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Abstract

For a one-dimensional, uni-variate random field with deterministic fixed end values, expressions are derived for the conditional mean,
variance, and covariance functions in terms of given mean, variance, and correlation functions for an unrestricted, variance-homogeneous
Gaussian random field. Also, a relation is derived between the conditional random field and the underlying unrestricted random field. This
relation is useful for simulation purposes. Further, expressions are derived for the coefficients in a series expansion for the conditional
random field. The present results are obtained from known general formulas for conditional Gaussian distributions, conditional estimation,
and series expansion. An earlier alternate approach to enforcing end conditions is also examined. An example is given to illustrate the effect
of conditioning a random field by zero end constraints. The present results have direct application to the representation of random
imperfections in probabilistic stability analysis of columns and arc@@ek998 Elsevier Science Ltd. All rights reserved.
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1. Introduction functions of the derived conditional random field agree with
those obtained for the conditional Gaussian distribution.
If a one-dimensional (1D), uni-variate (1V) random field Thus, simulations based on the conditional distribution
on (0,1) is required to take deterministic fixed values at O function and the conditional random field relation are
and 1, then the statistical properties of the resulting condi- equivalent under the Gaussian assumption, which is an
tional random field depend on the fixed end values. Further, essential equivalence for proper simulation [2].
the conditional random field is necessarily nonhomoge- An alternate method of imposing end constraints on a 1D-
neous. Here we derive expressions for the mean, variance1V random field was proposed by Elishakoff [3]. For zero
and covariance functions (first and second moment func- end conditions, his method consists of subtracting from the
tions) of the conditional random field in terms of the unrestricted random function its random end values times
known mean and correlation coefficient functions of the linear weight functions. Here we derive expressions for the
underlying unrestricted, variance-homogened@aussian mean, variance, and covariance functions for general weight
random field. Also, we derive a functional relationship functions from which Elishakoff's results [3] follow as a
between the unrestricted random field and the correspond-special case.
ing conditional random field. These results for a 1D-1V In addition, we derive formulas for the coefficients in a
random field are obtained from general results based ongeneral series expansion for the conditional random field
the matrix formulas for conditional Gaussian distributions using our derived conditional mean and covariance func-
and conditional linear estimation (based on variance mini- tions in the formulation of Zhang and Ellingwood [4].
mization) given by Vanmarcke [1]. This generalizes previous results by Elishakoff [3] for the
Our general results agree with those obtained by Shino- sine series expansion of a conditional random field based on
zuka and Zhang [2] using a different approach. In particular, his linear weight function approach.
we confirm their conclusion that the mean and covariance The paper concludes with an example that illustrates the
- effect of conditioning a 1D-1V random field by requiring
* Corresponding author. Tel.:+ 1-713-285-5292; Fax:+ 1-713-285- zero end values. Comparison is made between the results of
5268; e'ma”lsnordgrfeg@,rlicg-eEdU-_ | Endineering. UCLA. L the present conditional simulation method based on mini-
Ang':f;":l aCtA 9%)5550_ 1503, nvironmental Engineering, » =% mum-variance linear estimation and Elishakoff's linear
2 The case of inhomogeneous variance can also be treated, but the resutWeight function method [3]. For a random field with short
ing formulas are rather cumbersome. correlation length, the variance of the conditional random
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field by Elishakoff’'s method is much higher than that of the distribution when the firsk variates ofU; take prescribed
conditional random field by the variance minimization values, following Vanmarcke [1]) is partitioned into two
method. For large values of correlation length (on the vectorsU; and U, of dimensionk andn — k, respectively.
order of the interval length), the results of the two methods The meanw and covariance matric are similarly parti-
differ by only a small amount. An example of a series tioned with the notation

expansion for a conditional random field also is given.

The results presented here have direct application to the . Cu
characterization of random fields for modeling imperfec-

tions in columns and arches.

2. General results

Let U(2) be a one-dimensional, uni-variate random field

having mean function.(z), variance functions?(z), and
covariance functiorC(z,z), defined by

E[U@2] = m(2 E[(U®@ — u@)*] = 0?2

E[(U@ — m2)U(@) — m(@)] = C(z 2)

(€8]

where E[--:] denotes the mathematical expectation or
ensemble average operator. Following the vector—matrix

formulation of Vanmarcke [1], we consider the poirgs
(i=1,2,...n) and introduce the vectors

U, M1
U, M2
U= , n=E[U] = ,
Un Mn
Ui =U@), w = wz)=E[Y] 2
and covariance matrix
of Cp Cin
, , P (T% Con
C=EU-pU —pn)l=
3
Cln Czn O'ﬁ

ot = 0*(3), C; = C(3,2)
where prime denotes the matrix transpose operation.
2.1. Conditional probability density function

In addition, letU(2) be a Gaussian field so that the point-
value variatedJ; = U(z), (i = 1,...n), are normally distri-
buted with joint probability density function (PDF)

fu,. .y, (U, ... Up)

1 1, -1 |
— — — 4
= ; )n| |ex;{ (u rHC "(u—p) @)

where the covariance matr@ is given by Eq. (3) andC]|
denotes the determinantGf In order to find the conditional

i I R B
= s U = N u= y M =
)
Then, as shown by Vanmarcke [1], the distributiorl of
given U, is Gaussian with conditional PDF

!
C12

1
fu,lu, (Uz]uy) = T
@M Cop

1 _
XeXF{_ E(Ué - Mé\l)CZZ:\Ll(UZ - Mz\l)] (6)
where the conditional mean vector and covariance matrix
are given by

Moy = p2 t C12C11 (U — py)
- (7
sz\l =Cp — C12C11Cy

The relations of Shinozuka and Zhang [2] for the condi-
tional mean, covariance, and PDF can be obtained from Egs.
(4) and (7).

2.2. Conditional estimation

The optimal (minimum-variance) linear unbiased estima-
tion for the conditional variatdJ, given thatU; = uy,
denoted byJ,y;, is shown by Vanmarcke [1] to be

0z = E[Ugy] = pop = po + C15C11 (01 — p) ®

and the posterior (conditional) covariancelf; is

Coyp =Co2— Ci.CiiCi2 9
Thus,Uy; can be written as

Uy = mo + C1oCii (0 — py) + V2 (10

whereV, is a random variate that satisfies
E[Va] =0, E[(Upp — 02)(Ugs — 0)'| = EIV2. V31 = Com
(11

Using Eq. (9), it is not difficult to verify that a solution to
Eq. (11) is

V= (Uy — pg) — C1oCa3(Ug — py)

whereU; andU, are variates which satisfy Egs. (3) and (5),
but need not be Gaussian. Then, from Egs. (10) and (12), the

12
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conditional variate can be written as from Eq. (5)
1 0,1 !

Uy = 05 + B 1® o, 02[ P0 )], Cppm 02[ P03 p0.2 )]

p(0,1) 1 pzd) p.1)
where . 2.7 uo)

2z

—e I ~—1o I ~—1 Cn= o g s U= >
Uy = C1oC11 0y, BEp = Uy = CCy7Uy p(z.Z) 1 U@l
whichisthesameresultasthatobtainedbyShinozukaandZhang [ V@ [ #O | »@
[2] using a different approach. Further, ifEq. (13) isapplied to Uz = u@) - () ’ - wz) ’

U,|1,thenCy,'=CyandUq|; = U, as expected.
In addition, if u; is replaced by the random variat#, 0,
then it may be verified that andE, are orthogonal in the andi; = [ . ] an
probabilistic sensdj.e. t
These equations will be used in the general results of the

E[(US — pS)XE, —e)'1=0 14 previous section to derive the conditional probability
density function and an estimation—simulation formula for

where the conditional random field.

US = CI,CiiUy, ps = E[US] = Ci,Ciima, 3.1. Conditional probability density function

— E[E,)] = w, — Cl.C1 On further requiring thati(z) be a Gaussian random field,

& [Eel = 1o 1211 from Egs. (7) and (17), we find that

and if U; andU, are jointly Gaussian random variates, then 1e(2) 0220 Cuz7)

U$ andE, are statistically independent. This independence Mo = [ , ] o= [ . 5 ] (18)

me(Z) Czz) o0c(2)

property is essential for simulation based on Eg. (13) as
noted by Shinozuka and Zhang [2]. In view of the identity \yhere the conditional mean, variance, and covariance func-
of Egs. (8) and (9) fopi,|; andCyyly with Eq. (7), simulation  tions are given by

based on the conditional random fielg|; of Eq. (13) and

simulation based on the conditional probability density Kc(@ = w2 + $1(2)[01 — w(O)] + $2(2)[0; — w(1)]

function Eq. (6) are identical for Gaussian random variates. 5 5

The reader is referred to the paper by Shinozuka and Zhang  2(z) = 02[1 _ P02+ pzD = 2p0.2pz Hp(0.1) ]

[2] for a full discussion of this point. 1-p%0.1)

p(0,2)p(0,2) + p(z Dp(Z', 1)
1-p%0,1)

Cdz2) = oz{p(z Z) -

3. Random field with fixed ends

. PO, DIp0.2)pz D) + p(0,2p(Z, 1)]} 19
The conditional random field(2) on (0,1) is required to 1— p?(0,1)
satisfy the end conditions
where
Ue(0) = th, Ue(D) =& (19 _ p(0,2) — p(z Dp(0, 1)
$1(2) = 1- 20.1) )
whereu; andu, are given deterministic values. For analysis s
of U(2) using the general results of Section 2, we take p(z. 1) — p(0,2)p(0, 1)
0,z =1,z =z andz = z/, wherez and z' are arbitrary b2(2) = 1- p%0,1) (20
points on (0,1). Further, for mathematical simplicity, we
consider the variance-homogeneous case where the unrest- It can be verified that Eq. (19) satisfies
ricted random fieldJ(z) has constant variance® and its ~ ~ ; ,
covariance function may be written as me(0) = Uy, pc(l)=10,, Ci(z,2 =C(z2)
C22) = 022, C(z0) =0, Ci(z1) =0 21

CzZ) = o’p(z2)
as expected. Further, if the unrestricted random 1iglg is
covariance homogeneous, then

), and ¢»(2) = ¢1(1 - 2) (22

where p(z,2) is the correlation coefficient function. Then,

% This is known as the normality condition in linear estimation theory.  p(Z, ZH) = p(|Z -7
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We define the effective correlation lengtfy of the correlation lengthé, defined by Eq. (23) is much smaller
unrestricted random field by the relation than the unit interval length?( < 1), then Eq. (27) reduces
to

Uce(2) = U@ + p(0,2[0, — U(O)] + p(z 1)[0, — U(D)]

Ip(zZ)| < e for|z—Z| > £, (23

wheree < 1 is specified. When the effective correlation
length is much smaller than the unit interval length & + 0(e) (29)

1), then Eqg. (19) reduces to

_ _ and the effect of fixed end constraints again is confined to
1e(@) = p(@) + p(0.2)[ty — p(0)] + p(z [Ty — p(D)] 9

regions near the ends.

+ ((e) From a mathematical viewpoint, the variance minimiza-
tion property okp1(2) andd,(2) defined by Eq. (20) does not
02(2) = d?[1 — p%(0,2) — p*(z, 1) + ()] (24) preclude other choices fdr(2) andd,(2) in Eq. (27) subject
to
N o N / _ !
Cu(z2) = o?lp(z.Z)) — p(0,2)p(0,2) — p(z', Dp(z 1) $10) =1, dy(1) =0, ¢p(0) =0, (1) =1 (30)
+ 0(e)] In particular, Elishakoff [3] proposed linear weight func-

. . . . tions of the form
In this case, the fixed end constraints are seen to introduce

corrections to the unrestricted field only near the ends. P1(D=1-2 ¢$(9=2 (31)

and obtained expressions for the conditional variance and
covariance functions assuming a strictly homogeneous

3.2. Conditional estimation

By Eq. (17), we have unrestricted random fielt)(z) with zero mean. From Eq.
01D b2 (28), these results are extended to a variance homogeneous
CLCit = [ 1 2 ] (25) unrestricted random field(z) with nonhomogeneous mean.
d1(Z)  da(Z) For modeling small shape imperfections along a beam,

Elishakoff's method corresponds to giving the beam a
small rigid body rotation and translation to meet the end
conditions after the unrestricted random imperfection is
Uc(2) formed in a particular realization. An example will be
L= [ U (z’)] (26) given to illustrate the difference between the minimum-
¢ variance weight functions and Elishakoff's linear weight
where the conditional random field,(2) is given by functions.

U@ = U@ + :1(9[0, — UO)] + ¢2(2[0; — UD)] (27)

The estimation coefficient$;(z) and b,(2) also may be 4. Conditional series expansion
interpreted as weight functions that account for the effect of

the fixed end constraints on the conditional random field. ~ The general series expansion for a random field given
From Eg. (27) the conditional mean, variance, and covari- PY Zhang and Ellingwood [4] is extended here to include

wheredy(2) and ¢,(2) are defined by Eqg. (20). Then, from
Eqg. (13), the conditional random variate is

ance functions are given by cqnditioning by fixed end cpnstraints. This al_so gener-
alizes previous results by Elishakoff [3] for a sine series
pe(2) = w2 + ¢1(2)[0; — w(O0)] + $2([0 — w(D)] expansion based on his linear weight functions. According
) ) ) ) to Zhang and Ellingwood [4], the 1D-1V random field
0c(2 =01+ 41D + $2(2° + 2p(0, 1) 1(2$2(2) U(? on (0,1) with mean function.() and covariance
function C(z,z') defined by Eq. (1) can be expressed as
= 2p(0.21( — 20(Z Dy(2)] the series
Ccz2) = PIpz2) + p1D$1(@) + $p2Dba(2) (28 =
’ U@ =p@+ > camnhn(@ (32)
n=0

+ p(0,1)$1(2Dh2(2) + p(0, Dpp(2)h1(Z)
, , , wherec, are constant expansion coefficienig,are zero-
— p(0,2)$1(2) = p(0,21(z) — p(Z, D 2(2) mean random variates, arfgi(z) are a complete set of
/ deterministic orthonormal basis functions, i.e.
— p(Z D) (2)]

1
It may be verified directly thad,(z) and b,(2) from Eq. J hm(2ha(2dz = 8, (33
(20) minimize the variance?(z) for all zand then Eq. (19) 0
of the PDF approach follow from Eq. (28) as expected from whered,,, is the Kronecker delta (unit matrix). The coef-
the general results of the previous section. If the effective ficientsc, and the covariance matri&,,, for v, remain to
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be determined from the covariance functiG(z,z’). From
Egs. (1) and (32) we have

Cz7)= Z Z CanCmnhm(Z)hn(Z/) whereCp, = E[vnn]
m=0 n=0
(34
from which, with Eq. (33), it follows that
1 r1
CmCnCmn = J J C(z Z)hm(2)hn(z))dzdZ' (35
0Jo

Without loss of generality, we may require that the variates
v, have unit variance, i.eC,,, = 1 if m= n, in which case
Eq. (35) gives

=

1 r1 2
o= [, |, cem@ne)dz] 36
0Jo
andC,,, follows from Eq. (35) withc, known.
Now, application of the series expansion Eq. (32) to the
conditional random fieldJ(2) with fixed end constraints
Eqg. (15) gives

U@ = 1@ + > carhn(@ 37
n=0

where the mean functiop.(2) is given by Eq. (19) part 1.
Further, in view of Eq. (21), uniform convergence of the

series Eq. (37) at the ends of the interval requires’that
hn(0) = hn(1) = 0 (38

For the general case of arbitrary weight functiangz)
andd,(2), on substituting Eq. (28) part 3, for the conditional
covariance function into Eq. (35), we have

CmCnCrn = O'Z[Ymn + ‘plm(pln + (pZm(pZn

+ p(0, (D1 Py + Doy @ypy) — Py Vi

— D1 Vi — PomVon — Do Wornl (39
where
1 1
Y = j j p(z (D hy(2)dlzd?
0Jo
1 1
V= | 02N @0 o= [ plz Dy
1 1
Dy = J RGN jo $(2hy(2)dz (40)

For the minimum-variance case, on substituting Eq. (20)

4See Courant and Hilbert [5] for a theorem on the completeness and
uniform convergence of series expansions in terms of eigenfunctions for

boundary value problems which have admissibility conditions of the form
Eq. (38).

305
for $1(2) andd,(2), we have
Vi — 1. Yo — nHy.
Dy, = in - p(0, )2 2n , Dy = 2n - p(0, )2 1n (41)
1-p(0.1) 1-p(0.1)
and then
CmCnCrn =
Ay VimPin + YomWaon — p(0, D[ Vi Vo + V1n Voml
" 1-p(0,1)?

(42)

which also follows directly from Eqgs. (35) and (19). For
m = n, when the variates, have unit varianceQ,, = 1),
from Eq. (42), we have
1
2
} (43

v+
Ch = {Ynn_ 4

Further, for the covariance-homogeneous case, from Egs.
(22) and (40), if the basis functiorts,(z) are symmetric
aboutz = (1/2), then¥,, = ¥, and if they are antisym-
metric aboutz = (1/2), then¥,, = — ¥4, In either of these
cases Egs. (42) and (43) can be simplified.

For Elishakoff's case [3] of linear weight functions (31),
the ® integrals in Eq. (39) become

lpgn — 2p(0, ) W1, ¥y,
1-p(0,1)?

1 1
P~ [ -2z O = | 20z (44

andC,,, is given by Eq. (39). Elishakoff’s results for a sine
series expansion follow as a special case.

5. Examples
5.1. White noise

In order to illustrate the theoretical results obtained for
one-dimensional, conditional random fields with fixed ends,
let us first consider a zero-mean, strictly homogeneous,
unrestricted random fieldJ(2) on (0,1) consisting of a
pure white noise with variance, covariance, and correlation
functions given by

042 = 058(0) C(z.Z') = 058(z— Z)

8z—2)

50) (45

pu(z2) =

respectively, wheré(2) is the Dirac delta (symbolic) func-
tion ando? is a constant parameter.

For the minimum-variance conditional case, from Eq.
(19), (20) and (45), the conditional variance and covariance
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Fig. 1. Conditional variance functiom?(z)/a? for the exponential correlation function with various valuegdh the minimum-variance case.

functions andby(2), $2(2) can be written as
Ton(@) = 058(0) for 0 < z< 1
Ucz:mw(o) = U%mw(l) =0

Comn(2Z) = 088(z—Z)for0<z<1 0<7Z <1

Cenn(0,2 =Cepu(z) =0for0=z=1
8(2) 61— 2
$(2 = 50)° $(2) = 50) (46)

Comparison of Egs. (45) and (46) shows that conditioning

has no effect on the variance and covariance functions

except at the ends= 0 andz = 1, as might be expected
for pure white noise.

For the case of Elishakoff's linear weight functions [3]
with ¢1(2) andb,(2) given by Eq. (31), using Egs. (28) and
(35), the conditional variance and covariance functions can
be written as

(@) = 20280)1— 2+ A for 0< z< 1

oaw(0) = 04w (1) = 0

Con(zZ)=038(0)1—z— 7 +2zZ)for0<z< 1,
0<zZ <1 z#7

Cow(0,2) = Ofor0=z=<1

Coaw(z1) = 47

Nearz = 0 andz = 1, the variancer?,,(2) is twice the
unconditional variance and it diminishes to a minimum of
3/2 times the unconditional variance z& 1/2. The value

202 arises from the variance? of the unrestricted field at
the point in question plus the variane@introduced by the
(uncorrelated) end condition near the end as seen from Eq.
(27). Thus, the conditional variance in the linear weight
function case is considerably higher than that in the mini-
mum-variance case. Further, for0z< 1,0< z' < 1, and

z # 7/, the conditional covariance function is not zero in
contrast to the unconditional case Eq. (45) and the mini-
mume-variance conditional case Eq. (46).

5.2. Exponential correlation function

Next, we consider a zero-mean, covariance homoge-
neous, unrestricted random fidli{Z) on (0,1) with constant
variances? and exponential correlation coefficient function
pe.7) = ex —p Yz - 7] (48)
where is a correlation length parameter, since from Eq.
(23),4. = — BIne. Note that a8 — 0,p(z,z) approaches
the white noise limit Eq. (45).

For the minimum-variance case, using Egs. (19), (20) and
(48), the conditional variance and covariance functions and
$1(2), d2(2) can be written as

2md2) = 20%(sinhB 1) "tsinhB 11 — 2)sinh3 1z
Cemdz Z) = 20%(sinhB 1) "sinhB3 (1 — 2)sinh3 ™17’

for (z= 7))

(sinh3™H tsinh8 1z ¢y (2) =

$(2) = $(l1-2

(49
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Fig. 2. Contours of the conditional covariance funct@yiz,z')/a? for the exponential correlation function wifh= 1 in the minimum-variance case.

The conditional variance functios?,«(z) from Eq. (49) that the effect of the fixed end constraints is confined to the
is shown in Fig. 1 for various values @§. As B— 0, neighborhood of the ends wheghis small 8 < 0.1) as
oZmd(2)/0” smoothly approaches the white noise limit expected from Egs. (23), (24) and (29). For larger values
oZma/0” given by Eq. (46) wheras® = ¢55(0) in both of B the conditional variance and covariance functions are
cases. Contours of the conditional covariance function reduced from the unrestricted case for all valueg. of
C.mdz,Z) from Eq. (49) are shown in Figs 2 and 3 for= 1 As an illustration of the conditional series expansion
andB = 0.1, respectively. Fig. 4 shows the weight function method of the preceding section, we consider a sine series
b1(2) from Eq. (49). From all of these figures it can be seen expansion for the exponential correlation coefficient function

Fig. 3. Contours of the conditional covariance functidyiz,z')/o for the exponential correlation function wigh= 0.1 in the minimum-variance case.
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Fig. 4. End conditioning weight functiot;(2) for the exponential correlation function with various valuegah the minimum-variance case.

in the minimum-variance case. With basis functions
hn(2) = +/2sinnmz

by either Egs. (40), (42), (43) and (49), or Egs. (35), (36) and
(49), after a lengthy derivation, we find that

1
28 2
Con =3 &0 =] 15 12,57 |

The fact that the same result is obtained by both approache
provides a check on the formulas developed for conditional
series expansion. Then, from Egs. (34) and (50), we have th
following series expansions for the covariance and variance
functions:

(50)

[e9)

CemeZ Z,) = 430'2 Z

sinnzrz sinnaz’

& 1+ma?p?
(5)
S 1— coshnz
2 2
Pnd2) =22y T2
om nZl 1+ mm?p?

The series foro2,«2) also can be obtained directly by

Table 1
Error in series forrme(2) truncated ai terms

€

expansion of Eqg. (49), in a Fourier cosine series, thereby
providing a further check on the derivation of Eq. (50). The
error in omd(2) from truncating the original series (37), and
hence the series (51), Btterms is given in Table 1. The
convergence is more rapid g8sincreases as expected from
the coefficients of the series (51). Further, the convergence
is slower neaz = 0 andz = 1 since the sine series for the
first derivative of o2y«(2), obtained by differentiation of
Eq. (51), gives a value of zero for the first derivative at
= 0 andz = 1, whereas the actual conditional variance
function Eq. (49) has a nonzero first derivative at these
points. Considering the extended intervat 1 = z < 1,
the cosine series Eq. (51) ferin«(2) represents an even
function, whereas the actual conditional variance function
Eq. (49) on the extended interval is an odd functior. dthe
extended even function represented by the cosine series
whas a discontinuity in its first derivative at= 0 and
z=1. Thus, the sine series for the first derivative of
oZme(2) obtained from Eq. (51) does not converge uniformly
in an interval containing = 0 orz= 1. It should be kept in
mind that the series (51) for the covariance and variance

N =15 (%) N =51 (%) N = 101 (%) N =501 (%)
z=05p=0.1: -12 -4 -2 - 04
z=05,p =20 -3 - 08 - 04 -01
z=0.05,8 = 0.1: -17 -6 -3 - 06
z=0.05p = 2.0: -1 -4 -2 - 04
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Fig. 5. Conditional variance function?(z)/c2 for the exponential correlation function with various valuegdf the linear weight function case.

functions follow from the original sine series for the random
function U(2) obtained from Eq. (32) which is uniformly
convergent as previously noted.

For the case of Elishakoff's linear weight functions [3]
with $4(2) and ¢»(2) given by Eq. (31), the conditional
variance functiono?«(z) calculated from Eg. (28) is

shown in Fig. 5 for various values @ Forp > 1, 02¢(2)

is nearly identical tar2«(z) of the minimum-variance case
shown in Fig. 1 as expected sindgz) = 1 — zfor > 1 as
seen from Eq. (49) and Fig. 4. However, oK 0.5 there is

a considerable difference between the two case® AsO,
02«(2)/d® smoothly approaches the white noise limit

1 T —
ool 5/7
0.8 ’
0.7
0.6
05
04
0.3

0.2

0.1

T 1 1

0 0.1 0.2 03 0.4

Fig. 6. Contours of the conditional covariance funct®uz,z')/c for the exponential correlation function wifh= 0.1 in the linear weight function case.
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daw(2/0” given by Eq. (47) wherer” = 038(0) in both the linear weight function method of Elishakoff [3]. Results
cases. FoB = 0.1 contours of theCy(zz") calculated from the two methods agree for random fields with large
from Eq. (19) part 3, are shown in Fig. 6. These results differ correlation lengths on the order of the interval length.
significantly from those of the minimum-variance case However, the results differ significantly for random fields
shown in Fig. 3. Again, foB > 1 the conditional covariance  with correlation lengths much shorter than the interval
functionCy(z,2) of the linear weight function case is nearly length. In applications, the choice of a method to enforce
identical toCydz2') of the minimum-variance case. end constraints will depend on the physical characteristics
of the random field and the idealization of the actual
problem. Also, the conditional series expansion method
has been illustrated by an example for which convergence

We have derived expressions for the mean, variance, andOf _}_T]e seneist for the ctor(ljd;;uonarl]varlz;r?ce tls mvl_estltgatetd. th
covariance functions for a one-dimensional (1D), uni-vari- € results presented here have direct application to the

ate (1V) random field conditioned by deterministic fixed end character!zanon and S'!“”'a“o” .Of copdnpnal 1D'1y
values in terms of the known mean. variance. and correla- @ndom fields to model imperfections with fixed ends in
tion coefficient functions of an unrestricted, variance-homo- the prObab_”'St_'C stability analysis of (_:olumns _and arches.
geneous, Gaussian random field using a known relation forOther applications appear to be possible. A slight general-

the conditional probability density function [1]. Also, we -

ization of our results would allow inclusion of the effect of
have derived a functional relation between the unrestricted measurements of the random field at discrete points. Gener-
random field and the corresponding conditional random

alization of the present results to random fields in two and
field based on optimum (minimum-variance) linear estima-

three dimensions also would be of interest.
tion theory [1]. The mean, variance and covariance func-
tions derived from the functional representation of the
conditional random field are the same as those derivedR ‘
from the conditional probability density function as pointed elerences

.OUt by ShmOZUKa and Zhan_g [2] Further, we have gene_ral- [1] Vanmarcke E. Random fields: Analysis and synthesis. Cambridge,
ized results obtained by Elishakoff [3] based on enforcing MA: The MIT Press, 1983.

end conditions by linear weight functions. In addition, we [2] Shinozuka M, Zhang R. Equivalence between kriging and CPDF meth-
have obtained formulas for the coefficients in a series expan-  ods for conditional simulaton. J Engng Mech, ASCE

sion for the conditional random field using the results of 1996;122(6):530-538.
Zhang and Ellingwood [4] [3] Elishakoff I. Hoff's problem in a probabilistic setting. J Appl Mech,

E lesh b ; il he eff f di ASME 1980;47:403-408.
xamples have been given to illustrate the effect of condi- [4] Zhang J, Ellingwood B. Orthogonal series expansion of random fields

tioning by specification of zero values for the random field in reliability analysis. J Engng Mech, ASCE 1994;120(12):2660—2667.
at the ends of the interval. Comparison is made between[5] Courant R, Hilbert D. Methods of mathematical physics, vol. 1. New
results from the present minimum-variance method and  York: Interscience, 1953.

6. Summary and conclusions



