fluid, oil leakage across the sealed joints within the actuator, flexibility of the reac-

tion/foundation mass (or base flexibility), and dynamic characteristics of the test

specimen. In other words, this model accounts for the dynamic interaction between

the various components of the shaking table system (i.e. controller, servovalve, ac-

tuator, test specimen, and reaction mass). Based on the pseudo block diagram

representation of the shaking table system shown in Fig. 2, the analytical model of

the shaking table system was developed as an input-output transfer function, T (s),

in the Laplace domain.b The input consists of the desired/commanded displace-

ment signal xd(t) representing the absolute (or total) displacement time history to

be reproduced on the shaking table, while the output corresponds to the actual or

achieved table absolute (or total)c displacement response xta(t). The shaking table

transfer function is given by [Conte and Trombetti, 2000]

T (s) =
xta(s)

xd(s)
=
xb(s) + xt(s)

xd(s)
= H(s) · (B(s) + 1) (1)

where

H(s) =
xt(s)

xd(s)

=
S(s)·[(Pgain + 1

s ·Igain)·Kx−cond + s·(FFgain +Dgain)·KD−cond]

1 + S(s)·[(Pgain + 1
s ·Igain)·Kx−cond + s·Dgain ·KD−cond − dPgain · s

2·mt
A ·Kdp−cond ·HF (s)]

(2)

S(s) =
xt(s)

xc(s)
=

Ht(s)

s3 · V mt

4βA
·HF (s) + s2mt · kle ·HF (s) + s · A

(3)

Ht(s) =
qs(s)

xc(s)
= kt ·

Ki
pro + s ·Ki

der

1 +Ai(s) · k1 · k2 · (Ki
pro + s ·Ki

der)e
−τ ·s · e

−τ ·s (4)

HF (s) = [1 +B(s)] ·
[
1 +

mp

mt
·Hp(s)

]
(5)

aEven though servo-hydraulic actuation systems are inherently nonlinear, especially for large
amplitude simulations near the performance capacity of the system, linearised models are quite
effective in capturing the actual shaking table dynamic behavior as will be shown in this paper.
bThe expression for the table transfer function T (f) in terms of the cyclic frequency f in Hertz
is then simply obtained by using the substitution s = i2πf (where i =

√
−1) in the table transfer

function expressed in terms of the Laplace parameter s.
cWith respect to an inertial reference system. In this analytical model, the laboratory ground floor
was assumed to be an inertial reference system.
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B(s) =
xb(s)

xt(s)
=

−s2 · mt

mT
·
{

1 +
mp

mt
[Hp(s)]

}
s2

{
1 +

mp

mT
·Hp(s)

}
+ s · 2ξbωb + ω2

b

(6)

Hp(s) =
xta(s) + xp(s)

xta(s)
=

s · 2ξpωp + ω2
p

s2 + s · 2ξpωp + ω2
p

. (7)

The system variables entering the above formulation of the shaking table transfer

function are defined as follows:

Pgain (V/V), Igain (Hz), Dgain (s), FFgain (s), dPgain (V/V) = proportional,

integral, derivative, feed-forward, and delta-pressure control gains,d respectively,

of the outer control loop; Kx−cond, KD−cond = displacement transducer condi-

tioning/conversion constant (V/m), Kdp−cond = pressure transducer condition-

ing/conversion constant (V/Pa); mt = mass of the table platform (including the

mass of the moving parts of the servovalve-actuator system); mb = effective foun-

dation/reaction mass; mp = mass of test specimen (or payload); mT = mb + mt;

A = effective cross-sectional area of the actuator piston; V = total volume of both

chambers of the actuator; β = effective bulk modulus of the actuator fluid; kle =

flow-force fluid leakage coefficient; kt = table gain factor;Ki
pro, K

i
der = proportional

and derivative gain constants, respectively, of the inner control loop; Ai(s) is the

so-called “inner loop” feedback transfer function (or feedback conditioner); τ =

servovalve time delay (used to model the time lag in the response of the servovalve-

actuator system); ωb and ξb = effective natural circular frequency and damping

ratio, respectively, of the reaction/foundation mass;e ωp and ξp = natural circular

frequency and damping ratio, respectively, of the SDOF test specimen. The above

shaking table transfer function model for an SDOF payload was also extended to

account for a two-dimensional frame-type MDOF test structure. For the sake of con-

ciseness, the model for MDOF payload, although used in this study, is not presented

here, but can be found elsewhere [Trombetti et al., 1997a; Conte and Trombetti,

2000]. For the definition of the remaining variables, the reader is referred to Fig. 2.

As the servovalve can be driven much more accurately than the other com-

ponents (hydraulic and mechanical) of the shaking table system (a fact that was

observed experimentally by the authors for the Rice University shaking table), the

effect of the inner control loop is usually successfully neglected in shaking table

modelling [Rea et al., 1977; Rinawi and Clough, 1991; Dyke et al., 1995]. This can

dThe notation used in this paper for the control gain parameters differs from that used in the
previous paper by the authors [Conte and Trombetti, 2000]. The two notations are related through:
Kpro = Pgain · Kx−cond, Kint = Igain · Kx−cond, Kder = Dgain · KD−cond, Kff = FFgain ·
KD−cond, Kdp = dPgain · Kdp−cond. Furthermore, we have that: Kpro · kt (in previous paper)
= Pgain · Kx−cond · kt (in this paper). The different notation was adopted here in order to be
consistent with the user-set control gains adjustable from the front panel of the actual controller.
eωb = kb/(mb +mt) and ξb = cb/2

√
kb(mb +mt) where kb and cb denote the effective stiffness

and effective damping coefficients, respectively, of the reaction/foundation mass.
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be achieved by setting Ki
pro = 1, Ki

der = Ai(s) = 0, thus leading to the follow-

ing simplified expression for the three-stage servovalve transfer function adopted

herein:

Ht(s) =
qs(s)

xc(s)
= kte

−τs . (8)

The above analytical shaking table model does not account for sensor dynamics as

the frequency response of the feedback sensors used by the controller of the Rice

University shaking table is flat (i.e. constant amplitude and zero phase) well beyond

the operating frequency range of the table (0–80 Hz).

4. Estimation of Actual Shaking Table Transfer Function

To compare the actual performance of the shaking table system with the prediction

obtained from the above analytical model, it is necessary to determine the actual

total table transfer function from experimental dynamic measurements. Therefore,

a transfer function estimation stage must be introduced, which brings in some

uncertainty. In order to minimise the uncertainty introduced by this estimation

stage, a random excitation approach was used in conjunction with the Bartlett’s

procedure of spectral estimation [Bartlett, 1948], both briefly described below.

In the case of a linear, time-invariant dynamic system subjected to stochas-

tic/random excitation F (t), an input-output relationship can be expressed in the

frequency domain as [Lin, 1986]

ΦFX(ω) = ΦFF (ω) · T (ω) (9)

where ω denotes the circular frequency in rad/sec, X(t) represents the stochas-

tic dynamic response/output of the system, ΦFF (ω) and ΦFX(ω) are the power

spectral density function of the input process and the cross-power spectral density

function of the input and output processes, respectively, and T (ω) is the system

transfer function.

In the estimation of the actual shaking table transfer function, the input F (t)

and output X(t) are signals in digital form and of limited duration (i.e. time series).

Therefore, from these input and output time series, only an imperfect estimation

of their power and cross-power spectral density functions can be obtained. Herein,

periodogram estimates of ΦFF (ω) and ΦFX(ω), denoted as Φ̂FF (ω) and Φ̂FX(ω),

respectively, are used.

In order to reduce the inherent statistical variability (i.e. variance) of the peri-

odogram estimate, the Bartlett’s procedure of spectral estimation is adopted, which

is a non-parametric system identification method. The Bartlett’s procedure consists

of segmenting the total input and output time series of length L into K segments

of equal length M (i.e. L = KM). Then, the Bartlett’s estimates of ΦFF (ω) and

ΦFX(ω), denoted as Φ̂BFF (ω) and Φ̂BFX(ω), respectively, are obtained by averaging
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the corresponding periodogram estimates obtained from each of theK segments, i.e.

Φ̂BFF (ω) =
1

K
·
K∑
j=1

Φ̂
(j)
FF (ω) , Φ̂BFX(ω) =

1

K
·
K∑
j=1

Φ̂
(j)
FX(ω) (10)

where Φ̂
(j)
FF (ω) and Φ̂

(j)
FX(ω) denote the periodogram estimate of the power and

cross-power spectral density functions, respectively, computed from the jth time

segment (or window).f

After extensive numerical simulation based on ARMA processes [Trombetti

et al., 1997b], the following specific features of the Bartlett’s procedure to estimate

the actual total shaking table transfer function between the commanded, F (t),

and the actual, X(t), absolute table acceleration were selected. A set of eleven

(i.e. K = 11) statistically independent, uniformly distributed, discrete white noise

realizations of 4.0906 s (= 214/4000) duration output at 4000 Hz were used as

commanded table absolute acceleration F (t) with special provisions being made

[Trombetti et al., 1997b] to eliminate the transient (nonstationary) part of both

commanded, F (t), and actual (recorded), X(t), table acceleration histories. Fur-

thermore, a 3-terms Blackman Harris tapered window was applied to each input

and output data segment.g

For consistency, the commanded displacement (= double integrated commanded

white noise acceleration) and achieved table displacement and acceleration were

acquired at 4000 Hz sampling frequency and in records of length 214 through the

same data acquisition (DAQ) board before being used to estimate the actual shaking

table transfer function.h Given the high sampling rate capability of the dynamic

data acquisition boards used in this study and the performance characteristics of

their built-in analog and digital anti-aliasing filters, no appreciable signal distortion

occurs in the frequency range of interest (0–120 Hz) due to either low-pass filtering

or digitisation. The DAQ boards used adjust automatically their cut-off frequency

to half the sampling frequency (= Nyquist frequency).

fThe periodogram estimate of the cross-power spectral density function Φ
(j)
RS(ω) of generic random

processes R(t) and S(t) is defined as

Φ̂
(j)
RS(ω) =

1

M
·
[
R

(j)
M (ω) · S(j)

M (ω)

]
with R

(j)
M (ω) =

M−1∑
n=0

w(n) · r((j − 1) ·M + n) · e−i·ω·n·∆t

where the overline denotes the complex conjugate, w(. . .) is the time window (or taper) used to
extract the time segments from the total time series r(. . .), and ∆t is the sampling time interval.
gThrough ARMA simulation, this window was found to be optimum for the present application
in terms of bias of the spectral estimate and spectral leakage [Trombetti et al., 1997b].
hThe selected sampling rate (fs = 400 Hz) and number (N = 214) of acquired data samples per
record were, respectively, the smallest sampling frequency and largest number of acquired data
points, respectively, imposed by the capabilities of the dynamic data acquisition boards and host
computer available at the time of this research project at Rice University. Nonetheless, this non-
ideal choice of fs and N (resulting in a relatively large frequency resolution of ∆f = 0.24 Hz)
was still deemed acceptable for the purpose of estimating experimentally the total table (with and
without specimen) transfer function in the frequency range from 0 to 120 Hz.



October 22, 2002 17:6 WSPC/124-JEE 00091

Shaking Table Dynamics 521

5. Determination of Unknown Model Parameters Based on

Experimental Results

5.1. Shaking table model parameters

The analytical model of the total shaking table transfer function presented in Sec. 3

depends on a set of parameters which can be subdivided into the following four

categories:

(1) Known system parameters : These parameters relate to geometric and physical

properties of the system, which are precisely known a priori. They are: A =

82.13 cm2 (12.73 in2), V = 1668.86 cm3 (101.84 in3), mt = 643 kg (1413 lbs),

and mb = 29 500 kg (65 000 lbs).

(2) Unknown servo-hydraulic parameters: These parameters relate to physical re-

sponse characteristics of the servo-hydraulic system that are not known a priori.

The leakage coefficient (kle), the table gain factor (kt) and the servovalve time

delay (τ) depend on the internal characteristics of the servovalve-actuator sys-

tem. The bulk modulus (β) of the actuator fluid/oil can be estimated to approx-

imately 690 MPa (100 000 psi); however, due to its sensitivity to temperature

changes and finite stiffness of the walls of the actuator cylinder, it is very diffi-

cult to estimate accurately a priori the effective oil bulk modulus.

(3) User-set control gain parameters: The proportional gain (Pgain), integral gain

(Igain), derivative gain (Dgain), feed-forward gain (FFgain) and delta-pressure

gain (dPgain) can be set precisely (in digital form) by the operator of the shaking

table from the controller front panel to tune the dynamics of the shaking table

system.

(4) Other parameters : They consist of the transducers conditioning/conversion con-

stants Kx−cond, KD−cond, and Kdp−cond, and the dynamic characteristics of the

reaction/foundation mass, ωb and ξb, and those of the SDOF payload, ωp and

ξp. The conditioning constants were measured to be: Kx−cond = 0.787 V/cm

(2 V/in), KD−cond = Kx−cond/2 = 0.394 V/cm (1 V/in), and Kdp−cond =

1/13.05 V/MPa (1/90 V/ksi). Based on an independent test-analysis correlation

study performed by the authors [Trombetti et al., 1997a] encompassing both im-

pulse and forced vibration tests, the following effective SDOF dynamic charac-

teristics were obtained for the foundation/reaction mass: fb = ωb/2π = 27.1 Hz

and ξb = 5.5%. The intrinsic dynamic characteristics for the payload(s) used

in this test-analysis correlation study will be given on a case-by-case basis in

presenting the results.

5.2. Experimental identification of unknown

servo-hydraulic parameters

In order to obtain reliable estimates of the unknown servo-hydraulic parameters,

kt, kle, β and τ , a nonlinear least square fit between the experimentally identified
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total table transfer function and the analytical model was performed over a wide

range of operating and payload conditions. The nonlinear least-square fit consists of

minimizingi the Euclidean (or L2) norm of the difference between the experimental

and analytical magnitude transfer functions over the frequency range between 0

and 120 Hz. Due to the extreme jaggedness of the experimentally identified phase

transfer function, no attempt was made to least-square fit the experimental and an-

alytical shaking table phase transfer functions. The nonlinear least square fit based

on magnitude only of the shaking table transfer function led to successful results in

capturing also the salient features of the actual shaking table phase transfer func-

tion in accordance with the Bode’s gain phase relationship [Bode, 1965; Franklin

et al., 1994] stating that for any stable minimum-phase system (i.e. with no RHP

zeros or poles), the phase of the system transfer function is uniquely related to the

magnitude of the system transfer function.

A large number of least squares fits was performed over a wide range of operat-

ing conditions (over 60) of the table (bare and loaded table conditions with various

control gain settings). It was observed that, due to the inherently nonlinear nature

of servo-hydraulic actuation systems, it was not possible to achieve high-fidelity

analytical predictions over a wide range of operating conditions with a unique set

of servo-hydraulic parameters (kt, kle, β, τ). However, the least square optimisation

results [Trombetti et al., 1997b] indicate that the servo-hydraulic parameters are

sensitive, within engineering accuracy, only to the derivative gain Dgain and the

effective specimen natural frequency ωp, while they remain quasi-constant with re-

spect to the other control gains (Pgain, Igain, FFgain, dPgain) and the payload weight.

Thanks to this limited sensitivity, it was possible to linearise the servo-hydraulic

shaking table system about only a few (seven) operating points.j Thus, the grid

of table operating conditions and corresponding sets of identified servo-hydraulic

parameters was subdivided into seven groups (or operating points) over which the

servo-hydraulic parameters were quasi-constant. The sets of servo-hydraulic param-

eters charac-terizing each of these seven groups are given in Tables 1 and 2; they

were obtained as rounded-off average of the values of parameters kt, kle, β, and τ

across the group. Table 1 shows the dependence of the effective (optimum) values of

the servo-hydraulic parameters upon the value of the derivative control gain, Dgain.

It is observed that an increase in Dgain decreases the value of both the effective table

gain factor kt and the effective oil bulk modulus β, while it increases the value of

the effective servovalve time delay τ . On the other hand, the effective leakage coef-

ficient, kle, is found to be independent of the derivative control gain. Table 2 shows

the dependence of the effective (optimum) values of the servo-hydraulic parameters

iThe minimization was performed using function “fmins” in Matlab [1992] with the tolerance set
to 0.01. For more details, the reader is referred to [Trombetti et al., 1997b].
jThese seven operating points used for effective shaking table system linearisation are: bare table
condition for Dgain = 5, 10, 18, and 20 ms, respectively, and loaded table condition with Dgain =
18 ms and payload fundamental frequency below 50 Hz, between 50 and 100 Hz, and above 100 Hz,
respectively.
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Table 1. Sets of effective (optimum) servo-hydraulic parameters for bare table condition.

Dgain = 0 ms Dgain = 10 ms Dgain = 18 ms Dgain = 20 ms

kt = 10.37
cm3

V s
kt = 9.82

cm3

V s
kt = 9.82

cm3

V s
kt = 9.52

cm3

V s(
kt = 170

in3

V s

) (
kt = 161

in3

V s

) (
kt = 161

in3

V s

) (
kt = 156

in3

V s

)
β = 689.5 MPa β = 586.1 MPa β = 503.3 MPa β = 482.6 MPa

(β = 100 000 psi) (β = 85 000 psi) (β = 73 000 psi) (β = 70 000 psi)

kle = 4.8× 10−3 cm3

N s
kle = 4.8× 10−3 cm3

N s
kle = 4.8× 10−3 cm3

N s
kle = 4.8× 10−3 cm3

N s(
k = 1.3× 10−3 in3

lbs s

) (
kle = 1.3× 10−3 in3

lbs s

) (
kle = 1.3× 10−3 in3

lbs s

) (
kle = 1.3× 10−3 in3

lbs s

)
τ = 12.0 ms τ = 13.0 ms τ = 13.5 ms τ = 14.0 ms

Name of parameter set: d0 Name of parameter set: d10 Name of parameter set: d18 Name of parameter set: d20
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Table 2. Sets of effective (optimum) servo-hydraulic parameters for loaded table
conditions.i

“Flexible” Payload “Semi-Rigid” Payload “Rigid” Payload
(fund. freq. < 50 Hz) (50 Hz < fund. freq. < 100 Hz) (fund. freq. > 100 Hz)

kt = 9.15
cm3

V s
kt = 11.81

cm3

V s
kt = 11.29

cm3

V s(
kt = 150

cm3

V s

) (
kt = 193.5

cm3

V s

) (
kt = 185

cm3

V s

)
β = 427.5 MPa β = 510.2 MPa β = 524.0 MPa

(β = 62 000 psi) (β = 74 000 psi) (β = 76 000 psi)

kle = 4.8× 10−3 cm3

N s
kle = 7.0× 10−3 cm3

N s
kle = 4.8× 10−3 cm3

N s(
kle = 1.3× 10−3 in3

lbs s

) (
kle = 1.9× 10−3 in3

lbs s

) (
kle = 1.3× 10−3 in3

lbs s

)
τ = 14.0 ms τ = 10.3 ms τ = 10.42 ms

name of parameter set: pf name of parameter set: pfr name of parameter set: pr

iThese optimum servovalve parameters were obtained under the “optimum” control gain
setting for bare table condition.

upon the flexibility of the test specimen as measured by its fundamental natural

frequency. It is not possible to identify a clear trend in the variation of these effec-

tive parameters for increasing payload fundamental frequency, thus suggesting that

these parameters are affected by the dynamic interaction between the test specimen

and oil column in the actuator.

For each of the numerous operating conditions considered, the use of the servo-

hydraulic parameters of the appropriate operating point enables a good to very

good correlation between experimental and analytical results as shown later in

the paper. Therefore, the servo-hydraulic parameters given in Tables 1 and 2 of

the paper should be interpreted as effective parameters aggregating the effects of

various physical phenomena in the controller, servovalve, and actuator.

6. Analytical and Experimental Table Sensitivity to Control

Gain Parameters

This section presents results on shaking table transfer function sensitivities to user-

set control gain parameters (Pgain, Igain, Dgain, FFgain and dPgain) in the context

of a test-analysis comparison study. These sensitivity results were obtained for bare

table condition and, in order to enhance the individual effects of the various control

gain parameters, using control gain settings that are different from those used for

optimum shaking table performance as defined later in Sec. 7. The shaking table

transfer function sensitivity to control gain parameters was obtained by increasing,
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Fig. 3. Total shaking table transfer function for Pgain = 1, 2, 3 V/V, Igain = Dgain = FFgain =
dPgain = 0 (thick solid line = analytical T.F. with non-zero servovalve time delay τ , dashed-dot
line = analytical T.F. with zero servovalve time delay (τ = 0), thin solid line = experimentally
identified T.F.).

starting from zero, the value of one control gain parameter, while keeping the other

control gains at zero.k

kExcept for the proportional gain Pgain that was kept at 1 V/V as a zero value of Pgain leads to
a degenerated, unacceptable performance of the shaking table.
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6.1. Proportional gain (Pgain)

6.1.1. Magnitude of the total shaking table transfer function (M.T.F.)

Figures 3(a), (c) and (e) show the magnitude of the shaking table transfer function

(M.T.F.) for values of the Pgain increasing from 1.0 to 3.0 V/V.l Notice the large

peak in the transfer function at approximately 70 Hz. This is the oil column peak

that is due to the resonance behavior of the SDOF system having as spring the oil

column enclosed in the two actuator chambers and as mass that of the table plat-

form, mt, including actuator piston/arm and swivel head. The oil column frequency

is given by [Conte and Trombetti, 2000]

foil = (A/π)
√
β/(V mt) (11)

and acts here essentially as an upper cut-off frequency of the shaking table dynam-

ics. The distortion in the shaking table M.T.F. (both experimental and analytical)

at a frequency of about 27 Hz is due to the flexibility of the foundation/reaction

mass (i.e. resonance frequency of reaction mass). An increase in the Pgain raises the

magnitude of the table transfer function over the whole frequency bandwidth of the

system. This increase in the M.T.F. is particularly pronounced around 15 Hz where

a new spectral peak originates and at the oil column frequency around 70 Hz.

Notice that the analytical predictions incorporating the servovalve time delay τ

(thick solid line) are in close agreement with the experimental results (thin solid

line).m In contrast, the analytical predictions assuming a zero servovalve time delay

(dashed-dot line) are able to capture only the overall change of the shaking table

M.T.F. for increasing Pgain. Notice that the analytical model with τ = 0 does not

capture the arising spectral peak centered at about 15 Hz due to increasing Pgain,

and considerably overestimates the size of the oil column peak for Pgain = 2.0 V/V

as shown in Figs. 3(c) and (e).

6.1.2. Phase of the total shaking table transfer function (P.T.F.)

Figures 3(b), (d) and (f) display the phase of the total shaking table transfer func-

tion (P.T.F.) for the proportional gain (Pgain) increasing from 1.0 to 3.0 V/V.

The main effect of increasing Pgain is a change in the curvature (from upward to

downward) of the P.T.F. in the frequency range from 0 to 20 Hz. The notch at

about 27 Hz visible in the analytical P.T.F. reflects the resonance frequency of the

foundation/reaction mass.

lAll other control gains were set to zero. The set of servo-hydraulic parameters used in the ana-
lytical model for all values of Pgain is the one referred to as “d0” in Table 1. The good correlation
obtained between analytical and experimental results confirms that the servo-hydraulic parameters
are independent of the proportional gain.
mThe jaggedness characterising the experimentally identified shaking table M.T.F. is inherent
to and consistent with the statistical uncertainties of the wide band spectral estimation method
adopted herein and is also due to electrical line noise [Trombetti et al., 1997b].
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As for the magnitude transfer function, the analytical model incorporating the

servovalve time delay matches significantly better the experimentally identified

P.T.F. than the analytical model with zero servovalve time delay, especially in the

low to intermediate frequency range from 0 to 20 Hz. Due to the averaging process

used in the Bartlett’s procedure, the inherent statistical uncertainty of the estimated

shaking table transfer function, and the conventional calculation/representation of

the phase angle between −π and +π, the actual shaking table phase transfer func-

tion in the neighborhood of −π and +π is incorrectly estimated as close to zero.

For example, two window estimates of −(π− dφ) and +(π− dφ) of an actual phase

value of π average out to zero.

The above results already show that the inclusion of a servovalve time delay in

the analytical model of the shaking table system is crucial to achieve a good cor-

relation between experimental and analytical results. This is further confirmed by

the test-analysis comparison results shown in the next sections. Therefore, for the

sake of conciseness, the analytical prediction of the shaking table transfer function

with zero servovalve time delay will be presented graphically for each case consid-

ered, but without any further comment on the inadequate modelling obtained by

neglecting the servovalve time delay.

6.2. Integral gain (Igain)

6.2.1. Magnitude of the total shaking table transfer function (M.T.F.)

Figures 4(a), (c) and (e) plot the magnitude of the shaking table transfer function

(M.T.F.) for the integral gain (Igain) increasing from 0 to 40 Hz.n Both experimental

and analytical results show a significant increase in the M.T.F. in the very low

frequency range (0–10 Hz) and the rise of a narrow spectral peak centered at about

6 Hz. It is noteworthy that the Igain does not affect at all the shaking table transfer

function above 20 Hz. For integral gains of 0, 20 and 40 Hz, the analytical model

incorporating a servovalve time delay τ is found to be in very good agreement with

the experimental results. It captures accurately both in amplitude and frequency

all the salient features (e.g. peak and notch effect due to base flexibility, oil column

peak) of the experimentally derived M.T.F.

6.2.2. Phase of the total shaking table transfer function (P.T.F.)

Figures 4(b), (d) and (f) display the phase of the total shaking table transfer func-

tion (P.T.F.) for increasing values of the integral control gain, Igain, from 0 to 40 Hz.

The only appreciable effect of increasing Igain is an increase (“steepening”) of the

phase lag in the low frequency range from 0 to 20 Hz.

The analytical model with servovalve time delay τ predicts very well the exper-

imentally identified P.T.F. in the low frequency range from 0 to 20 Hz, especially

in the case of Igain = 40 Hz shown in Fig. 4(f).

nThe Pgain was set to 1.0 (V/V) and all other control gains were set to zero. The set of servo-
hydraulic parameters used in the analytical models is the one referred to as “d0” in Table 1.
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Fig. 4. Total shaking table transfer function for Igain = 0, 20, 40 Hz, Pgain = 1 V/V, Dgain =
FFgain = dPgain = 0 (thick solid line = analytical T.F. with non-zero servovalve time delay
τ, dashed-dot line = analytical T.F. with zero servovalve time delay (τ = 0), thin solid line =
experimentally identified T.F.).

6.3. Derivative gain (Dgain)

6.3.1. Magnitude of the total shaking table transfer function (M.T.F.)

Figures 5(a), (c) and (e) show the M.T.F. for values of the derivative control gain,

Dgain, increasing from 0 to 20 ms.o An increase in this control gain raises the M.T.F.

oThe Pgain was set to 1.0 V/V and all other control gains were set to zero. The set of servo-
hydraulic parameters used in the analytical models depends on the value of the derivative gain,
Dgain, as given in Table 1.
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Fig. 5. Total shaking table transfer function for Dgain = 0, 10, 20 ms, Pgain = 1 V/V, Igain =
FFgain = dPgain = 0 (thick solid line = analytical T.F. with non-zero servovalve time delay
τ, dashed-dot line = analytical T.F. with zero servovalve time delay (τ = 0), thin solid line =
experimentally identified T.F.).

in the intermediate frequency range (from 10 to 60 Hz) and lowers the oil column

frequency from approximately 70 Hz to 65 Hz. Notice the peak and notch effect at

27 Hz due to foundation compliance.

The analytical model accounting for the servovalve time delay τ (as given in

Table 1) is found to be in excellent agreement with the experimentally identified

M.T.F.
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6.3.2. Phase of the total shaking table transfer function (P.T.F.)

Figures 5(b), (d) and (f) depict the phase of the total shaking table transfer function

(P.T.F.) for Dgain increasing from 0 to 20 ms. It is observed that an increase in

Dgain improves (i.e. lowers) significantly (by about three-fold) the actual phase lag

of the table in the low frequency range from 0 to 20 Hz. Notice that most of the
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Fig. 6. Total shaking table transfer function for FFgain = 0, 20, 30 ms, Pgain = 1 V/V, Igain =
Dgain = dPgain = 0 (thick solid line = analytical T.F. with non-zero servovalve time delay τ,
dashed-dot line = analytical T.F. with zero servovalve time delay (τ = 0), thin solid line =
experimentally identified T.F.).
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reduction in the phase transfer function occurs as Dgain increases from 0 to 10 ms.

Further increase in Dgain has practically no effect on the P.T.F.

In this case, the analytical model prediction of the P.T.F. accounting for ser-

vovalve time delay does not capture accurately, as compared to other cases, the

experimentally identified P.T.F. The latter is found to lie between the analytical

predictions with zero and non-zero servovalve time delay in the low frequency range

between 0 and 20 Hz.

6.4. Feed-forward gain (FFgain)

6.4.1. Magnitude of the total shaking table transfer function (M.T.F.)

Figures 6(a), (c) and (e) present the magnitude of the total shaking table transfer

function (M.T.F.) for FFgain increasing from 0 to 30 ms.p This increase in the

FFgain raises (by about three-fold) the magnitude of the total shaking table transfer

function almost uniformly over the entire frequency bandwidth of the shaking table

system, thus maintaining the shape of the M.T.F.

The analytical model that incorporates the servovalve time delay τ is in good

agreement with the experimentally identified M.T.F.

6.4.2. Phase of the total shaking table transfer function (P.T.F.)

Figures 6(b), (d) and (f) show the phase of the total shaking table transfer function

(P.T.F.) for value of the FFgain increasing from 0 to 30 ms. It is found that such

an increase in the FFgain reduces significantly the phase lag of the table in the low

frequency range and further increase in the FFgain has practically no effect on the

table P.T.F. The experimentally identified shaking table P.T.F. in the low frequency

range lies between the analytical predictions with zero and non-zero servovalve time

delay, respectively.

It is worth noting that theDgain and FFgain, both associated with the differential

operator in the control algorithm, have very similar effects upon the total shaking

table phase transfer function.

6.5. Differential-pressure gain (dPgain)

6.5.1. Magnitude of the total shaking table transfer function (M.T.F.)

Figures 7(a), (c) and (e) are plots of the magnitude of the total shaking table

transfer function (M.T.F.) for the differential-pressure gain, dPgain, increasing from

0. to 3.0 V/V.q It is observed that the main effects of increasing the dPgain are: (1)

a significant reduction (about three-fold for dPgain = 3.0 V/V) of the amplitude of

pThe Pgain was set to 1.0 (V/V) and all other control gains were set to zero. The set of servo-
hydraulic parameters used in the analytical models is the one referred to as “d0” in Table 1.
qThe Pgain was set to 1.0 V/V and all other control gains were set to zero. The set of servo-
hydraulic parameters used in the analytical models is the one referred to as “d0” in Table 1.
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Fig. 7. Total shaking table transfer function for dPgain = 0, 1.5, 3.0 V/V, Pgain = 1 V/V,
Igain = Dgain = FFgain = 0 (thick solid line = analytical T.F. with non-zero servovalve time
delay τ, dashed-dot line = analytical T.F. with zero servovalve time delay (τ = 0), thin solid line
= experimentally identified T.F.).

the oil column peak (thus justifying the common reference to dPgain as “numerical”

damping) and (2) a lowering of the oil column frequency of about 5 Hz. The dPgain

is therefore useful to compensate for the amplification of the oil column peak caused

by increasing the proportional, the derivative, or the feedback gain.

The analytical model that incorporates the servovalve time delay τ agrees very

well with the experimentally identified M.T.F., except for some overestimation in

the spectral region around the oil column frequency. Here, the difference between the
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Fig. 8. Sensitivity of analytical total shaking table transfer function to control gain parameters
for bare table condition.

analytical predictions obtained with zero and non-zero servovalve time delay, respec-

tively, is smaller than in the previous cases considered (Figs. 3–6), with nonetheless

a more accurate prediction achieved by incorporating the servovalve time delay.

6.5.2. Phase of the total shaking table transfer function (P.T.F.)

Figures 7(b), (d) and (f) provide plots of the phase of the total shaking table transfer

function (P.T.F.) as the dPgain increases from 0. to 3.0 V/V. From these plots, it is

observed that an increase in the dPgain has insignificant effects on the table P.T.F.

The experimentally identified P.T.F. lies between the analytical predictions with

zero and non-zero servovalve time delay, respectively, with slightly better prediction

by the analytical model with non-zero servovalve time delay.

In summary, the results presented in this section show that the analytical model

that incorporates the servovalve time delayr has a very good predictive capability

(qualitative and quantitative) over a wide range of control gain setting and payload

conditions. In contrast, the analytical model with zero servovalve time delay is able

to provide only an overall qualitative prediction of the total shaking table transfer

function. The above test-analysis correlation and parametric sensitivity studies shed

light into the effects (absolute and relative) that the five control gain parameters

have upon the total shaking table transfer function in the various spectral regions.

The total shaking table transfer function can be considerably modified both in

shape and absolute value via the control gain parameters as synthesized in Fig. 8.

rAlthough widely used in control theory, the time delay has not been used for previous analytical
modelling of shaking table systems and servo-hydraulic actuators [Rea et al., 1977; Hwang et al.,
1987; Rinawi and Clough, 1991; Dyke et al., 1995], therefore making it a unique feature of the
analytical shaking table model developed by the authors [Conte and Trombetti, 2000].
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Next sections show how the control gain parameters are used jointly to optimize

the dynamic performance of the shaking table system for bare (Sec. 7) and loaded

(Sec. 8.4) table conditions.

7. Experimental and Analytical Dynamic Performance of the

Shaking Table under the “Optimal” Control Gain Setting

Based on the results of the sensitivity analysis to control gain parameters pre-

sented in the previous section, a search for the optimal gain setting under bare

table condition was performed. The objective of this optimisation problem was to

minimise, under the physical constraint of the shaking table coupled dynamics,

both the root-mean-square and the maximum absolute value of the departure from

unity (= ideal total shaking table transfer function) of the magnitude of the total

shaking table transfer function over the frequency range between 0 and 120 Hz.

Guided by the sensitivities to control gains of the total shaking table transfer func-

tion provided by the high-fidelity analytical model accounting for servovalve time

delay, the optimum search was conducted by physically varying the user-set control

gains, experimentally identifying the shaking table transfer function, and evaluat-

ing the objective/error functions [Trombetti et al., 1997b]. This optimisation/tuning

process led to the “optimum” control gain setting given in Table 3.

Table 3. “Optimal” control gain setting
for bare table condition.

Pgain = 1.8 V/V FFgain = 18.0 ms

Igain = 40.0 Hz dPgain = −3.0 V/V

Dgain = 18.0 ms

7.1. Magnitude of the total shaking table transfer

function (M.T.F.)

Figure 9(a) displays the magnitude of the experimentally identified and analyti-

cally predicted total shaking table transfer functions under the “optimal” control

gain setting for bare table condition.s Observe that, due to the physical constraint

of the shaking table system dynamics, an ideal transfer function of unity cannot

be achieved. Nevertheless, the optimum actual shaking table M.T.F. obtained os-

cillates around unity over the frequency range between 0 and 120 Hz. Notice the

unavoidable peaks at approximately 5 Hz (induced by the relatively high optimum

value of Igain) and 67 Hz (oil column peak), and the peak and notch effect at about

27 Hz (due to foundation/reaction mass resonance).

sThe set of servo-hydraulic parameters used in the analytical models is the one referred to as
“d18” in Table 1, as a value of Dgain = 18 ms was obtained for the optimum derivative control
gain.
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Fig. 9. (a) Magnitude and (b) phase of the total shaking table transfer function for the
“optimum” control gain setting under bare table condition (thick solid line = analytical T.F.
with non-zero servovalve time delay τ, dashed-dot line = analytical T.F. with zero servovalve
time delay (τ = 0), thin solid line = experimentally identified T.F).

The analytical model incorporating the servovalve time delay τ matches very

well the experimentally identified total shaking table M.T.F., capturing all the

peaks and notches displayed by the experimentally derived M.T.F., with some over-

estimation of the magnitude of the oil column peak.

7.2. Phase of the total shaking table transfer function (P.T.F.)

The phases (P.T.F) of the experimentally identified and analytically predicted to-

tal shaking table transfer functions are shown in Fig. 9(b). The experimentally
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derived P.T.F. lies between the two analytical predictions (with zero and non-zero

servovalve time delay, respectively) in the low frequency range, with however a

better prediction by the model accounting for non-zero servovalve time delay.
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Fig. 10. Displacement and acceleration time history reproduction for (a), (b), (c): El Centro 1940
Earthquake record (N-S comp.) and (d), (e), (f): Parkfield 1966 Earthquake record (bare table con-
dition, “optimum” control gain setting for bare table condition) (solid line = commanded/target
displacement, dotted line = recorded displacement).
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7.3. Time history reproduction capability of the shaking table

The capabilities of the optimally tuned bare shaking table in reproducing earth-

quake displacement and acceleration records are shown in Fig. 10. Figures 10(a),

(b) and (c) correspond to the well known 1940 El Centro Earthquake record (N-S

component), while Figs. 10(d), (e) and (f) correspond to the 1966 Parkfield Earth-

quake record. These two records are scaled both in time and amplitude for similitude

requirements and sub-incremented at a sampling rate of 4000 Hz. The commanded

and achieved ground/table displacement histories are shown in Figs. 10(a) and

(d) for El Centro 1940 and Parkfield 1966, respectively. The corresponding target

and achieved table acceleration time histories are plotted in Figs. 10(b) and (c),

respectively, for El Centro 1940, and in Figs. 10(e) and (f), respectively, for Parkfield

1966. It is observed that a high degree of fidelity is achieved in both displacement

and acceleration time history reproduction, with however a lesser degree of accu-

racy for acceleration than for displacement, which is expected since the earthquake

simulator is stroke/displacement controlled.

8. Experimental and Analytical Shaking Table Transfer Function

Sensitivities to Payload Characteristics

This section presents the results of a correlation study between the experimentally

identified and analytically predicted shaking table sensitivities to a selected set

of both “rigid” and flexible payloads. The objectives of this section are: (1) to

investigate whether and how the actual total shaking table transfer function is

affected by large (relative to the table capacity) “rigid” and flexible payloads, and

(2) to determine the predictive capabilities of the analytical shaking table model

for loaded table conditions.

For this purpose, the Rice University shaking table was loaded with: (1) a series

of “rigid” payloads each consisting of a number of 68 kg (150 lbs) concrete blocks

clamped to the table platform through 11 mm (7/16 in) bolts, and (2) a flexible

payload consisting of a reduced scale three-storey one bay by one bay steel moment

resisting building frame.t

The user-set table control gain parameters used to obtain the results presented in

this section correspond to the optimal gain setting for bare table condition described

in the previous section,u except for a reduction of Igain from 40 Hz to 30 Hz and

zeroing of dPgain. It is worth pointing out that in the present sensitivity analysis,

payloads ranging from 68 to 408 kg (150 to 900 lbs) are considered, thus reaching

60 percent of the table design maximum payload capacity of 700 kg (1500 lbs).

tFor more details about these payload conditions, the interested reader is referred to the original
reports by Trombetti et al. [1997 (Appendix B)].
uThe optimal control gain setting for the loaded shaking table differs from that for bare table
condition. The optimal gain setting for bare table condition was used to enhance the effects of the
payloads on the shaking table transfer function. The issue of re-tuning the control gain parameters
for loaded table condition is addressed in Sec. 9 of this paper.
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8.1. “Rigid” payload (with perfectly rigid modelling)

Figures 11(a) through (f) show the comparison between the experimentally identi-

fied and analytically predicted total shaking table transfer functions for 68, 204, and

408 kg (150, 450, and 900 lbs) “rigid” payloads made of concrete blocks clamped

to the table platform. These payloads were analytically modeled as infinitely stiff

(i.e. rigid) and, therefore, their mass was simply added to that of the table plat-

form.v

8.1.1. Magnitude of the total shaking table transfer function (M.T.F.)

Figures 11(a), (c) and (e) display the magnitude of the total shaking table trans-

fer function (M.T.F.) for increasing “rigid” payload weight. These figures indicate

that the presence on the table of a “rigid” payload of increasing weight reduces the

bandwidth of the shaking table system and raises the M.T.F. within the system

bandwidth, producing a wide spectral peak (centered between 36 and 40 Hz de-

pending on the payload weight) referred to hereafter as “central” peak. The largest

relative increase in the M.T.F. at the location of the central peak occurs with the

addition of the 68 kg (150 lbs) “rigid” payload for which the experimental M.T.F.

increases from approximately 1.2 for bare table condition, see Fig. 9(a), to about

2.7, see Fig. 11(a). The addition of heavier “rigid” payloads does not increase pro-

portionally the amplitude of the newly formed “central” peak: the height of the

experimental “central” peak grows from about 2.7 for the 68 kg (150 lbs) payload

to about 3.5 for the 204 kg (450 lbs) payload and to about 5.3 for the 408 kg (900 lbs)

payload. Careful examination of the magnitude of the experimental transfer func-

tion indicates that the central peak does not correspond to the shifted oil column

peak (as predicted by the oil column frequency in Eq. (11) as another (smaller)

spectral peak is present in the experimentally derived transfer function at about

57 Hz. As shown in the next section, this smaller experimental spectral peak can

be predicted by the analytical shaking table model provided that the actual finite

stiffness of the here assumed perfectly rigid payload clamping system is taken into

account. It is also observed that the peak at about 27 Hz due to foundation/reaction

mass compliance is amplified by the presence of a “rigid” payload on the table. Its

amplitude grows from about 1.5 for bare table condition, see Fig. 9(a), to about

1.7, 2.0, and 3.0 for a “rigid” payload of 68, 204, and 408 kg (150, 450, and 900 lbs),

respectively.

The analytical model incorporating the servovalve time delay τ is found to be

in very good agreement with the experimental results for all “rigid” payloads con-

sidered here, even though the corresponding analytical prediction does not capture

vThe set of servo-hydraulic parameters used in the analytical model is the one referred to as “pr”
in Table 2. As explained in Sec. 5, this set provides the least square fit between analytical and ex-
perimental transfer functions of the table loaded with very stiff (“rigid”) payload (i.e. characterised
by natural frequencies above 100 Hz).
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Fig. 11. Total shaking table transfer function for “rigid” payloads of 68, 204, and 408 kg (150,
450, and 900 lbs) with infinitely stiff analytical modelling (thick solid line = analytical T.F. with
non-zero servovalve time delay τ, dashed dot line = analytical T.F. with zero servovalve time
delay (τ = 0), thin solid line = experimentally identified T.F.).

the above mentioned small spectral peak located at about 57 Hz. In spite of using a

single set (“pr”) of servo-hydraulic parameters, notice the level of detail with which

the analytical model is able to capture (1) the characteristics of the experimentally

derived M.T.F. and (2) their variations due to “rigid” payload of increasing weight

(i.e. amplitude of spectral peaks at about 5 and 27 Hz, and amplitude, frequency

shift, and narrowing of “central” peak).
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8.1.2. Phase of the total shaking table transfer function (P.T.F.)

Figures 11(b), (d) and (f) show the phase of the total shaking table transfer func-

tion for “rigid” payloads of 68, 204, and 408 kg (150, 450, and 900 lbs), respectively.

From these plots, it is observed that a “rigid” payload of increasing weight distorts

increasingly the shape of the experimentally identified P.T.F in the spectral region

around the resonant frequency (∼ 27 Hz) of the foundation/reaction mass. It is

found that the experimentally identified P.T.F. lies between the analytical predic-

tions with zero and non-zero servovalve time delay, respectively, in the frequency

range between 0 and 40 Hz.

8.2. “Rigid” payload (with partially flexible modelling)

As in the previous section, this section deals with the comparison between experi-

mentally identified and analytically predicted total shaking table transfer functions

for “rigid” payload conditions. Here, however, we use an improved analytical model

of the shaking table transfer function which accounts for the actual finite stiffness

of the system employed to clamp the concrete blocks to the table platform. In this

analytical model of the shaking table system with partially flexible modelling of the

“rigid” payload, the latter is modeled as the combination of an SDOF payload with

a natural frequency of 52 Hz (obtained analytically by using the bending stiffness

of the clamping bolts) and a perfectly rigidly clamped payload.w The set of servo-

hydraulic parameters used in the analytical model is the one referred to as “pfr”

in Table 2.x

8.2.1. Magnitude of the total shaking table transfer function (M.T.F.)

Figures 12(a), (c) and (e) compare the experimentally identified and analytically

predicted (using partially flexible modelling of the payload) magnitude of the to-

tal shaking table transfer function (M.T.F.) for “rigid” payloads of 68, 204, and

408 kg (150, 450, and 900 lbs). Notice that the improved analytical model in-

corporating servovalve time delay captures very well the experimentally identified

spectral peaks at approximately 5 Hz and 27 Hz, and the “central” peak, which

was also the case for the analytical model with assumed perfectly rigid payload.

A unique feature of this improved analytical model is that it is moreover able to

capture very well and explain the small spectral peak identified experimentally at

about 57 Hz. A previous analytical study performed by the authors [Trombetti

et al., 1997a; Conte and Trombetti, 2000] in fact reveals that, in the presence of

an SDOF payload characterised by a natural frequency close to the oil column fre-

quency (for bare table condition), the oil column peak splits into two spectral peaks.

wFor the rationale behind this equivalent dynamic modelling of the “rigid” payload, the interested
reader is referred to the original report by the authors [Trombetti et al., 1997a].
xThis set of servo-hydraulic parameters is used because, as explained in Sec. 5, it is the one which
provides a least-square fit between analytical and experimental shaking table transfer functions
for payloads with a natural (fundamental) frequency between 50 and 100 Hz.
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Fig. 12. Total shaking table transfer function for “rigid” payloads of 68, 204, and 408 kg (150,
450, and 900 lbs) with partially flexible analytical modelling (thick solid line = analytical T.F.
with non-zero servovalve time delay τ, dashed dot line = analytical T.F. with zero servovalve time
delay (τ = 0), thin solid line = experimentally identified T.F.).

In accordance with this analytical prediction, the shaking table M.T.F. identified

experimentally for 68, 204, and 408 kg (150, 450, and 900 lbs) “rigid” payloads

displays these two peaks, one of larger amplitude centered at a frequency between

36 and 42 Hz depending on the payload weight and the other at about 57 Hz.

The very good agreement obtained here between the experimental and analyti-

cal (incorporating the servovalve time delay) M.T.F.’s suggests that the so-called
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“rigid” payloads effectively behave as flexible SDOF payloads with high natural

frequency.

The above is a perfect illustration on how the joint use of analytical modelling

and prediction (from a physics-based well calibrated analytical model) and exper-

imental analysis can lead to the correct physical interpretations of shaking table

test results.
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Fig. 13. Total shaking table transfer function for bare table condition and shaking table loaded
with 297 and 501 kg (654 and 1104 lbs) flexible payloads (thick solid line = analytical M.T.F.
with non-zero servovalve time delay τ, dashed dot line = analytical M.T.F. with zero servovalve
time delay (τ = 0), thin solid line = experimentally identified M.T.F.).
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8.2.2. Phase of the total shaking table transfer function (P.T.F.)

Figures 12(b), (d) and (f) compare the experimentally identified phase of the to-

tal shaking table transfer function with the analytical predictions obtained using

zero and non-zero servovalve time delay, respectively. The quality of the agreement

between analytical and experimental results is very similar to that described in

Sec. 8.1 assuming perfectly rigid payloads, except for a peak at about 55 Hz pre-

dicted by the analytical shaking table model with finite stiffness modelling of the

“rigid” payload. This peak, however, is not clearly identified experimentally.
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Fig. 14. Magnitude of total shaking table transfer function for the “optimum” control gain setting
under various payload conditions; (a), (b), (c): “rigid” payloads of 68, 204, and 408 kg (150, 450
and 900 lbs) with partially flexible analytical modelling; (d), (e): flexible 297 and 501 kg (654 and
1104 lbs) 3-DOF payloads (thick solid line = analytical M.T.F. with non-zero servovalve time
delay τ, dashed dot line = analytical M.T.F. with zero servovalve time delay (τ = 0), thin solid
line = experimentally identified M.T.F.).
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8.3. Flexible payload (3-DOF)

Figures 13 and 14 compare the experimentally identified and analytically predicted

total shaking table transfer functions for bare table condition (recalled here) and

two (flexible) 3-DOF payloads of 297 and 501 kg (654 and 1104 lbs), respectively.

The 3-DOF payloads considered consist of a one fifth scale model of a three-storey

one bay by one bay steel moment resisting building frame. This physical model is

2.286 m (7.5 ft) tall, 1.37 m (54 in) wide and 0.66 m (26 in) deep and has a dead

weight (frame only) of 92.5 kg (204 lbs). It was loaded with two different sets of

68 kg (150 lbs) concrete blocks (“rigidly” attached to the three floors) in order to

simulate two 3-DOF payloads of total weight equal to 297 and 501 kg (654 = 204

+ 450 lbs and 1104 = 204 + 900 lbs), respectively. The dynamic characteristics

(stiffness and mass matrices, natural frequencies and mode shapes) to be included

in the analytical shaking table modely were derived using the CAL-91 computer

program [Wilson, 1991] starting from a 3D frame model and performing static

condensation to model only the three translational (horizontal) degrees of freedom

in the weak direction of the frame model as non-zero mass (dynamic) degrees of

freedom. The analytical stiffness and mass matrices obtained are given below and

the corresponding first three modal frequencies of vibration are summarized in

Table 4 where they are compared with experimentally identified results (obtained

using low amplitude white noise excitation in conjunction with transfer function

analysis).z For the sake of consistency with a purely predictive analytical shaking

table model, an assigned modal damping ratio of 0.02 (realistic) was used in the

shaking table model for all three modes of vibration of the payload.

Stiffness matrix : [K]

=

28.377 (16, 198) −15.136 (−8, 640) 1.766 (1, 008)

−15.136 (−8, 640) 26.075 (14, 884) −12.869 (−7, 346)

1.7661 (1, 008) −12, 869 (−7, 346) 11.254 (6424)

 kN/cm

(lbs/in) .

Mass matrix for the 297 kg (654 lbs) building model:

[M ] =

101.3 (0.578) 0 0

0 101.3 (0.578) 0

0 0 94.1 (0.537)

 kg (lbs s2/in) .

yFor the sake of conciseness, the analytical shaking table model for 2D MDOF payload is not
reported in Sec. 3, but is fully described in an earlier publication by the authors [Conte and
Trombetti, 2000]. Furthermore, the set of servo-hydraulic parameters used in the analytical model
with MDOF payload is the one referred to as “pf” in Table 2, while the set of servo-hydraulic
parameters referred to as “d18” in Table 2 is used in the analytical model for bare table condition.
The former set “pf” of servo-hydraulic parameters is used because it least-square fits the experi-
mentally identified M.T.F. of the shaking table loaded with a relatively flexible payload (natural
frequencies below 50 Hz).
zFor the detailed description and the analytical and experimental dynamic analyses of these
reduced-scale models, the interested reader is referred to Appendix B of the original reports by
the authors [Trombetti et al., 1997a].
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Table 4. Experimentally derived versus analytically predicted payload natural frequencies.

297 kg (654 lbs) 297 kg (654 lbs) 501 kg (1104 lbs) 501 kg (1104 lbs)
Experimental CAL 90 Model Experimental CAL 90 Model

Vibration Natural Natural Natural Natural
Mode Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz)

1st lateral 6.40 7.22 5.15 5.53
2nd lateral 16.82 21.58 13.82 16.60
3rd lateral 22.20 33.86 20.05 26.15

Mass matrix for the 501 kg (1104 lbs) building model:

[M ] =

169.4 (0.967) 0 0

0 169.4 (0.967) 0

0 0 162.2 (0.926)

 kg (lbs s2/in) .

8.3.1. Magnitude of the total shaking table transfer function (M.T.F.)

Figures 13(a), (c) and (e) compare the experimentally identified and analytically

predicted M.T.F. of the bare table and of the shaking table loaded with either of

the two 3-DOF flexible payloads. These plots indicate that the 297 kg (654 lbs)

and 501 kg (1104 lbs) frame test models affect the actual shaking table M.T.F. in

a similar way, namely:

• Both test specimens give rise to (1) a narrow peak (spike) in the M.T.F. at their

first modal (i.e. fundamental) frequency f1, and (2) smaller spikes at the higher

modal frequencies f2 and f3.

• Both structural models heighten and narrow the oil column peak and slightly

lower the oil column frequency. The oil column peak raises from about 1.3 for

bare table condition, see Fig. 9(a), to about 2.0 for the 297 kg (654 lbs) specimen

and about 3.0 for the 501 kg (1104 lbs) specimen. The oil column frequency

decreases from about 70 Hz for bare table condition to approximately 62 Hz for

both specimens.

• Both structural specimens decrease, well below unity, the total shaking table

M.T.F. in the intermediate frequency range (the M.T.F. decreases to approxi-

mately 0.65 in the frequency range between 30 and 50 Hz).

Comparisons between the experimentally identified and analytically derived to-

tal shaking table transfer functions show that the analytical model incorporating

the servovalve time delay τ has good predictive capabilities, although it overes-

timates the experimentally identified M.T.F. in the intermediate frequency range

(20–50 Hz). In the case of the 501 kg (1104 lbs) test specimen, notice in particular

how well the analytical model accounting for servovalve time delay captures (1) the

two peak and notch effects (at about 5 Hz and 17 Hz) in the M.T.F. corresponding

to the payload first two natural frequencies and (2) the foundation/reaction mass
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resonance peakaa (at about 27 Hz), with however some underestimation of the am-

plitude of the oil column peak. In the case of the 297 kg (654 lbs) payload, notice

the small difference between the analytically derived and experimentally observed

first modal spike frequency, which is due to the analytical overestimation of the

test specimen fundamental frequency (see Table 4). It is also observed that the

analytical model accounting for the servovalve time delay captures very well the oil

column peak.

8.3.2. Phase of the total shaking table transfer function (P.T.F.)

Figures 13(b), (d) and (f) compare the experimentally identified and analytically

predicted phase of the total shaking table transfer function (P.T.F.) for the bare

table and shaking table loaded with either of the two 3-DOF flexible payloads.

Overall, we observe a noticeable increase (as compared to bare table condition) of

the phase lag in the frequency range between 0 and 50 Hz for both test specimens.

As shown in Figs. 13(d) and (f), both analytical shaking table models predict

small and sharp notches in the shaking table P.T.F. at the locations of the nat-

ural frequencies of the test specimen.ab These small distortions in the P.T.F. are

very difficult to observe experimentally due to the inherent jaggedness (statistical

variability) of the estimated experimental P.T.F. However, Fig. 13(f) shows clearly

the notch in both the analytical (with servovalve time delay) and experimental

P.T.F.’s due to the first modal (i.e. fundamental) frequency of the test specimen.

The analytical model incorporating the servovalve time delay captures better (than

the analytical model with zero servovalve time delay) the shape of the experimen-

tally identified P.T.F. in the frequency range between 0 and 20 Hz. It however

overestimates the phase lag induced by the shaking table system.

8.4. Tuning of control gain parameters to compensate for

payload effects

Based on the understanding of the sensitivities of the total shaking table transfer

function to the user-set control gain parameters and to the payload characteristics

presented in Secs. 6 and 8.1 through 8.3, the control gains were re-tuned in order

to re-optimize the dynamic performance of the shaking table system (i.e. bring the

magnitude of the total shaking table transfer function closer to unity) under various

loading conditions. Figures 14(a), (b) and (c) show the experimentally identified

and analytically predicted (with partially flexible payload modelling) magnitude of

the total shaking table transfer function for a “rigid” payload of 68, 204, and 408 kg

aaAs the third modal frequency of the 501 kg (1104 lbs) test specimen is very close to the foun-
dation/reaction mass resonance frequency, dynamic interaction between both occurs as shown by
the analytically predicted M.T.F.
abIt is found analytically that these notches increase in size with the weight of the payload for a
fixed set of modal frequencies [Trombetti et al., 1997a].
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(150, 450, and 900 lbs), respectively, and for re-tunedac (re-optimized) control gain

parameters. These figures can be compared directly with Figs. 12(a), (c) and (e)

which show the shaking table M.T.F. obtained for the same payload conditions,

but using the “optimum” control gain setting for bare table condition. The re-

optimized control gains are equal to the ones for bare table condition, except for

the derivative gain (Dgain) which is given in Fig. 14 for each specific payload.

Notice the effectiveness of reducing Dgain in lowering the shaking table M.T.F. in

the intermediate frequency range, thus compensating for the undesirable payload

effect. It is worth noting the very good agreement obtained between experimental

and analytical (accounting for servovalve time delay) shaking table M.T.F.’s, even

though the same set of servo-hydraulic parameters (“pfr” in Table 2, obtained for

Dgain = 18 ms) was used for all analytical predictions in Figs. 14(a), (b), and (c).

Similarly, Figs. 14(d) and (e) show the experimental and analytical total shaking

table M.T.F.’s for the two flexible 3-DOF payloads of 297 kg (654 lbs) and 501 kg

(1104 lbs), respectively, and for re-tuned control gain parameters, while Figs. 13(c)

and (e) show the same shaking table M.T.F.’s, but obtained using the “optimum”

control gain setting for bare table condition. Only the values of the Dgain and

FFgain changed during re-tuning as indicated in Figs. 14(d) and (e). Increasing

Dgain and FFgain proved effective in providing the needed raise of the shaking table

M.T.F. in the intermediate frequency range, but simultaneously amplified the oil

column peak. Notice the good predictive capability of the analytical shaking table

model (incorporating the servovalve time delay), except for some overestimation

of the M.T.F. in the intermediate frequency range for the 297 kg (654 lbs) test

specimen and some misfitad in the oil column frequency region for the 501 kg

(1104 lbs) test specimen (overestimation of the oil column frequency). The effects of

the five control gain parameters on the magnitude of the analytical transfer function

of the shaking table — payload system are represented synoptically in Figs. 15 and

16 as a guidance on control gain adjustments for future experiments. The range of

adjustment of the control gain parameters is limited by stability constraints of the

control system.

In summary, the test-analysis correlation study for different payload conditions

presented in Secs. 8.1–8.4 reveals that (1) a payload (even as low as 10 percent of the

table maximum payload capacity) does affect significantly the total shaking table

transfer function, and (2) the control gain parameters can be used to effectively

compensate in part for these payload effects. Overall, the linear analytical model of

the shaking table system, which incorporates the servovalve time delay, is proven to

acThe systematic procedure followed to re-optimize the user-set control gains for a specific payload
condition is described in detail in the original report by the authors [Trombetti et al., 1997b].
adThis mis-prediction can be attributed to the following two factors: (1) the values of Dgain and
FFgain are relatively far from the linearisation point (Dgain = FFgain = 18 ms) used to obtain the
set of servo-hydraulic parameters (“pf”) adopted in this analytical prediction, and (2) unmodelled
high frequency dynamics due to the clamping system used to attach the concrete blocks at the
floor levels of the steel frame model.
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Fig. 15. Sensitivity of analytical total shaking table transfer function to control gain parameters
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have very good predictive capabilities over a wide range of operating and payload

conditions.

9. Conclusions

This paper focuses on a comprehensive test-analysis comparison study of shak-

ing table dynamics and how the table dynamic performance is affected by vari-

ous operating and payload conditions. The successful results obtained contribute

(1) to validate the linear analytical model previously developed by the authors

from basic physical principles, which accounts for servovalve-actuator-control-

foundation-specimen interaction, and (2) to shed light into the understanding

of the dynamic behavior of a small-to-medium size, uni-axial, servo-hydraulic,

displacement-controlled shaking table system and its governing parameters.

It was observed that the analytical shaking table model used herein, which is

obtained by linearising the inherently nonlinear servo-hydraulic shaking table sys-

tem about only a few operating points, has very good predictive capabilities over a

wide range of operating and payload conditions. This provides a clear indication of

the robustness of the model and suggests that a reliable method to model the dy-

namic performance of shaking table systems of the class considered here is achieved

within the limitations of a linear elastic test specimen and a servo-hydraulic system

performing within (and not close to or on) its performance envelope. The inclu-

sion of the servovalve time delay in the analytical shaking table model (a unique

feature of the model) proved essential to achieve the reliable analytical predictions

obtained.

It is found both analytically and experimentally that the presence of a payload

may significantly affect the total shaking table transfer function. Nonetheless, it was

seen that the user-set control gain parameters (proportional, integral, derivative,

feedforward, and differential pressure) are capable of compensating in part for these

payload effects. The analytical shaking table model developed and calibrated to the

Rice University shaking table proved invaluable in understanding the sensitivities

of the total shaking table transfer function to the various control gain parameters.

These sensitivities were successfully used to identify the set of control gain parame-

ters that optimizes the shaking table reproduction of a target strong motion record

for a given payload condition.

Also provided in this paper is a noteworthy example of the power of an integrated

approach of physical experimentation and physics-based analytical modelling and

prediction in leading to the proper physical understanding of experimental shaking

table results, which would not have been possible using either approach in isolation.
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