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Abstract

For a one-dimensional, uni-variate random field with deterministic fixed end values, expressions are derived for the conditional mean,
variance, and covariance functions in terms of given mean, variance, and correlation functions for an unrestricted, variance-homogeneous
Gaussian random field. Also, a relation is derived between the conditional random field and the underlying unrestricted random field. This
relation is useful for simulation purposes. Further, expressions are derived for the coefficients in a series expansion for the conditional
random field. The present results are obtained from known general formulas for conditional Gaussian distributions, conditional estimation,
and series expansion. An earlier alternate approach to enforcing end conditions is also examined. An example is given to illustrate the effect
of conditioning a random field by zero end constraints. The present results have direct application to the representation of random
imperfections in probabilistic stability analysis of columns and arches.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

If a one-dimensional (1D), uni-variate (1V) random field
on (0,1) is required to take deterministic fixed values at 0
and 1, then the statistical properties of the resulting condi-
tional random field depend on the fixed end values. Further,
the conditional random field is necessarily nonhomoge-
neous. Here we derive expressions for the mean, variance,
and covariance functions (first and second moment func-
tions) of the conditional random field in terms of the
known mean and correlation coefficient functions of the
underlying unrestricted, variance-homogeneous,2 Gaussian
random field. Also, we derive a functional relationship
between the unrestricted random field and the correspond-
ing conditional random field. These results for a 1D-1V
random field are obtained from general results based on
the matrix formulas for conditional Gaussian distributions
and conditional linear estimation (based on variance mini-
mization) given by Vanmarcke [1].

Our general results agree with those obtained by Shino-
zuka and Zhang [2] using a different approach. In particular,
we confirm their conclusion that the mean and covariance

functions of the derived conditional random field agree with
those obtained for the conditional Gaussian distribution.
Thus, simulations based on the conditional distribution
function and the conditional random field relation are
equivalent under the Gaussian assumption, which is an
essential equivalence for proper simulation [2].

An alternate method of imposing end constraints on a 1D-
1V random field was proposed by Elishakoff [3]. For zero
end conditions, his method consists of subtracting from the
unrestricted random function its random end values times
linear weight functions. Here we derive expressions for the
mean, variance, and covariance functions for general weight
functions from which Elishakoff’s results [3] follow as a
special case.

In addition, we derive formulas for the coefficients in a
general series expansion for the conditional random field
using our derived conditional mean and covariance func-
tions in the formulation of Zhang and Ellingwood [4].
This generalizes previous results by Elishakoff [3] for the
sine series expansion of a conditional random field based on
his linear weight function approach.

The paper concludes with an example that illustrates the
effect of conditioning a 1D-1V random field by requiring
zero end values. Comparison is made between the results of
the present conditional simulation method based on mini-
mum-variance linear estimation and Elishakoff’s linear
weight function method [3]. For a random field with short
correlation length, the variance of the conditional random
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field by Elishakoff’s method is much higher than that of the
conditional random field by the variance minimization
method. For large values of correlation length (on the
order of the interval length), the results of the two methods
differ by only a small amount. An example of a series
expansion for a conditional random field also is given.

The results presented here have direct application to the
characterization of random fields for modeling imperfec-
tions in columns and arches.

2. General results

Let U(z) be a one-dimensional, uni-variate random field
having mean functionm(z), variance functions2(z), and
covariance functionC(z,z 0), defined by

E�U�z�� � m�z� E��U�z�2 m�z��2� � s2�z�
E��U�z�2 m�z���U�z0�2 m�z0��� � C�z; z0�

�1�

where E[…] denotes the mathematical expectation or
ensemble average operator. Following the vector–matrix
formulation of Vanmarcke [1], we consider the pointszi

(i � 1,2,…,n) and introduce the vectors

U �

U1

U2

..

.

Un

266666664

377777775; m � E�U� �

m1

m2

..

.

mn

266666664

377777775;

Ui � U�zi�; mi � m�zi� � E�Ui� �2�
and covariance matrix

C � E��U 2 m��U 0 2 m 0�� �

s2
1 C12

… C1n

C12 s2
2

… C2n

..

. ..
.

]
..
.

C1n C2n … s2
n

266666664

377777775
s2

i � s2�zi�; Cij � C�zi ; zj�

�3�

where prime denotes the matrix transpose operation.

2.1. Conditional probability density function

In addition, letU(z) be a Gaussian field so that the point-
value variatesUi � U(zi), (i � 1,…,n), are normally distri-
buted with joint probability density function (PDF)

fU1…Un
�u1;…;un�

� 1������������2p�nuCu
p exp 2

1
2
�u 0 2 m 0�C21�u 2 m�

� �
�4�

where the covariance matrixC is given by Eq. (3) anduCu
denotes the determinant ofC. In order to find the conditional

distribution when the firstk variates ofUi take prescribed
values, following Vanmarcke [1],U is partitioned into two
vectorsU1 andU2 of dimensionk andn 2 k, respectively.
The meanm and covariance matrixC are similarly parti-
tioned with the notation

C �
C11 C12

C 012 C22

" #
; U �

U1

U2

" #
; u �

u1

u2

" #
; m �

m1

m2

" #
�5�

Then, as shown by Vanmarcke [1], the distribution ofU2

given U1 is Gaussian with conditional PDF

fU2uU1
�u2uu1� � 1�����������������

�2p�n2kuC22u1u
q

� exp 2
1
2
�u 02 2 m 02u1�C21

22u1�u2 2 m2u1�
� �

�6�

where the conditional mean vector and covariance matrix
are given by

m2u1 � m2 1 C 012C
21
11 �u1 2 m1�

C22u1 � C22 2 C 012C
21
11 C12

�7�

The relations of Shinozuka and Zhang [2] for the condi-
tional mean, covariance, and PDF can be obtained from Eqs.
(4) and (7).

2.2. Conditional estimation

The optimal (minimum-variance) linear unbiased estima-
tion for the conditional variateU2 given that U1 � ū1,
denoted byU2u1, is shown by Vanmarcke [1] to be

û2 � E�U2u1� � m2u1 � m2 1 C 012C
21
11 � �u1 2 m1� �8�

and the posterior (conditional) covariance ofU2u1 is

C22u1 � C22 2 C 012C
21
11 C12 �9�

Thus,U2u1 can be written as

U2u1 � m2 1 C 012C
21
11 � �u1 2 m1�1 V2 �10�

whereV2 is a random variate that satisfies

E�V2� � 0; E �U2u1 2 û2��U2u1 2 û2� 0
h i

� E�V2;V
0
2� � C22u1

�11�
Using Eq. (9), it is not difficult to verify that a solution to

Eq. (11) is

V2 � �U2 2 m2�2 C 012C
21
11 �U1 2 m1� �12�

whereU1 andU2 are variates which satisfy Eqs. (3) and (5),
but need not be Gaussian. Then, from Eqs. (10) and (12), the
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conditional variate can be written as

U2u1 � ûe
2 1 E2 �13�

where

�ue
2 � C 012C

21
11 �u1; E2 � U2 2 C 012C

21
11 U1

whichisthesameresultasthatobtainedbyShinozukaandZhang
[2] using a different approach. Further, if Eq. (13) is applied to
U1u1, thenC12

0�C11andU1u1� ū1asexpected.
In addition, if ū1 is replaced by the random variateU1,

then it may be verified thatUe
2 andE2 are orthogonal in the

probabilistic sense,3 i.e.

E��Ue
2 2 me

2��E2 2 e2� 0� � 0 �14�

where

Ue
2 � C 012C

21
11 U1; me

2 � E Ue
2

� � � C 012C
21
11 m1;

e2 � E�E2� � m2 2 C 012C
21
11 m1

and if U1 andU2 are jointly Gaussian random variates, then
Ue

2 andE2 are statistically independent. This independence
property is essential for simulation based on Eq. (13) as
noted by Shinozuka and Zhang [2]. In view of the identity
of Eqs. (8) and (9) form2u1 andC22u1 with Eq. (7), simulation
based on the conditional random fieldU2u1 of Eq. (13) and
simulation based on the conditional probability density
function Eq. (6) are identical for Gaussian random variates.
The reader is referred to the paper by Shinozuka and Zhang
[2] for a full discussion of this point.

3. Random field with fixed ends

The conditional random fieldUc(z) on (0,1) is required to
satisfy the end conditions

Uc�0� � �u1; Uc�1� � �u2 �15�

whereū1 andū2 are given deterministic values. For analysis
of Uc(z) using the general results of Section 2, we takez1�
0, z2 � 1, z3 � z, andz4 � z 0, wherez andz0 are arbitrary
points on (0,1). Further, for mathematical simplicity, we
consider the variance-homogeneous case where the unrest-
ricted random fieldU(z) has constant variances2 and its
covariance function may be written as

C�z; z0� � s2r�z; z0�

wherer(z,z0) is the correlation coefficient function. Then,

from Eq. (5)

C11 � s2
1 r�0;1�

r�0;1� 1

" #
; C12 � s2

r�0; z� r�0; z0�
r�z; 1� r�z0; 1�

" #

C22 � s2
1 r�z; z0�

r�z; z0� 1

" #
; U1 �

U�0�
U�1�

" #
;

U2 �
U�z�
U�z0�

" #
m1 �

m�0�
m�1�

" #
; m2 �

m�z�
m�z0�

" #
;

and �u1 �
�u1

�u2

" #
: �17�

These equations will be used in the general results of the
previous section to derive the conditional probability
density function and an estimation–simulation formula for
the conditional random field.

3.1. Conditional probability density function

On further requiring thatu(z) be a Gaussian random field,
from Eqs. (7) and (17), we find that

m2u1 �
mc�z�
mc�z0�

" #
; C22u1 �

s2
c�z� Cc�z; z0�

Cc�z; z0� s2
c�z0�

" #
�18�

where the conditional mean, variance, and covariance func-
tions are given by

mc�z� � m�z�1 f1�z�� �u1 2 m�0��1 f2�z�� �u2 2 m�1��

s2
c�z� � s2 1 2

r2�0; z�1 r2�z;1�2 2r�0; z�r�z;1�r�0;1�
1 2 r2�0;1�

" #

Cc�z; z0� � s2

(
r�z; z0�2

r�0; z�r�0; z0�1 r�z;1�r�z0; 1�
1 2 r2�0;1�

1
r�0;1��r�0; z0�r�z; 1�1 r�0; z�r�z0;1��

1 2 r2�0; 1�

)
�19�

where

f1�z� � r�0; z�2 r�z;1�r�0; 1�
1 2 r2�0;1� ;

f2�z� � r�z;1�2 r�0; z�r�0; 1�
1 2 r2�0;1� �20�

It can be verified that Eq. (19) satisfies

mc�0� � �u1; mc�1� � �u2; Cc�z0; z� � Cc�z; z0�

Cc�z; z� � s2
c�z�; Cc�z;0� � 0; Cc�z;1� � 0 �21�

as expected. Further, if the unrestricted random fieldU(z) is
covariance homogeneous, then

r�z; z0� � r�uz2 z0u�; andf2�z� � f1�1 2 z� �22�
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We define the effective correlation length̀e of the
unrestricted random field by the relation

ur�z; z0�u , e; for uz2 z0u . `e �23�
wheree p 1 is specified. When the effective correlation
length is much smaller than the unit interval length (`e p

1), then Eq. (19) reduces to

mc�z� � m�z�1 r�0; z�� �u1 2 m�0��1 r�z;1�� �u2 2 m�1��
1 O�e�

s2
c�z� � s2�1 2 r2�0; z�2 r2�z; 1�1 O�e2��

Cc�z; z0� � s2�r�z; z0�2 r�0; z0�r�0; z�2 r�z0;1�r�z; 1�
1 O�e��

�24�

In this case, the fixed end constraints are seen to introduce
corrections to the unrestricted field only near the ends.

3.2. Conditional estimation

By Eq. (17), we have

C 012C
21
11 �

f1�z� f2�z�
f1�z0� f2�z0�

" #
�25�

wheref1(z) andf2(z) are defined by Eq. (20). Then, from
Eq. (13), the conditional random variate is

U2u1 �
Uc�z�
Uc�z0�

" #
�26�

where the conditional random fieldUc(z) is given by

Uc�z� � U�z�1 f1�z�� �u1 2 U�0��1 f2�z�� �u2 2 U�1�� �27�
The estimation coefficientsf1(z) andf2(z) also may be

interpreted as weight functions that account for the effect of
the fixed end constraints on the conditional random field.
From Eq. (27) the conditional mean, variance, and covari-
ance functions are given by

mc�z� � m�z�1 f1�z�� �u1 2 m�0��1 f2�z�� �u2 2 m�1��

s2
c�z� � s2�1 1 f1�z�2 1 f2�z�2 1 2r�0;1�f1�z�f2�z�

2 2r�0; z�f1�z�2 2r�z; 1�f2�z��

Cc�z; z0� � s2�r�z; z0�1 f1�z�f1�z0�1 f2�z�f2�z0�
1 r�0;1�f1�z�f2�z0�1 r�0; 1�f2�z�f1�z0�
2 r�0; z0�f1�z�2 r�0; z�f1�z0�2 r�z0;1�f2�z�
2 r�z;1�f2�z0��

�28�

It may be verified directly thatf1(z) andf2(z) from Eq.
(20) minimize the variances2

c�z� for all z and then Eq. (19)
of the PDF approach follow from Eq. (28) as expected from
the general results of the previous section. If the effective

correlation length̀ e defined by Eq. (23) is much smaller
than the unit interval length (̀e p 1), then Eq. (27) reduces
to

Uc�z� . U�z�1 r�0; z�� �u1 2 U�0��1 r�z;1�� �u2 2 U�1��
1 O�e� �29�

and the effect of fixed end constraints again is confined to
regions near the ends.

From a mathematical viewpoint, the variance minimiza-
tion property off1(z) andf2(z) defined by Eq. (20) does not
preclude other choices forf1(z) andf2(z) in Eq. (27) subject
to

f1�0� � 1; f1�1� � 0; f2�0� � 0; f2�1� � 1 �30�
In particular, Elishakoff [3] proposed linear weight func-
tions of the form

f1�z� � 1 2 z; f2�z� � z �31�
and obtained expressions for the conditional variance and
covariance functions assuming a strictly homogeneous
unrestricted random fieldU(z) with zero mean. From Eq.
(28), these results are extended to a variance homogeneous
unrestricted random fieldU(z) with nonhomogeneous mean.
For modeling small shape imperfections along a beam,
Elishakoff’s method corresponds to giving the beam a
small rigid body rotation and translation to meet the end
conditions after the unrestricted random imperfection is
formed in a particular realization. An example will be
given to illustrate the difference between the minimum-
variance weight functions and Elishakoff’s linear weight
functions.

4. Conditional series expansion

The general series expansion for a random field given
by Zhang and Ellingwood [4] is extended here to include
conditioning by fixed end constraints. This also gener-
alizes previous results by Elishakoff [3] for a sine series
expansion based on his linear weight functions. According
to Zhang and Ellingwood [4], the 1D-1V random field
U(z) on (0,1) with mean functionm(z) and covariance
function C(z,z 0) defined by Eq. (1) can be expressed as
the series

U�z� � m�z�1
X∞
n�0

cnnnhn�z� �32�

wherecn are constant expansion coefficients,nn are zero-
mean random variates, andhn(z) are a complete set of
deterministic orthonormal basis functions, i.e.Z1

0
hm�z�hn�z�dz� dmn �33�

wheredmn is the Kronecker delta (unit matrix). The coef-
ficients cn and the covariance matrixCmn for nn remain to
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be determined from the covariance functionC(z,z0). From
Eqs. (1) and (32) we have

C�z; z0� �
X∞
m�0

X∞
n�0

cmcnCmnhm�z�hn�z0� whereCmn� E�nmnn�

�34�
from which, with Eq. (33), it follows that

cmcnCmn�
Z1

0

Z1

0
C�z; z0�hm�z�hn�z0�dzdz0 �35�

Without loss of generality, we may require that the variates
nn have unit variance, i.e.Cmn� 1 if m� n, in which case
Eq. (35) gives

cn �
Z1

0

Z1

0
C�z; z0�hn�z�hn�z0�dzdz0

� � 1
2 �36�

andCmn follows from Eq. (35) withcn known.
Now, application of the series expansion Eq. (32) to the

conditional random fieldUc(z) with fixed end constraints
Eq. (15) gives

Uc�z� � mc�z�1
X∞
n�0

cnnnhn�z� �37�

where the mean functionmc(z) is given by Eq. (19) part 1.
Further, in view of Eq. (21), uniform convergence of the
series Eq. (37) at the ends of the interval requires that4

hn�0� � hn�1� � 0 �38�
For the general case of arbitrary weight functionsf1(z)

andf2(z), on substituting Eq. (28) part 3, for the conditional
covariance function into Eq. (35), we have

cmcnCmn� s2�Ymn 1 F1mF1n 1 F2mF2n

1 r�0; 1��F1mF2n 1 F2mF1n�2 F1mC1n

2 F1nC1m 2 F2mC2n 2 F2nC2m� �39�
where

Ymn�
Z1

0

Z1

0
r�z; z0�hm�z�hn�z0�dzdz0

C1n �
Z1

0
r�0; z�hn�z�dz; C2n �

Z1

0
r�z; 1�hn�z�dz

F1n �
Z1

0
f1�z�hn�z�dz; F2n �

Z1

0
f2�z�hn�z�dz �40�

For the minimum-variance case, on substituting Eq. (20)

for f1(z) andf2(z), we have

F1n � C1n 2 r�0; 1�C2n

1 2 r�0; 1�2 ; F2n � C2n 2 r�0; 1�C1n

1 2 r�0;1�2 �41�

and then

cmcnCmn�

s2

(
Ymn 2

C1mC1n 1 C2mC2n 2 r�0;1��C1mC2n 1 C1nC2m�
1 2 r�0;1�2

)
�42�

which also follows directly from Eqs. (35) and (19). For
m� n, when the variatesnn have unit variance (Cnn � 1),
from Eq. (42), we have

cn � s Ynn 2
C2

1n 1 C2
2n 2 2r�0; 1�C1nC2n

1 2 r�0;1�2
( ) 1

2
�43�

Further, for the covariance-homogeneous case, from Eqs.
(22) and (40), if the basis functionshn(z) are symmetric
aboutz � (1/2), thenC2n � C1n and if they are antisym-
metric aboutz� (1/2), thenC2n� 2 C1n. In either of these
cases Eqs. (42) and (43) can be simplified.

For Elishakoff’s case [3] of linear weight functions (31),
theF integrals in Eq. (39) become

F1n �
Z1

0
�1 2 z�hn�z�dz; F2n �

Z1

0
zhn�z�dz �44�

andCmn is given by Eq. (39). Elishakoff’s results for a sine
series expansion follow as a special case.

5. Examples

5.1. White noise

In order to illustrate the theoretical results obtained for
one-dimensional, conditional random fields with fixed ends,
let us first consider a zero-mean, strictly homogeneous,
unrestricted random fieldU(z) on (0,1) consisting of a
pure white noise with variance, covariance, and correlation
functions given by

s2
w�z� � s2

0d�0� Cw�z; z0� � s2
0d�z2 z0�

rw�z; z0� � d�z2 z0�
d�0� �45�

respectively, whered(z) is the Dirac delta (symbolic) func-
tion ands2

0 is a constant parameter.
For the minimum-variance conditional case, from Eq.

(19), (20) and (45), the conditional variance and covariance
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functions andf1(z), f2(z) can be written as

s2
cmw�z� � s2

0d�0� for 0 , z , 1

s2
cmw�0� � s2

cmw�1� � 0

Ccmw�z; z0� � s2
0d�z2 z0� for 0 , z , 1; 0 , z0 , 1

Ccmw�0; z� � Ccmw�z; 1� � 0 for 0 # z # 1

f1�z� � d�z�
d�0� ; f2�z� � d�1 2 z�

d�0� �46�

Comparison of Eqs. (45) and (46) shows that conditioning
has no effect on the variance and covariance functions
except at the endsz� 0 andz� 1, as might be expected
for pure white noise.

For the case of Elishakoff’s linear weight functions [3]
with f1(z) andf2(z) given by Eq. (31), using Eqs. (28) and
(35), the conditional variance and covariance functions can
be written as

s2
clw�z� � 2s2

0d�0��1 2 z1 z2� for 0 , z , 1

s2
clw�0� � s2

clw�1� � 0

Cclw�z; z0� � s2
0d�0��1 2 z2 z0 1 2zz0� for 0 , z , 1;

0 , z0 , 1; z ± z0

Cclw�0; z� � Cclw�z;1� � 0 for 0 # z # 1 �47�

Near z � 0 and z � 1, the variances2
clw�z� is twice the

unconditional variance and it diminishes to a minimum of
3/2 times the unconditional variance atz� 1=2. The value

2s2 arises from the variances2 of the unrestricted field at
the point in question plus the variances2 introduced by the
(uncorrelated) end condition near the end as seen from Eq.
(27). Thus, the conditional variance in the linear weight
function case is considerably higher than that in the mini-
mum-variance case. Further, for 0, z, 1, 0, z 0 , 1, and
z ± z0, the conditional covariance function is not zero in
contrast to the unconditional case Eq. (45) and the mini-
mum-variance conditional case Eq. (46).

5.2. Exponential correlation function

Next, we consider a zero-mean, covariance homoge-
neous, unrestricted random fieldU(z) on (0,1) with constant
variances2 and exponential correlation coefficient function

re�z; z0� � exp 2b21uz2 z0u
h i

�48�

whereb is a correlation length parameter, since from Eq.
(23), `e � 2 blne. Note that asb ! 0,r(z,z0) approaches
the white noise limit Eq. (45).

For the minimum-variance case, using Eqs. (19), (20) and
(48), the conditional variance and covariance functions and
f1(z), f2(z) can be written as

s2
cme�z� � 2s2�sinhb21�21sinhb21�1 2 z�sinhb21z

Ccme�z; z0� � 2s2�sinhb21�21sinhb21�1 2 z�sinhb21z0;

for �z $ z0�

f2�z� � �sinhb21�21sinhb21z f1�z� � f2�1 2 z�
�49�
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c�z�=s2 for the exponential correlation function with various values ofb in the minimum-variance case.



The conditional variance functions2
cme�z� from Eq. (49)

is shown in Fig. 1 for various values ofb. As b! 0;
s2

cme�z�=s2 smoothly approaches the white noise limit
s2

cmw=s
2 given by Eq. (46) wheres2 � s2

0d�0� in both
cases. Contours of the conditional covariance function
Ccme(z,z

0) from Eq. (49) are shown in Figs 2 and 3 forb � 1
andb � 0.1, respectively. Fig. 4 shows the weight function
f1(z) from Eq. (49). From all of these figures it can be seen

that the effect of the fixed end constraints is confined to the
neighborhood of the ends whenb is small (b , 0.1) as
expected from Eqs. (23), (24) and (29). For larger values
of b the conditional variance and covariance functions are
reduced from the unrestricted case for all values ofz.

As an illustration of the conditional series expansion
method of the preceding section, we consider a sine series
expansion for the exponential correlation coefficient function
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Fig. 2. Contours of the conditional covariance functionCc(z,z
0)/s2 for the exponential correlation function withb � 1 in the minimum-variance case.

Fig. 3. Contours of the conditional covariance functionCc(z,z
0)/s2 for the exponential correlation function withb � 0.1 in the minimum-variance case.



in the minimum-variance case. With basis functions

hn�z� �
��
2
p

sinnpz

by either Eqs. (40), (42), (43) and (49), or Eqs. (35), (36) and
(49), after a lengthy derivation, we find that

Cmn� dmn; cn � s
2b

1 1 n2p2b2

� � 1
2 �50�

The fact that the same result is obtained by both approaches
provides a check on the formulas developed for conditional
series expansion. Then, from Eqs. (34) and (50), we have the
following series expansions for the covariance and variance
functions:

Ccme�z; z0� � 4bs2
X∞
n�1

sinnpzsinnpz0

1 1 n2p2b2 ;

s2
cme�z� � 2bs2

X∞
n�1

1 2 cos2npz

1 1 n2p2b2

�51�

The series fors2
cme�z� also can be obtained directly by

expansion of Eq. (49), in a Fourier cosine series, thereby
providing a further check on the derivation of Eq. (50). The
error ins2

cme�z� from truncating the original series (37), and
hence the series (51), atN terms is given in Table 1. The
convergence is more rapid asb increases as expected from
the coefficients of the series (51). Further, the convergence
is slower nearz� 0 andz� 1 since the sine series for the
first derivative ofs2

cme�z�, obtained by differentiation of
Eq. (51), gives a value of zero for the first derivative at
z � 0 andz � 1, whereas the actual conditional variance
function Eq. (49) has a nonzero first derivative at these
points. Considering the extended interval2 1 # z # 1,
the cosine series Eq. (51) fors2

cme�z� represents an even
function, whereas the actual conditional variance function
Eq. (49) on the extended interval is an odd function ofz. The
extended even function represented by the cosine series
whas a discontinuity in its first derivative atz � 0 and
z� 1. Thus, the sine series for the first derivative of
s2

cme�z� obtained from Eq. (51) does not converge uniformly
in an interval containingz� 0 or z� 1. It should be kept in
mind that the series (51) for the covariance and variance
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Fig. 4. End conditioning weight functionf1(z) for the exponential correlation function with various values ofb in the minimum-variance case.

Table 1
Error in series fors2

cme�z� truncated atN terms

N� 15 (%) N� 51 (%) N� 101 (%) N� 501 (%)

z� 0.5,b � 0.1: 2 12 2 4 2 2 2 0.4
z� 0.5,b � 2.0: 2 3 2 0.8 2 0.4 2 0.1
z� 0.05,b � 0.1: 2 17 2 6 2 3 2 0.6
z� 0.05,b � 2.0: 2 11 2 4 2 2 2 0.4



functions follow from the original sine series for the random
function U(z) obtained from Eq. (32) which is uniformly
convergent as previously noted.

For the case of Elishakoff’s linear weight functions [3]
with f1(z) and f2(z) given by Eq. (31), the conditional
variance functions2

cle�z� calculated from Eq. (28) is

shown in Fig. 5 for various values ofb. Forb . 1, s2
cle�z�

is nearly identical tos2
cme�z� of the minimum-variance case

shown in Fig. 1 as expected sincef1(z) . 1 2 z for b . 1 as
seen from Eq. (49) and Fig. 4. However, forb , 0.5 there is
a considerable difference between the two cases. Asb! 0;
s2

cle�z�=s2 smoothly approaches the white noise limit
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Fig. 5. Conditional variance functions2
c(z)/s2 for the exponential correlation function with various values ofb in the linear weight function case.

Fig. 6. Contours of the conditional covariance functionCc(z,z
0)/s2 for the exponential correlation function withb � 0.1 in the linear weight function case.



s2
clw�z�=s2 given by Eq. (47) wheres2 � s2

0d�0� in both
cases. Forb � 0.1 contours of theCcle(z,z

0) calculated
from Eq. (19) part 3, are shown in Fig. 6. These results differ
significantly from those of the minimum-variance case
shown in Fig. 3. Again, forb . 1 the conditional covariance
functionCcle(z,z

0) of the linear weight function case is nearly
identical toCcme(z,z

0) of the minimum-variance case.

6. Summary and conclusions

We have derived expressions for the mean, variance, and
covariance functions for a one-dimensional (1D), uni-vari-
ate (1V) random field conditioned by deterministic fixed end
values in terms of the known mean, variance, and correla-
tion coefficient functions of an unrestricted, variance-homo-
geneous, Gaussian random field using a known relation for
the conditional probability density function [1]. Also, we
have derived a functional relation between the unrestricted
random field and the corresponding conditional random
field based on optimum (minimum-variance) linear estima-
tion theory [1]. The mean, variance and covariance func-
tions derived from the functional representation of the
conditional random field are the same as those derived
from the conditional probability density function as pointed
out by Shinozuka and Zhang [2]. Further, we have general-
ized results obtained by Elishakoff [3] based on enforcing
end conditions by linear weight functions. In addition, we
have obtained formulas for the coefficients in a series expan-
sion for the conditional random field using the results of
Zhang and Ellingwood [4].

Examples have been given to illustrate the effect of condi-
tioning by specification of zero values for the random field
at the ends of the interval. Comparison is made between
results from the present minimum-variance method and

the linear weight function method of Elishakoff [3]. Results
from the two methods agree for random fields with large
correlation lengths on the order of the interval length.
However, the results differ significantly for random fields
with correlation lengths much shorter than the interval
length. In applications, the choice of a method to enforce
end constraints will depend on the physical characteristics
of the random field and the idealization of the actual
problem. Also, the conditional series expansion method
has been illustrated by an example for which convergence
of the series for the conditional variance is investigated.

The results presented here have direct application to the
characterization and simulation of conditional 1D-1V
random fields to model imperfections with fixed ends in
the probabilistic stability analysis of columns and arches.
Other applications appear to be possible. A slight general-
ization of our results would allow inclusion of the effect of
measurements of the random field at discrete points. Gener-
alization of the present results to random fields in two and
three dimensions also would be of interest.
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