CLOSED-FORM SOLUTIONS FOR THE RESPONSE OF LINEAR SYSTEMS

TO FULLY NONSTATIONARY EARTHQUAKE EXCITATION
By B.-F. Peng' and J. P. Conte’

ABSTRACT: New explicit closed-form solutions are derived for the evolutionary correlation and power
spectral—density (PSD) matrices characterizing the nonstationary response of linear elastic, both classically and
nonclassically damped, multi-degree-of-freedom (MDOF) systems subjected to a fully nonstationary earthquake
ground motion process. The newly developed earthquake ground motion model considered represents the tem-
poral variation of both the amplitude and the frequency content typical of real earthquake ground motions. To
illustrate the analytical results obtained, a three-dimensional unsymmetrical building equipped with viscous
bracings is considered with a single-component ground motion acting obliquely with respect to the building
principal directions. These new analytical solutions for structural response statistics are very useful in gaining
more physical insight into the nonstationary response behavior of linear dynamic systems subjected to realistic
stochastic earthquake ground motion models. Furthermore, the evolution in time of the cross-modal correlation
coefficients is examined and compared with the classical stationary solution for white-noise ground motion
excitation. The effects of cross-modal correlations on various mean-square response quantities also are investi-

gated using the analytical solutions obtained.

INTRODUCTION

The mode superposition method is recognized generally as
a very efficient method for evaluating the dynamic response
of viscously damped linear elastic structural systems. When
damping is of the form specified by Caughey and O’Kelly
(1965), the natural modes of vibration of the system are real-
valued and identical to those of the associated undamped sys-
tem. Systems with this form of damping are said to be clas-
sically damped and the classical mode superposition method
may be applied to solve for the dynamic response of the sys-
tem. For systems that do not satisfy the Caughey-O’Kelly con-
dition, the second-order differential equation of motion is
recast into the first-order state-space format and the corre-
sponding first-order complex-valued eigenmodes are obtained.
Such systems are said to be nonclassically damped and their
response may be evaluated by a generalization of the mode
superposition method due to Foss (1958). A comprehensive
review of complex modal analysis of nonclassically damped
linear systems was given by Veletsos and Ventura (1986). The
necessity of performing the complex eigenvalue analysis of a
large dynamic system may represent an obstacle for practical
application of the method. A subspace mode superposition pro-
cedure was developed by Mau (1988) to approximate effi-
ciently this complex modal analysis.

A detailed presentation of complex modal analysis for non-
classically damped dynamic systems can be found in standard
textbooks such as Hurty and Rubinstein (1964) and Lin
(1967). Roberts and Spanos (1990) also provide a description
of this method and its application in random vibration theory.
State-space and complex modal analysis have been used ex-
tensively in the past for calculating the second-order cumulants
of the response of dynamic systems to stochastic excitations
(DebChaudhury and Gasparini 1980; Singh 1980; Wen 1980;
Spanos 1983; Igusa et al. 1984; Pradlwarter and Li 1991; Igusa
1992). Recently, this method has been generalized for the com-
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putation of the cumulants of any order of the nonstationary
response of linear systems when subjected to delta correlated
random excitations (Lutes 1986; Lutes and Chen 1992; Pa-
padimitriou and Lutes 1994).

The earthquake ground motion model used in this paper
belongs to the family of Gaussian sigma-oscillatory processes.
For linear multi-degree-of-freedom (MDOF) systems, the re-
sponse vector process remains Gaussian and is defined com-
pletely by its second-order moments [i.e., correlation matrix
or power spectral—density (PSD) matrix]. Thus, new explicit
closed-form solutions for the evolutionary (time-varying) cor-
relation and PSD matrices of the response vector to the non-
stationary earthquake ground motion model are derived using
complex modal analysis. The time-varying cross-modal cor-
relation coefficients also are investigated to assess the effects
of neglecting the cross-modal correlations in computing mean-
square response functions. The case of a three-dimensional
unsymmetrical building with viscous bracings is used to illus-
trate the application of the explicit closed-form solutions pre-
sented here and to gain better insight into the response of
linear MDOF systems subjected to a fully nonstationary earth-
quake ground motion model.

STOCHASTIC EARTHQUAKE GROUND MOTION
MODEL

Recently, a stochastic earthquake ground motion model non-
stationary in both amplitude and frequency content was pro-
posed as a sigma-oscillatory process (Conte and Peng 1997;
Peng 1996). This earthquake ground acceleration model U, ()
is defined as the sum of a finite number of pairwise indepen-
dent, uniformly modulated Gaussian processes. Thus

P P
V0=, X0 = D, AWSi) M
k=l k=1
where p = number of component processes; A;(t) = time mod-
ulating function of the kth subprocess or component process
X.(9); and Si(t) = kth Gaussian stationary process. The time
modulating function A,(z) is defined as

A) = oyt — LPe ™ TVH(E — Lo @)

where «, and v, = positive constants; 3, = a positive integer;
{; = *‘arrival time’’ of the kth subprocess X,(); and H(s) =
Heaviside unit-step function. The kth zero-mean, stationary
Gaussian process S,(r) is characterized by its autocorrelation
function



Rs,s,(v) = e cos(my) 3
and the corresponding PSD function

1 1
+ 4
v+ (0 + ~q,‘)2 v+ (0 — 'n,,)z] @

where v, and m, = two free parameters representing the fre-
quency bandwidth and the predominant or central frequency
of the process S,(#), respectively. It can be shown (Conte and
Peng 1997) that the mean-square function of the foregoing
ground acceleration model can be expressed as

Vi

cbs,s,(w) = E [
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and the corresponding evolutionary (time-varying) PSD func-
tion is given by

14
Dyt ©) = D, JALOPDs, 5, () ®)
k=1
The evolutionary PSD (EPSD) function gives the time-fre-
quency distribution of the earthquake ground acceleration pro-
cess.

The next sections are devoted to the nonstationary response
analysis of linear MDOF systems subjected to the foregoing
fully nonstationary earthquake ground motion model. For the
application examples presented at the end, the foregoing earth-
quake model has been calibrated against two well-known ac-
tual earthquake records. The first one is the SOOE (N-S) com-
ponent of the Imperial Valley earthquake of May 18, 1940,
recorded at the El Centro site. The second one is the NOOW
(N-S) component of the San Fernando earthquake of February
9, 1971, recorded at the Orion Blvd. site.

STATE-SPACE FORMULATION OF EQUATIONS OF
MOTION OF LINEAR MDOF SYSTEMS

The general equations of motion for an n-DOF linear system
are, in matrix form

MU + CU@® + KU@ = PFQ®) W)

where M, C, and K = n X n time-invariant mass, damping,
and stiffness matrices, respectively; U(r), U(#), and U(r) =
length n vectors of nodal displacements, velocities, and accel-
erations, respectively; P = length »n load distribution vector;
and F(¢) = an external, scalar loading function, which, in the
case of random excitations, is modeled as a random process.
Eq. (7) can be recast into the *‘state variable’’ form by defining
the following length 2n *“‘state vector’’:

_[uvw

The matrix equation of motion in (7) can be recast into the
following first-order matrix equation:

Z() = GZ(») + PF@) )
where
— onxu Inxn
o= |4k, o). o
and
= 0
P = n_xl l 1
[M ll’](hxl) ( )
COMPLEX MODAL ANALYSIS

The complex modal matrix T formed from the complex ei-
genmodes can be used as an appropriate transformation matrix

to decouple the first-order matrix equation in (9). Introducing
the transformed state vector V(z) of complex modal coordi-
nates, where

Zi =TV (12)
and substituting into (9), one finds that
TV(@) = GTV() + PF() (13)

Premultiplying the foregoing equation by the inverse of the
complex modal matrix T™! gives

V() = T'GTV(@) + T 'PF(») (14)

Eq. (14) can be simplified by using the fact that the complex
eigenvectors are orthogonal with respect to G (Reid 1983).
Therefore

T'GT =D (15)

where D is the diagonal matrix containing the 2n complex
eigenvalues A, ;, . . ., Ay, of the system matrix G. Thus (14)
can be rewritten as

V@) = DV(@©) + T'PF@) (16)

and the complex modal coordinates V,(r) satisfy the following
set of uncoupled first-order differential equations:

Vi =\V@) + TF®, i=1,2,...,2n an

where I'; = ith modal participation factor (complex-valued)
defined as the ith component of the vector T~'P. Introducing
the normalized complex modal response S;(7) as

Vion=ILS@, i=1,2,...,2n (18)

and substituting into (17), one obtains the normalized complex
modal equations

SO=NSO+F®, i=1,2,...,2n (19)

The impulse response function for the ith mode &,(r) defined
as the solution of (19) when F(¢) = 8(z) where 8(f) denotes the
Dirac delta function and for at rest initial conditions at time ¢
= 07, is simply given by

hty=e™, >0 (20)

Assuming for simplicity that the system is initially at rest, the
solution of (19) can be expressed as the Duhamel integral

3
Si() = f MF(ydy, i=1,2,...,2n @1
o

It is worth mentioning that the normalized complex modal
responses S;(1), i = 1, 2, ..., 2n, are complex conjugate by
pairs. Combining (12) and (18) yields

Z(@) = TV() = TTS) = TS 22)

where I' = diagonal matrix containing the 2n modal partici-
pation factors I';; T = TI = effective modal participation ma-
trix; and S = [S,(8), S:(0), . . ., S2.(D]” is the normalized com-
plex modal response vector.

STOCHASTIC RESPONSE OF LINEAR DYNAMIC
SYSTEMS

With the use of the evolutionary process theory (Priestley
1987), the loading function F(¢) can be expressed in Fourier-
Stieltjes integral form as

F@t) = f ar(w, Ne?'dZ(w) 23)
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where j =V —1; a-(w, #) = a frequency-time modulating func-

tion; and dZ{«w) = a zero-mean orthogonal-increment process _
having the property

E[dZ*(w))dZ(w,)] = P(@)3(w,

where the superscript * denotes the complex conjugate oper-
ator and ®(w) = PSD function characterizing dZ(w). The sto-
chastic response of both classically and nonclassically damped
linear dynamic systems subjected to the input process F(?) is
derived in the time-frequency domain by using state-space and
complex modal analysis. Substituting (23) into (21) gives

— wy)dw,dw, (24)

o

S = f eNem f ar(w, T)e’ dZ(w)dr = f myw, He’'dZ(w)
(1] -

—o0

(25)

where m;(w, f) = time-frequency modulating function of the ith
normalized complex modal response and can be expressed as

t
miw, ) = e f M g (w, T)e T dT (26)
0

Assuming that the pth time derivative of S,(r) exists (in the
mean-square sense), then

d’ ”
i S =80 = f mP(w, De*'dZ(w) 27
where the time-frequency modulating function of SP(#) is
given by

14

. Zyr O w
P (w, ) =e™? ’5;’; [mAw, De’*'] 28)

Hence, the second-order statistics of the time derivatives of
various orders of the normalized complex modal responses can
be derived as

Rsmsw(t, 7) = E[(SP@)*SP¢ + )]

* f [P (0, OI*P(@)FA?(w, 1 + e’ "dw

29)
If 7 = 0, (29) reduces to
Rywswlt, 0) = f AP0, D) (, Hldw
= f @s'(msj(q)(m, t)dw
- (30)
in which
D5 0(w, 1) = [P (w, D1*P(w)[(w, 1] 31

denotes the evolutionary cross-PSD function of the derivatives
of order p and g of the ith and jth normalized complex modal
responses, respectively. From (22), the second-order statistics
of the time derivatives of order p and g of the response vector
Z(r) can be derived easily as

Reozo(t, ) = E[ZPOMZO0 + D)1= T*Ranso(t, DT (32)

in which the components of the complex cross-modal corre-
lation matrix Rgwsw(z, 7) are given by (29) and the superscript
T denotes the matrix transposition operator. Similarly, the
EPSD matrix of Z®(¢) and Z(r) takes the form

D ope(w, 1) = T*Dgwsm(w, 1T (33)

in which the components of the evolutionary complex cross-
modal PSD matrix ®gmge(w, t) are given by (31).
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EXPLICIT CLOSED-FORM SOLUTIONS FOR
RESPONSE OF LINEAR MDOF SYSTEMS
SUBJECTED TO NONSTATIONARY GROUND
MOTION MODEL

The second-order statistics of the response of a linear
MDOF system subjected to the fully nonstationary earthquake
ground motion model presented earlier is derived using state-
space and complex modal analysis. Because of the assumption
in the ground motion model that the component processes of
the sigma-oscillatory process are pairwise statistically inde-
pendent, the second-order response statistics can be obtained
by simply adding the contributions arising from the individual
component processes.

Substituting the time-frequency modulating function ar(w, ©)
in (26) with the time modulating function A,(¢) of the kth
earthquake component process defined in (2), one finds the
time-frequency modulating function of the ith complex nor-
malized modal response to the kth earthquake component pro-
cess as

!

miw, t) = e f M Vo rPe el dy
0

B,
{3 _1 nt(B‘—") __1 By, (N —Jw)t
= (kak! [8_“' 2 ( ) - ( ) :

By — mla™! a™™ (34
where a = jo — \; — v;. If a = 0, then
o e()“—jm]ltﬁ‘*ﬁ-l
my(w, 1) = -‘—Q—H— (3%
&

It should be emphasized that in (34)—(41), ¢ is defined as the
relative time measured from {,, the arrival time of the kth
component process (see Appendix I). In the special case for
which o, = 1 and B = v, = 0, the modulating function of the
kth earthquake component process reduces to the unit-step
function. Hence

1 = gtwr
miw, ) =————— (36)

(o — A\)
For a stable linear system, the real parts of the eigenvalues are
negative. Therefore, as ¢ — %, m;(w, f) in (36) reduces to

m{w, t) = — = hy(w) €0

1

(Jo — A}
which is the Fourier transform of the complex modal impulse
response function as defined in (20). Thus, for a unit-step mod-
ulating function, the response becomes stationary as ¢ — «.

In the pure time domain, the cross-correlation function of
complex normalized modal responses S;(f) and Sy(¢) due to the
kth earthquake component process X,(f) can be derived as fol-
lows:

Rss(t, 7) = E[SHOS;(t + T)]

H 1T
= J’ e J NTTIELX F (W)X (5))dsdu
0 0 (38)

in which 7 = 0. For 7 < 0, the following relationships can be
used:

Rss (. T} = R.’s';s‘(f +q1, -7 ft+1=0

Rss(t, ) =0 ift+1<0 39)

After extensive algebraic manipulations, the following explicit
closed-form solution is obtained for the complex cross-modal
cross-cotrelation function:



Rss5(t, 7) = Gi(G; + G3 + GuGa + GGxr) (40)
where
G, = a2e™N™V Gy, = e (BN Gy = eI (BLY

_ 2": (—1)”‘—"!3;![A1'(n) — Aun)] J’ [
n: o

G,

n=0

g nlal! (—1)"m!
By
Gy = BYe™ D,

n=0

+ [B1(0)B;y(n) — A(0)A;s(n)]cos(miD)}

+ (Bo’[A1(0)A3(0) — Bi(0)B(0)]
B

By
¢+ t"
G42 = 2 n! 2 m!(_l)n+m {[A4(n)A5(m)

n=0 m=0

m=0

= B! i B + AR — A [e "2 @ 1]

(_l)za,—ntn .
-"'n_"'_ {[B.(0)A;(n) — A(0)B;(n)]sin(n,t)

= By(m)Bs(m)]cos(mi1) + [By(m)As(m) — Ay(n)Bs(m)]sin(n,7)}

By n
s 2 ([BA(mBs(0) — Ay(m)As(O)]cos[ne(t + 7)

+ [A(m)B5(0) — By(mA(O)lsin[ni(t + )]}
G=vi—N— Y5 @G=E—NF T2V a=—W N )
a=—W,+ N+ as=vi— N —v b=,
[A,m - 1)] _ [A.-(Bk) —B&B.)] [A;(n)].
B(n— 1|~ |B®B) A®B) |[Bm]
n=0,1,...,Bs i=1,2...,6
AR = al@ + b, B(B)) = bl(@ + bY)
AR = ail(d + b By(By) = —bl(d + b))
AxB) = asl(@ + b Ba(B) = bld + b)
AdBD = al(@ + b Bu(B) = bl(d: + b)
As(B) = asl(d + b By(By) = bi(@ + b)
ABy) = asl(a} + b9, By(By) = —blia} + b%)

For the special case when B, = y, = 0 and ¢ — o, as men-
tioned earlier, the response becomes stationary with the cross-
modal correlation function depending only on the time lag 1.
The following stationary cross-modal cross-correlation func-
tion is obtained:

Al(Bk) — A4(BI:)

Rs,s(t, 7) = Rs5(T) = aje™” { p
2

+ e {[A4(BIAs(BY) — Ba(Be)Bs(Br)lcos(meT)

+ [Bi(BAs(Be) — As(BoBs(Bolsin(m,T)} } @1

The second-order statistics of the nodal relative displacement
and velocity responses of a linear MDOF system can be ob-
tained from the second-order statistics of the normalized com-
plex modal responses, simply by summing over all modes and
over all subprocesses of the ground motion model accounting
for their different arrival times.

If needed, the second-order statistics of the nodal absolute
acceleration responses also can be derived through a simple
linear transformation as follows. Consider the following alter-
native form of the governing equation of motion for the
MDOF system:

MX(@® + CU® + KU(@®) = 0, 42)

where X(1) = length n absolute acceleration response vector.
Thus

X() = (-M'K) (-M"'C)] [Egg]uzm @3)

where the matrix A = an n X 2n transformation matrix defined
as

A=[(-M'K) (-M7'C)] 44)

Therefore, the correlation matrix and EPSD matrix of the ab-
solute acceleration response vector X(7) are given by

Rxx(tv T) = ARZZ(t’ T)AT (45)
d’xx(w, 5= A¢Zz(w9 t)AT (46)

CROSS-MODAL CORRELATION COEFFICIENTS
FOR CLASSICAL MODAL RESPONSES TO
NONSTATIONARY GROUND MOTION MODEL

The equations of a classically damped linear MDOF system
can be decoupled into classical second-order modal equations
such as

5, + 28080 + W25 = —U,0 @7a)

S0y + 250,80 + IS = — U, (47b)

where S,(r) and §(#) = ith and jth normalized classical modal
responses, respectively; and & and w, = ith modal damping
ratio and undamped natural circular frequency, respectively.
Using the state space approach, (47) can be recast into the
first-order form

S,(;) 0 0 i 0 Y 6)
Sol_| o o 0 1 50
Si(t) - _‘-012 0 —2&0; 0 Si(t)
5,0 |l 0 - 0 -2&0, ] LS
o
+ _01 U,
-1 (48)

It can be shown that the eigenvalues {\;, i = 1, 2, 3, 4} of the
system matrix in (48) are given by {—§w, * jop, —§wp, *
jwp} in which wp, = wA/1 — g is the ith modal damped
natural circular frequency. The eigenvectors associated with
these eigenvalues are combined to form the following complex
modal matrix:

1 1 0 O
0o 0 1 1

T=0t t; t; t]= M N OO 49)
0 0 N A

The importance of modal correlation is quantified through
the following cross-modal correlation coefficients (Der Kiur-
eghian 1980; Conte and Peng 1996):

Rss(t, 0)

t) = 50

Pou = Restt. DR G, O) ©0
R4, 0)

() = £ 51

P2 = V/Rs3.6 ORs3.0; 0) ©b
Rgasa(2, O

Pas(t) = 6 0) (52)

VRjzs5(t, O)Rszs:(+, 0)
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The coefficients pg (5, p2,(2), and p,;(¢) can be interpreted
physically as the correlation coefficients of the normalized
classical modal displacement responses Y6 and Sj(t), of the
normalized classical modal velocity responses S;(f) and S;(9)
and of the normalized classical modal absolute acceleration
responses §2(2) = —2Ew,8(7) — w?8,(?) and §°(), respectively.

Following the first-order complex modal decomposition
method, the explicit closed-form solutions for the correlation
coefficient functions po,;(#), p2.y(2), and p,;,(¢) can be derived
easily using (32) and (40). Similarly, the evolutionary cross-
modal (classical modes) PSD functions can be found by mak-
ing use of (31) and (33).

EFFECTS OF STATISTICAL CORRELATION OF
CLASSICAL MODAL RESPONSES TO GROUND
MOTION MODEL

The cross-modal correlation coefficients obtained for the
ground motion model calibrated to the El Centro 1940 and
Orion Blvd. 1971 earthquake records are displayed in Figs.
1-4. Figs. 1(a), 2(a), and 3(a) show the influence of the modal
damping ratio on the cross-modal correlation coefficients for
the El Centro 1940 earthquake ground motion model. The
modal damping ratios & = §; = £ vary from 2 to 10% of critical.
The reference modal frequency w, is 20 rad/s, which is ap-
proximately the fundamental undamped natural circular fre-
quency (w;, ~ 2%/0.3) of a three-story uniform building. The
modal responses are considered five seconds after the begin-
ning of the El Centro earthquake. The mean-squared modal
displacement responses reach their maxima at approximately
this time. These figures indicate that the importance of cross-
modal correlation in computing mean-squared structural re-

1

. stationary § p1 Cener 1940 ___ Stationary JOrion Bivd 1971
(£=2%) ¥ @ =20 radsec E=2%) § @ =20radisec
- k=2 M t=Sse 1
os{--E=5% i
....... E=10% 1M ° R

.= -t=Ssec § O =20rad/sec
——t=10secf} E=2%

—— stationary [} El Centro 1940
cey=5 - E=10%
———=10 t=5sec

o 3

ojfo; oo,

FIG. 1. Cross-Modal Correlation Coefficient p,, for Nonsta-
tionary Response to Earthquake Ground Motion Model

688 / JOURNAL OF ENGINEERING MECHANICS / JUNE 1998

stationary $Orion Blvd 1971

stationary § El Centro 1940 —gpionar
= | @; = 20 rad/sec

T §=2%) ¥
L E=2%
os}=--8=5%

10 10 10
—— stationary |\ El Centro 1940
-_.())i= §= 10%
——=10 t=5sec

o

10 10° 10
ooy

FIG. 2. Cross-Modal Correlation Coefficient p,,, for Nonsta-
tionary Response to Earthquake Ground Motion Model

sponses increases with the modal damping ratio & It is ob-
served that the nonstationary cross-modal correlation
coefficients obtained here are larger in absolute value than
those for stationary response to white-noise input (Der Kiur-
eghian 1980). Also, it is noticed that the nonstationary cross-
modal correlation coefficients can be negative, do not neces-
sarily decay to zero, and can increase as the cross-modal
frequency ratio w,/w; departs from unity. As shown by Figs.
1(d), 2(d), and 3(d), the same trends also are found in the case
of the Orion Bivd. 1971 earthquake ground motion model.

Next, Figs. 1(b), 2(b), and 3(b) display the time dependence
of the cross-modal correlation coefficients in the case of the
El Centro 1940 earthquake ground motion model. The refer-
ence modal frequency o, and the modal damping ratio £ are
taken as 20 rad/s and 2%, respectively. The times selected
correspond to various local maxima of the mean-squared
modal responses. It was found that the nonstationary cross-
modal correlation coefficients are largest at a time correspond-
ing approximately to the first local maximum of the mean-
squared modal responses. Also notice that in the neighborhood
of w,/w; = 1, the nonstationary cross-modal correlation coef-
ficients are larger than those for stationary response to white-
noise excitation. The previous remarks also apply in the case
of the Orion Blvd. 1971 earthquake ground motion model.

Finally, the dependence of the nonstationary cross-modal
correlation coefficients on the reference modal frequency w; is
displayed in subplots (c) and (f) of Figs. 1-3. Unlike the case
of stationary response to white-noise excitation, the nonsta-
tionary cross-modal correlation coefficients derived here de-
pend on both o, and w; and not only on the cross-modal fre-
quency ratio w;/w;.



! stationary { El Centro 1940 ____stationary {Orion Blvd 1971
€=2%) § o =20rad/sec (E=2%) } o,=20radfsec
.- E=2% t=35sec cmE=2% t=10sec
—-=-£=5% -—8=5%
ost— =% 1 05 ‘ ]
....... E=10% ’F§=10% ;
0-"~T-<:<
--------- (a)
10” 10° 10!
1 v
~—— stationary | El Centro 1940
~-t=5sec ] ®; =20rad/sec
——t=10secf) £=2%
IR T t =26 sec
& ost 1

El Centro 1940
E= 10%

10 10 10 10 10’ 10
ey @;fay;

FIG. 3. Cross-Modal Correlation Coefficient p,, for Nonsta-
tionary Response to Earthquake Ground Motion Model

APPLICATION EXAMPLE

To illustrate the application of complex modal analysis and
the derived closed-form solutions for the response of linear
MDOF systems subjected to the fully nonstationary earthquake
ground motion model, an idealized three-dimensional unsym-
metrical building is considered as shown in Fig. 4. This build-
ing consists of three floor diaphragms, assumed infinitely rigid
in their own plane, supported by wide flange steel columns of
size W14 145. Each floor diaphragm is assumed to be made
of reinforced concrete with a weight density of 3.6 kN/m’ and
a depth of 18 cm. The axial deformations of the columns are
neglected. The modulus of elasticity of steel is 200 GPa. The
motion of each floor diaphragm is defined completely by three
DOFs defined at its center of mass (CM), namely, the relative
displacements with respect to the ground in the x-direction
Ux(1), in the y-direction Uy(¢#), and the rotation about the ver-
tical z-axis 6 (). The earthquake ground motion excitation is
assumed to act at 45° with respect to the x-axis. Both classically
and nonclassically damped structural models are considered.
For the case of classical damping, each modal damping ratio
is taken as 2%. To physically realize the nonclassical damping
case, diagonal viscous damping elements (fluid viscous braces)
are added as shown in Fig. 4. The damping coefficient of each
viscous damping element is taken as 0.1 kN-s per mm. The
undamped natural circular frequencies of this building are
shown in Table 1.

Figs. 5-11 show some second-order response statistics for
the classically damped case, whereas Figs. 12 and 13 corre-
spond to the nonclassical damping case. Fig. 5 gives the au-
tocorrelation function of Uy(#), the relative displacement in
the x-direction of the third floor’s CM, due to the El Centro

114m
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| 3@38m

%

L X ]
1 2@10m=20m R
y A (a) three-dimensional view
E
‘ e
= > x
|
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(b) plan view

(c) i-th floor with DOFs noted

FIG. 4. Three-Dimensional Three-Story Unsymmetrical Bulld-
ing Example

TABLE 1. Undamped Natural Frequencies and Description of
Mode Shapes of Three-Dimensional Unsymmetrical Building
Example

MOde Wy
number (rad/s) Description of mode shapes

)] (2 3

1 15.97 Translation in x-direction

2 24.12 Lateral-torsional coupling in y-direction
3 36.56 Translation in x-direction

4 41.21 Lateral-torsional coupling in y-direction
5 56.74 Lateral-torsional coupling in y-direction
6 56.98 Translation in x-direction

7 73.88 Lateral-torsional coupling in y-direction
8 95.15 Lateral-torsional coupling in y-direction
9 127.69 Lateral-torsional coupling in y-direction

1940 earthquake ground motion model. The autocorrelation
function exhibits oscillatory decay along the time lag axis and
behaves like the mean-square function of the El Centro 1940
earthquake ground acceleration model. At zero time lag (7 =
0), the autocorrelation function reduces to the mean-squared
response of Uy (). Fig. 6 displays the autocorrelation function
of the rotational response 6,,(¢). Although the two autocorre-
lation functions represented in Figs. 5 and 6 are caused by the
same stochastic ground motion model, their behaviors are
quite different, especially along the time lag axis. The fre-
quency of the oscillatory decay along the time lag axis in Fig.
6 is obviously lower than that in Fig. 5. Figs. 7 and 8 represent
the autocorrelation function of the angular velocity response
éz,(t) and the cross-correlation function of the responses
62,(r) and 82,() to the Orion Blvd. 1971 earthquake ground
motion model. Based on Figs. 5-8, it is worth noting that the
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FIG. 6. Autocorrelation Function of Rotational Response
62,(t) to El Centro 1940 Earthquake Ground Motion Model
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FiG. 7. Autocorrelation Function of Angular Velocity Re-
sponse oz(t) to Orion Blvd. 1971 Earthquake Ground Motion
Model

rate of decay along the time lag axis of the correlation func-
tions for rotational responses is larger than that for transla-
tional responses.

Next, EPSD functions corresponding to various response
quantities are plotted in Figs. 9—-13. The results given in Figs.
9 and 10 correspond to the El Centro 1940 earthquake ground
motion model, while those in Figs. 11—13 have been obtained
for the Orion Blvd. 1971 earthquake ground motion model. In
Figs. 9-11, classical damping is assumed, while Figs. 12 and
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13 correspond to the nonclassical damping case. Fig. 9 shows
the EPSD function of the relative displacement response
Ux,(t). From this figure, it is observed that the response
Ux (¢) is mostly contributed by the first mode. This also is true
for other translational displacement and velocity responses in
the x-direction. Similarly, the translational displacement and
velocity responses in the y-direction are almost entirely con-
tributed by the second mode. As shown later, this is the reason
why the mean-squared translational displacement and velocity
responses can be estimated very accurately by neglecting the

X 10-6 R

30 6

FIG. 8. Cross-Correlation Function of Angular Velocity Re-
sponses 8. (t) and 6,(t) to Orion Blvd. 1971 Earthquake Ground
Motion Model

60\¢Ux3Ux3(m’ t) [m2 SCC]

404

20\

t {sec}] 20 40 O [rad/sec)

30
60

FIG. 9. Evolutionary Power Spectral Density Function of Rel-
ative Displacement Response U,,(t) to El Centro 1940 Earth-
quake Ground Motion Model

X 10_9 (beLJeZ,(m’ t)
6~ [rad? sec]

@440 [rad/sec]

FIG. 10. Evolutionary Power Spectral Density Function of Ro-
tational Response 0,(f) to El Centro 1940 Earthquake Ground
Motion Model
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FIG. 11. Evolutionary Power Spectral Density Function of An-

gular Velocity Response 6,,(t) to Orion Blvd. 1971 Earthquake
Ground Motion Model
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FIG. 12. Evolutionary Power Spectral Density Function of An-
gular Velocity Response 6(t) to Orion Blvd. 1971 Earthquake
Ground Motion Model

cross-modal correlations. Fig. 10 displays the EPSD function
of the rotational response 08,,(f). The second and fourth modes
contribute significantly to this response quantity because they
are the two lowest modes containing rotational components.
This also is true for both the EPSD function CD(,Z)(,Z‘(w, 1), of
the angular velocity response 0,,(f) (see Figs. 11 and 12) and
the cross-PSD function @, 4, (w, 2), of angular velocity re-
sponses 8,.(f) and 0,(r) (see Fig. 13). Note that this evolu-
tionary cross-PSD function is complex-valued.

Figs. 14 and 15 present various mean-squared response
quantities for the Orion Blvd. 1971 earthquake ground motion
model and compare the exact results with those obtained by
neglecting the cross-modal correlations. As already mentioned,
the shape of the mean-squared responses is similar to that of
the mean-squared earthquake ground acceleration process. The
mean-squared rotational and angular velocity responses are
overestimated if the cross-modal correlations are neglected
[see subplots (c) and (f) of Figs. 14 and 15]. The transiational
displacement and velocity responses can be obtained accu-
rately by neglecting the cross-modal correlations. This was
already predicted earlier by the fact that the translational re-
sponse in the x-direction is contributed by the first mode only
(see Fig. 9), while two modes contribute significantly to the
rotational response (see Figs. 10—13). Note that the mean-
squared translational response in the x-direction is almost re-
duced by 50% as the viscous damping elements are added in
that direction, while the mean-squared translational response
in the y-direction remains almost unchanged. Similar resuits,

X1 0—7 Real[¢623ell(m, t)] [rad¥/sec] (non-classical damping case)

10

t[sec] 20 @440 @ [rad/sec)

g

30 60

Imag[tbez . (o, t)] [radzlsec] (non-classical damping case)
Rt }

10

t[sec] 20 0440 @ [rad/sec]

W5

30 60
FIG. 13. Evolutionary Cross-Power Spectral Density Function

of the Angular Velocity Responses 8. (t) and 611(1‘) to Orion Bivd.
1971 Earthquake Ground Motion Model

not shown here, also were obtained for the case of the El
Centro 1940 earthquake ground motion model.

CONCLUSIONS

The nonstationary response of both classically and nonclas-
sically damped linear MDOF systems to a newly developed
fully nonstationary earthquake ground motion model is stud-
ied. A modal decomposition method is developed using the
state-space approach and complex modal analysis. New ex-
plicit closed-form solutions are obtained for the evolutionary
correlation and PSD matrices of the vector response process.
Using these explicit closed-form solutions, the effects of sta-
tistical cross-modal correlations on the mean-squared struc-
tural response are investigated for the classical damping case.
An application example is considered in which a three-dimen-
sional unsymmetrical building with and without viscous brac-
ing elements is subjected to the earthquake ground motion
model acting at an angle with respect to the principal direction
of the building. For the purpose of this study, the nonstationary
earthquake ground motion model is calibrated against two ac-
tual, well-known earthquake ground acceleration records.

The nonstationary cross-modal correlation coefficient de-
cays fast as the cross-modal frequency ratio w;/w; departs from
one in a narrow band around one. However, unlike the case
of stationary response to white-noise or filtered white-noise
excitations, the nonstationary cross-modal correlation coeffi-
cients derived here can rise gradually as w;/w; departs further
outside that region. The cross-modal correlation coefficients
for the fully nonstationary earthquake ground motion model
used in this study vary with time and depend on the modal
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damping ratios, the cross-modal frequency ratio w,/w;, and the
reference modal frequency w,. In general, the nonstationary
cross-modal correlation coefficients tend to be larger, in ab-
solute value, than their counterparts for stationary response to
white-noise excitations. It was found that the nonstationary
cross-modal correlation coefficients can be negative. Future
studies will compare the closed-form solutions obtained here
for the time-varying cross-modal correlation coefficients and
cross-modal PSD functions with the solutions obtained from
other nonstationary earthquake ground motion models.

In the case of the three-dimensional unsymmetrical building
considered, the mean-squared rotational responses of the rigid
floor diaphragms could not be estimated accurately without
accounting for cross-model correlations. This was because of
the presence of relatively closely spaced modes with lateral-
torsional coupling.

APPENDIX|. DERIVATION OF TIME-FREQUENCY
MODULATING FUNCTION FOR Kth EARTHQUAKE
COMPONENT PROCESS

The time-frequency modulating function m;(w, ?) of the ith
normalized complex modal response S,(#) is rewritten as fol-
lows:

4
m,(m, !1) = e—_[m;' f e)\,(r'_fv)aF(w’ T/)ej(.,g'd_rr (53)
0

where ¢’ = absolute time variable, with respect to which the
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arrival times {;, {, . .., {,, of the earthquake component pro-
cesses X (1), Xa(t), ..., X,(¢) are measured. The time modu-
lating function of the kth earthquake component process is
rewritten from (2) as

ar(w, T') = o (v’ — LM T TWH(T — L)

Substituting (54) into (53) gives

(54)

14
miw, t') =e f N (1 — L)Pe T TWH(T — et dn’
1]

e (55)

By applying the change of variable T = 7' — {,, the foregoing
equation reduces to

ex‘(: - )otk('r' —_— ck)ake—‘yk(r’—ck)ejm dT,

)
my(w, t') = e J MUy pBre T I+
o

@ —L)
= g ietr-l j e”“"“‘*"’cx,-r"*e""e""‘d'r
(i

(56)

Introducing the relative time variable t =¢" — {;, (56) becomes

13
miw, 1) = e 1 f MV the ey €1
0
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APPENDIX Il

NOTATION

The following symbols are used in this paper:

A0

C
D

dZ(w

oy
32
N Md

Q
W w W wnnwnmwunn

o
— o~
oo

hi(w)
K

M

ml(w’ t )
mP(w, 1)
P

Rs,s,("r)
Rswoso(t, T)
S(®

S =

time modulating function of kth earthquake com-
ponent process;

(n X n) time-invariant damping matrix;
diagonal matrix of 2n eigenvalues of system ma-
trix G;

orthogonal-increment process;

expectation operator;

external loading process;

(2n X 2n) time-invariant system matrix;
Heaviside unit step function;

ith modal impulse response function;

ith modal complex frequency response function;
(n X n) time-invariant stiffness matrix;

(n X n) time-invariant mass matrix;
time-frequency modulating function of S,();
time-frequency modulating function of $¥(¢);
length n load distribution vector;
autocorrelation function of S.(¢);
cross-correlation function of S¥(¢) and S¥(r);
stationary Gaussian process defining kth earth-
quake component process;

ith normalized modal displacement response;
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Sin =
5P
T

U,(»
u®
U@
19/6)
X®
V/0))]

Dyy(t, w)
(Ds;msj(q)(m, t)
w;

b=}
5}
&
~~
=
Wow nmawunwoe

Wp,

ith normalized modal absolute acceleration re-
sponse; .

pth time derivative of S,(¢);

2n X 2n complex modal matrix;

earthquake ground acceleration process;

length n relative displacement response vector;
length n relative velocity response vector;
length n relative acceleration response vector;
length n absolute acceleration response vector,
length 2n state vector;

diagonal matrix of 2n modal participation fac-
tors;

Dirac delta function;

ith eigenvalue of system matrix G;

ith modal damping ratio;

correlation coefficient of S,(z) and S;(2);
correlation coefficient of $,(#) and Si(¢);
correlation coefficient of S;(r) and S;(¢);

PSD function of S,(#);

EPSD matrix of X(1);

EPSD matrix of U(z);

cross-PSD function of §{(f) and S{2(z);

ith modal undamped natural circular frequency;
and

ith modal damped natural circular frequency.



