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ABSTRACT:

This paper presents a methodology for assessing the effects of source-, chemical-, and aquifer-

related parameter uncertainty on the response of a semianalytical transport model using first- and second-
order reliability methods. A probabilistic model is developed by coupling the deterministic transport model
with a general-purpose probability analysis program. Ground-water contamination risk is addressed by eval-
uating the probability that a given contaminant exceeds the regulated standards at a well downgradient from
a waste source. The general applicability of the methodology is demonstrated on two simple hypothetical case
studies of transport of nonreactive and reactive solutes in the subsurface. Sensitivities of the probabilistic
outcome to the basic uncertainties in the input random variables are provided through importance factors.
The reliability-method results are checked against those obtained using the classical Monte Carlo—simulation
method, and the results are in good agreement except for very low probability events in which the reliability
methods provide accurate results much more efficiently than the Monte Carlo method. The need for a careful
trade-off analysis between accuracy and computer time is highlighted.

INTRODUCTION

Physical parameter uncertainty greatly affects the predic-
tive ability of ground-water flow and contaminant transport
models. Failure to rigorously account for parameter uncer-
tainty in contaminant transport analysis would, on the one
hand, cast serious doubts on our ability to accurately delineate
the contaminant plume at a given site; on the other hand, it
would considerably reduce the possibility of success of the
remediation scheme intended to clean up the plume within
the specified time, simply because of the uncertainty related
to the plume delineation. These uncertainties are represented
in the intrinsic heterogeneity of the porous media and un-
certainty related to the contaminant source, in addition to
uncertainties related to the chemical, physical, and biological
properties of the transported chemical.

Analytical screening models can provide general infor-
mation on possible aquifer contamination impacts and are
very helpful for assessing the potential of contamination of
ground-water supplies. However, many of these models fail
to account for the uncertainty inherently present in hydro-
geologic setting parameters and chemical characteristics. Sev-
eral efforts have been directed towards developing probabi-
listic screening ground-water tools. Examples include the work
of Smith and Charbeneau (1990) using first- and second-order
uncertainty analysis methods, and that of DelVecchio and
Haith (1993) using the Monte Carlo-simulation method.

In the present work, a simple probabilistic screening model
for ground-water contamination assessment is developed by
extending a deterministic semianalytical contaminant trans-
port model to include the effect of parameter uncertainty.
Only soluble contaminant plumes are considered. The use of
the semianalytical model precludes the consideration of the
spatial variability of aquifer properties, however the emphasis
of this work is to provide a simple, fast, and easy-to-use tool
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for the probabilistic screening for ground-water contamina-
tion, and to obtain preliminary information on the effect of
parameter uncertainty on transport of the contaminant con-
sidered.

UNCERTAINTY ANALYSIS

First- and second-order reliability methods (FORM and
SORM, respectively) were originally developed to assess the
safety of structural components and structural systems and
are now widely used in the study of structural reliability prob-
lems (Lu et al. 1994). The methods were recently applied to
problems of ground-water flow and contaminant transport
(Sitar et al. 1987; Cawilfield and Sitar 1988; Schanz and Sal-
hotra 1992; Wu and Cawlfield 1992; Cawlfield and Wu 1993).
To assess the extent of ground-water contamination, the prob-
lem is posed in a component reliability context, in which
situations with a single failure mode are analyzed. FORM
and SORM are selected as the probabilistic methods in this
study due to their numerous appealing features. These meth-
ods do not require restrictive and limiting assumptions about
the problem geometry or properties of the media. Compu-
tationally, FORM and SORM are much more efficient than
the basic Monte Carlo method for low-probability events.
Various levels of statistical information can be easily accom-
modated, from the second moment information to the full
joint probability-density function of the input random vari-
ables. FORM and SORM readily provide sensitivity results
with respect to both limit-state function and probability-dis-
tribution parameters. Finally, FORM and SORM are equally
compatible with analytical and numerical transport models.

In the next section a brief review of the reliability methods
is presented for the sake of completeness. A full review of
the reliability methods can be found in Madsen et al. (1986)
and Melchers (1987).

THEORETICAL BACKGROUND

In component reliability, the uncertain parameters in-
volved in describing the aquifer, the contaminant, and the
source are represented by a set of n random variables X =
(X, Xz, . . ., X,). The limit-state function (also called the
performance function) is a scalar function of the input random
variables g(X). The value g(x,, x,, . . . , x,)) determines the
state of the component for the particular realization x = (x|,
X3, . .., x,) of the random vector X. The g-function is for-
mulated with the convention that if g(x,, x, . . . , x,) > 0,

JOURNAL OF ENVIRONMENTAL ENGINEERING / NOVEMBER 1995 / 767



the component has survived, whereas the component has failed
if g(x,, x2, . . ., x,) < 0. So the n-dimensional space R" of
the basic random variables is divided into two domains

S = {x; g(x) > 0}, which denotes the safe domain (1la)
F = {x; g(x) < 0}, which denotes the failure domain (1b)

The hypersurface {x; g(x) = 0} is the limiting condition
between failure and survival, and is termed the limit-state
surface or failure surface. In the proposed work, the limit-
state function is formulated such that the event of interest is
the failure event. Thus, for a continuous source, the g-func-
tion is gtven by

8(X) = C, - C(X) )

where C, = prespecified maximum permissible regulatory
target concentration level at the receptor well; and C(X) =
actual value of the contaminant concentration at the chosen
well. It is obvious that the events described by {g(X) < 0}
and {C(X) > C} are equivalent. In other words, the failure
state in this case means failure to meet regulatory standards
regarding the contaminant of interest at the well within re-
quired simulation time. Note that for a continuously leaking
source, the contaminant breakthrough at the receptor well
increases monotonically with time. Therefore once the target
concentration at the receptor well is exceeded (and failure
occurs), the concentration at the well will always be greater
than the target value as time progresses and the failure con-
dition will persist.

In assessing the contamination risk, the event of interest
is the failure to meet the regulatory standards at the receptor
well, and the probability of such an event, termed the prob-
ability of failure, is given by the following n-fold integral:

P, = P[g(X) = 0] = P[C, = C(X)] = f HK(x) dx  (3)

2(X)=0
where fx(x) = joint probability density function of X and the
integration is carried over the failure domain. A variety of
factors complicate the direct estimation of this n-fold integral
and prevent the use of the standard methods of integration.
The first problem stems from the fact that for large problems,
the integration is carried in a high-dimensional space, which
makes the numerical integration very time-consuming or even
intractable. Hohenbichler et al. (1987) point out that for an
n-dimensional integral, if m is the number of calls of the
integrand per dimension, the computation time grows as m”.

Another factor that complicates the estimation of the afore-
mentioned probability integral is that in many cases the ab-
solute value of the integrand is very small and therefore the
effect of numerical inaccuracies can be considerably magni-
fied (Breitung 1991). Furthermore, problems arise due to the
complex and algorithmic formulation of the integration do-
main boundaries given by the g-function. This is the case when
numerical solutions of the transport equation are obtained
using finite elements or finite-difference methods, such that
a sequence of solutions of a large numerical transport problem
is required to find a single point on the limit-state surface.
In addition, problems arise due to the lack of information
concerning the multivariate joint probability-density function
in many practical situations.

FORM and SORM as Approximation Methods

The primary objective of the reliability methods is to over-
come the aforementioned difficulties and to evaluate the mul-
tidimensional integral in (3). FORM and SORM are analyt-
ical schemes used to approximate the probability integral when
the basic variables have strictly increasing continuous joint
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cumulative distribution functions. FORM and SORM consist
of a number of steps (Bjerager, 1990). First, the random
vector X of basic variables is transformed into the vector U
of standardized and uncorrelated normal variates (i.e., zero
mean, unit variance, and zero correlation) using a nonlinear
one-to-one mapping, U = T(X), such that the original joint
probability-density function fx(x) is mapped into the standard
normal density function. Such a transformation always exists
for random variables having strictly increasing continuous joint
cumulative distribution functions. The space of the basic ran-
dom variables X is often termed the x-space or physical space,
and the standard normal space is called the u-space. In the
case of statistically independent random variables, the non-
linear mapping is reduced to the following diagonal trans-
formation: u; = ®~YF,(x)},i =1, ..., n, where () =
standard normal cumulative distribution and Fx(x) = cu-
mulative distribution function of X. In the case of statistical
dependence, the joint distributions of the random variables
are assumed to be of the Nataf type, as explained by Der
Kiureghian and Liu (1986). The Nataf model assumes knowl-
edge of the marginal distributions and correlations between
variables. This method has been used in this study when con-
sidering the effect of correlation between some of the basic
random variables.

The second step involves the transformation of the limit-
state surface g(X) = 0 in the x-space to its image in the u-
space, the surface G(U) = 0. Fig. 1 illustrates the mapping
of the physical space into the standard normal space for a
two-dimensional parameter space. The major advantage of
the transformation into the standard normal space is the ro-
tational symmetry of the probability density in the u-space,
which means that for all hyperplanes of equal distances from
the origin, the probability content of the half-space away from
the origin is constant (Der Kiureghian and Liu 1986).

The following step is the approximation of the nonlinear
limit-state surface in the u-space by an appropriate tangent
surface at the point of smallest distance to the origin. This
smallest distance, B, is termed the reliability index and is a
measure of the reliability of the component under consider-
ation. The point on the limit-state surface that is the closest
to the origin in the u-space, u*, is called the design point,
and it is the most likely failure point in the standard normal
space. Because the probability density in the u-space decays
exponentially with the square of the distance from the origin,
the primary contribution to the probability integral in (3)
comes from the part of the failure region closest to the origin.
Therefore, the design point u* is an optimum point at which
to approximate the limit-state surface G(U) = 0.

The final step in the FORM/SORM estimation of the n-
fold probability integral given in (3) is to compute the failure
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FIG. 1. Mapping of Physical Space into Standard Normal Space



probability corresponding to the approximating failure sur-
face.

It should be emphasized that FORM and SORM are full
distribution methods, meaning that the full joint probability-
density function or the set of full marginal distributions with
correlation matrix can be incorporated. Other methods often
cited in the literature include first-order second moment
(FOSM) methods, which can only incorporate the second
statistical moment information (i.e., mean vector and co-
variance matrix) of the basic variables X. Nevertheless, FORM
and SORM can still be defined in a second moment context
(Bjerager 1990).

FORM versus SORM

FORM and SORM differ mainly in their method of failure
surface approximation in the u-space (Fig. 2). In FORM, the
limit-state surface is approximated by the tangent hyperplane
at the design point. The reliability index of the first-order
reliability method is given by the inner vector product

BFORM = o* -u* (4)

where a* = unit vector normal to the limit-state surface at
the design point in the u-space and directed towards the fail-
ure region (Fig. 2). The first-order approximation of the prob-
ability of failure is then given by

Py~ PEORM = @(—BFoRM) ©®)

where ®( ) = standard normal cumulative distribution.

The second-order reliability method (SORM), on the other
hand, has the ability to accommodate the curvature of the
limit-state surface by using a second-order paraboloid ap-
proximation at the design point. This becomes necessary in
problems characterized by a highly nonlinear limit-state sur-
face and, consequently, a nonflat limit-state surface at the
design point.

Two types of paraboloid approximations are used in SORM:
curvature-fitted (Fiessler et al. 1979; Breitung 1984) and point-
fitted (Der Kiureghian et al., 1987) paraboloid approxima-
tion. A number of researchers provide expressions for esti-
mating the probability content in a parabolic set. For ex-
ample, Breitung (1984) provided an asymptotic formula

g—1

PF o~ P?:ORM = ¢(_BFORM) I;Il (1 + BFORMKJ)*I/Z (6)
BSORM — (1)7[[1 - P%ORM] (7)
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FIG. 2. FORM and SORM Approximation to Failure Surface in
Standard Normal Space

In (6), x;, = q¢ — 1 principal curvatures of the limit-state
surface in the u-space, with the sign convention that curva-
tures are negative when the surface curves towards the origin.

The computational effort of SORM should be recognized.
In component reliability, the run time required for a FORM
analysis grows proportionally with the problem dimensional-
ity, n, whereas the additional computational effort needed
for a SORM analysis grows with n%/2. The point-fitted method
(Der Kiureghian et al. 1987) has the advantages of reducing
the number of g-function evaluations to 2n, remaining valid
for surfaces that are not twice differentiable, and being in-
sensitive to any numerical noise in the limit-state surface that
may arise when the limit-state function is only given algo-
rithmically. Nevertheless, SORM is significantly more com-
putationally intensive than FORM.

Design-Point Determination

Finding the design point in the standard normal space con-
stitutes the major effort in reliability analysis. This is partic-
ularly true for large problems where the g-function is defined
algorithmically, as when using numerical transport proce-
dures. The design point u* is the solution of the following
nonlinear constrained optimization problem:

minimize |u| subject to G(u) = 0 8)

This simply means that the objective is to determine a point
on the limit-state surface in the standard normal space with
the minimum distance from the origin. Various algorithms
have been developed to resolve this problem. These include
the popular HL-RF method [which was originally developed
by Hasofer and Lind (1974) in FOSM reliability analysis, and
later extended by Rackwitz and Fiessler (1978) to include
distribution information], the gradient projection method,
the sequential quadratic programming (SQP) method, and
the modified HL-RF method (Liu and Der Kiureghian 1986).
The comparison of the optimization methods should be done
on the basis of generality, robustness, efficiency and capacity
(Liu and Der Kiureghian 1991). The probabilistic model used
in this work (Veritas 1992b) employs the SQP method. This
reflects the developers trust of the efficiency, robustness, and
generality of the SQP algorithm.

Sensitivity Measures

As an integral part of the FORM/SORM analysis, one
obtains valuable information including uncertainty impor-
tance factors (Hohenbichler and Rackwitz 1986) and para-
metric sensitivity factors. The latter are sensitivities of both
the reliability index and estimate of the failure probability to
both probability-distribution parameters and limit-state func-
tion parameters (Madsen 1988).

For independent variates, the uncertainty importance fac-
tor is defined as the derivative of the first-order reliability
index with respect to the corresponding variate in the stan-
dard normal space, and is given by

8

ou = 9

flu=u*

where «; = ith component of the unit normal vector to the
limit-state surface at the design point.

Although there exist a number of useful sensitivity infor-
mation, in this paper only the uncertainty importance factors
expressed as 100a? have been reported due to the lack of
space. For statistically independent variables, it has been shown
(Madsen 1988) that omission sensitivity factors (defined as
the relative error in the first-order reliability index when a
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basic variable X; is replaced by a deterministic number equal
to its median X;,,) are given by

B(Xl = Xi,m) _ 1
B CVI- &

It is therefore observed that the uncertainty importance
factors, 100a?, give a measure of the relative importance of
modeling the uncertainty of a basic random variable X, with
respect to the final probability outcome.

This concept naturally extends to higher dimensions. The
relative error in the first-order reliability index of representing
a group of m mutually dependent variables, X, i = 1, .. .,
m, by their respective median is given by (Veritas 1992a)

BX, =X,ni=1,....m 1

= (11)
b 1= > a2

Therefore, the uncertainty importance factors associated with
a group of mutually dependent variables can be expressed by
the quantity 100 27, o?. In case mm = 1, the results of (11)
reduce to that of (10).

Importance factors allow for the identification of the ran-
dom variables that have the least impact on the final reliability
outcome. Each of these variables can then be replaced, for
all practical purposes, by a deterministic value—its median,
for example. Therefore, the importance factors are very use-
ful in reducing the number of basic random variables in large-
size reliability models.

(10)

APPLICATIONS
Probabilistic Screening Model

The probabilistic model used in this work is based on the
semianalytical horizontal plane source model (HPS) devel-
oped by Galya (1987). HPS uses Green’s function solutions
and numerical integration to simulate uniform unidirectional
advective transport in the x-direction with three-dimensional
dispersion in the x-, y-, and z-directions. The model can ac-
count for first-order decay and sorption, and can accommo-
date any number of sources with varying concentrations and
any number of receptor locations.

Input to the model includes the seepage velocity; disper-
sivities in the x-, y-, and z-directions; soil porosity; aquifer
thickness; first-order decay coefficient; soil bulk density; or-
ganic carbon content; receptor location; along with the source
location; source area dimension; source concentration; and
infiltration rate. The use of HPS limits the case studies to
rather simple geometry and boundary conditions, and all the
limitations and weaknesses of the model as outlined by Galya
(1987) should be considered. The intention, however, was to
provide for a simple tool to explain the proposed probabilistic
approach.

Physical-parameter uncertainty is considered by linking the
transport model to the general purpose probability analysis
program PROBAN (Veritas Research 1992b). This allows
for carrying out a wide range of simulation and reliability
analyses for both simple and complex problems. PROBAN
also contains an extensive built-in distributions library of
probability distributions that enables the assignment of a va-
riety of marginal or joint probability-density functions.

Fig. 3 is a schematic presentation of the various elements
involved in the proposed approach. The probabilistic trans-
port model can be used by the user as a “‘black box™ without
necessitating a great deal of knowledge of the reliability the-
ory from the user’s part. Input to the model includes physical-
parameter uncertainty as well as deterministic parameters.

Various levels of statistical information can be accommo-
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FIG. 3. Flow Chart of Probabilistic Transport Analysis Model
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dated by the model. When only incomplete statistical infor-
mation is available, the first two moments of each random
variable are specified, without providing a specific probability
distribution. If some, or all, of the random variables are cor-
related, this information can be readily incorporated into the
model through the correlation coefficients. When there is
incomplete statistical information, only an ad hoc estimate of
the probability of failure can be obtained. On the other hand,
if the complete probability information is available, the input
random variables are defined by their full joint density func-
tion, which can be decomposed into a product of conditional
distributions.

The user is also prompted to formulate the limit-state func-
tion for the site-specific conditions, which identifies the per-
formance criteria of the component being considered. It should
be noted that the formulation is different in the case of con-
tinuous and instantaneous leaking sources, and differs de-
pending on whether ground-water flow or contaminant trans-
port is the primary focus of the study.

The problem of interest in this work is to study the prob-
ability that the concentration of a given contaminant leaking
continuously from a source exceeds a predetermined target
level at a downgradient water supply well during the simu-
lation time of interest. Fig. 4 shows a schematic of the case
study setup. The actual mathematical formulation was pre-
sented in (2).

Once the limit-state function is formulated and the input
variables are provided, the model applies the first- and sec-
ond-order reliability methods to provide the user with the
probability of failure at the receptor well, the reliability index
characterizing the transport scenario, and the sensitivity of
the failure probability and reliability index to the basic var-
iability in the basic random variables. The decision regarding



the assessment of ground-water contamination risk can be
made with the probabilistic outcome available. As described
earlier, the sensitivity data can help the user assess the worth
of available data and guide in the future data-collection pro-
tocols. Monte Carlo simulations of the failure probability, or
of the concentration at the receptor well, can be readily pro-
vided by the HPS-PROBAN model with minor modifications
to the input file.

The interface between PROBAN and HPS is done using
FORTRAN user-defined subroutines, and the HPS-PRO-
BAN is run on a SUN SPARCstation 2. In the FORM/SORM
analysis, HPS is used at each iteration in the constrained
optimization routine used to solve (8) to provide a current
estimate of the g-function for the current realization, x, of
the random vector X. The search algorithm usually converges
to a minimum in less than 20 iterations. To ensure that a
global minimum is obtained, the user may choose to run the
problem with different starting points, and check whether the
algorithm converges to the same solution each time.

Nonreactive-Solute Transport

First, the methodology is demonstrated on a case of trans-
port of a conservative (nonreactive) solute in ground water.
This means that the only mechanisms involved in the solute
transport are the advection and dispersion. The solute is as-
sumed to undergo no chemical transformations, biological
degradation, or adsorption to the soil matrix. The source is
assumed continuous. The deterministic parameters to this case
study are listed in Table 1. The probability of failure at a
receptor well downgradient from the waste source of the source
is studied. The well is assumed to be screened from the water
table to a depth of 2.0 m below the water table, thus the
observation point is taken to be 1.0 m below the water table.

Input random variables to the case study are categorized
into aquifer-related and source-related parameters, and are

TABLE 1. Deterministic Input Parameters for Case of Nonreactive
Solute Transport

Variable Unit Value
8] (2 (3)

Aquifer thickness H m 30.0
Simulation time ¢ yr 20.0
x-distance to the well m Variable
y-distance to the well m 10.0
z-distance to the well® m 1.0
Infiltration rate Q m/yr 1.0
Retardation factor R — 1.0
First-order decay coefficient A yr! 0.0

#z-distance is measured from water table.

TABLE 2. Random Input Variables for Case of Nonreactive Solute
Transport

Variable Unit Distribution
(1) (2) (3)

(a) Aquifer-related parameters

Seepage velocity U m/yr LN (126.7, 227.37)
x-dispersivity a, m SLN (10, 4, 0.01)
y-dispersivity «, m SLN (1, 0.4, 0.001)
z-dispersivity a, m SLN (0.1, 0.04, 0.0001)
Soil porosity 8 — U (0.3, 0.5)

(b) Source-related parameters
Source length L, m U (50, 100)
Source width L, m U (50, 100)

Note: LN (mean, standard deviation) = lognormal; SLN (mean, stan-
dard deviation, lower limit) = shifted lognormal; U (lower limit, upper
limit) = uniform.

listed in Table 2. Aquifer-related parameters include seepage
velocity; dispersivities in the x-, y-, and z-directions; and soil
porosity. Source-related parameters include the source di-
mension parallel to the x- and y-axes. Probability-density
functions and relevant parameters for the aquifer-related pa-
rameters were obtained from the nationwide survey done for
the Environmental Protection Agency (EPA) in 1988 (Back-
ground 1988), along with the 400-site survey conducted by
Newell et al. (1990). The selection of the uniform probability
distribution for the source dimensions is arbitrary. The basic
random variables are assumed to be mutually statistically in-
dependent.

For the case of lognormally distributed variables, the mean
and standard deviation are given; for shifted lognormal var-
iables, the mean, standard deviation, and the minimum values
are given. Lower and upper limits are provided for the case
of uniformly distributed variables.

In this case study, we look at the normalized target con-
centration at the receptor well, [C(X)/C,], where C(X) is the
actual concentration, and C, is the source concentration. Thus
the limit-state function is formulated as follows:

gX) = (C/Couren — CX)/C, (12)

where (C/Cy)iagee = normalized target concentration at the
well.

Instead of performing the analysis for a single normalized
target concentration, a set of such target concentrations was
considered. In other words, the reliability problem is solved
a number of times, varying the term (C/C),ur., that appears
in (12) at each time. Note that the probability distribution of
the concentration under consideration can be obtained by
varying the target concentration values and using the para-
metric sensitivity results with respect to limit-state function
parameters. This gives a more flexible way of assessing the
ground-water contamination risk at the receptor well for any
selected target concentration value. The probability of failure
at receptor wells at distances of 200 m and 400 m downgra-
dient are shown in Fig. 5. First-order and curvature-fitted
second-order reliability methods were used. The decrease in
failure probability with target concentration increase is in-
tuitive, because it is less probable for the solute concentration
to exceed a high value at the downgradient well than a smaller
value for a continuous source.

FORM and SORM failure probabilities were found to be
in good agreement for low target concentration values (and
hence for higher failure probabilities). However, FORM and
SORM results depart from each other for large target con-
centration values (and lower failure probabilities), which in-
dicates the appreciable nonlinearity of the limit-state surface
at the design point. In this case, a second-order method is
expected to provide a better approximation of the failure
surface at the design point because it accounts for the prin-
cipal curvature of the limit-state surface in the standard nor-

10051 ~—  FORM failure probability A
- ----  SORM failure probability ~
1.0e-6t
0.1 02 03 04 0.5 06 07
Normalized target concentration

FIG. 5. Effect of Normalized Target Concentration Levels on
Probability of Failure for Nonreactive Case
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mal space. Although the results contained in Fig. 5 are qual-
itatively intuitive, the quantitative aspects could not have been
obtained without the formal probabilistic computations de-
scribed in the aforementioned formulation.

Fig. 6 illustrates the effect of changing the normalized tar-
get concentration levels at the receptor well on the FORM
and SORM reliability index for the 200 m and 400 m cases.
Because there is a monotonic one-to-one relationship be-
tween the probability of failure and reliability index [see (5)],
the same trend of agreement at low normalized target con-
centration levels and discrepancy at large normalized target
concentration levels is observed for the FORM and SORM
results. The reliability index is a measure of the component
reliability—it increases for decreasing probability of failure.

The discrepancy between the FORM and SORM results
are further investigated by estimating the percentage differ-
ence between the results for varying normalized target con-
centration and distances from the source. The absolute value
of the percentage difference was estimated as follows:

absolute percentage difference

FORM __ SORM
— absolute <PF—EF—> % 100

P;()RM (13)

This is shown in Fig. 7. FORM and SORM failure prob-
abilities were found to be in good agreement for low target
concentration values, or for high target concentration values
at closer distances to the source. In other words, the agree-
ment between the FORM and SORM results is good for cases
with high probability of failures (above 10~ for this particular
case study and for the prescribed probability distributions).
FORM and SORM results depart significantly from each other,
however, for large target concentration values, or for small
target concentrations at larger distances from the source, which
indicates the appreciable nonlinearity of the limit-state sur-
face at the design point, in which case the use of SORM is
warranted.

——  FORM Reliability index - »
o] ---- SORM Relinbility index x=40m-

-1
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FIG. 6. Effect of Normalized Target Concentration Levels on Re-
liability Index for Nonreactive Case
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The previous discussion draws the attention to an important
issue regarding the choice of SORM versus FORM as the
reliability analysis option. In many practical situations, FORM
and SORM results would be in good agreement, provided
that the limit-state surface at the design point in the standard
normal space is nearly flat. On the other hand, when the
limit-state function contains highly nonlinear terms, or when
the input random variables have an accentuated nonnormal
character, SORM tends to produce more accurate results than
FORM. However, it should be recognized that SORM re-
quires more computational effort than FORM. As discussed
before, in component reliability, the run time required for a
FORM analysis grows proportionally with the problem di-
mensionality, n, whereas the additional computational effort
needed for a SORM analysis grows with n%/2. Consequently,
the selection of the reliability method should be done based
on problem dimensionality, available computer resources, and
the required level of accuracy. In other words, one should
always conduct a careful trade-off analysis between compu-
tational and accuracy requirements. In this case study, the
run times (user + system times) for FORM and SORM were
in the order of 1 min and 2.5 min, respectively.

The combined effect of the distance from the receptor well
to the leaking source and the normalized target concentration
levels on the failure probability is shown in Fig. 8. In this
case, both the target concentration and distance from the
source are varied, and the resulting curvature-fitted SORM
failure probabilities form the shown ““failure probability sur-
face.” Itis clear from the figure that for a specified normalized
target concentration, the failure probability decreases with
increasing downgradient distance from the source, and that
for a specified distance from the source, the failure probability
decreases with increasing target concentration. This analysis
would be useful if we look at a number of locations down-
gradient from the leaking source, so that we can identify the
failure probability related to a given leaking source for any
given well and desired target concentration level.

The importance factors presented in the theoretical back-
ground section indicate the sensitivity of the probabilistic out-
come to the basic uncertainty in the input random variables.
The change of the importance factors with changing nor-
malized target concentration levels is shown in Fig. 9. It is
evident that over the range of target concentrations selected,
and for the probability distributions prescribed for this case
study, the probability of failure at the receptor well is most
sensitive to the basic variabilities in the seepage velocity, z-
dispersivity, and source length L,. The importance factors
for the remaining variables were less than 1.0% and were not
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FIG. 8. Curvature-Fitted SORM Failure Probability Surface for
Nonreactive Case
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TABLE 3. Deterministic Input Parameters for Case of Reactive
Solute Transport

Variable Unit Value
(M 2 3

Simulation time ¢ yr 20.0
x-distance to well location m 100.0
y-distance to well location m 1.0
z-distance to well location®* m 1.0
Infiltration rate Q m/yr 1.0
Source concentration (C,) mg/L 200.0
Contaminant type — o-xylene

*z-distance is measured from water table.

plotted. Therefore, although the impact of seepage velocity
on the probabilistic outcome is evident, the significance of
the source-related uncertainty should also be recognized, and
failure to account for these uncertainties could result in er-
roneous contamination risk assessment. Note that when cor-
relation between some of the input random variables was
included, the resulting probability of failure was within about
3% of the uncorrelated case.

Reactive-Solute Transport

As an example of transport of a reactive solute in the sub-
surface, the proposed methodology is applied to the case of
transport of o-xylene. A continuous leaking source is also
used in this case. The concentration at a well 100.0 m down-
gradient, and 1.0 m off the centerline (x-axis) is studied. The
deterministic parameters used in the case study are listed in
Table 3 and the input random variables to the model are
listed in Table 4.

The input random variables are classified into three cate-
gories: aquifer-related, source-related, and chemical-related
parameters. Basic random variables are assumed mutually
statistically independent.

First-order kinetics have been widely used to describe pro-
cesses like natural biodegradation, chemical reactions, and
radioactive decay. For the purpose of this work, it is assumed
that o-xylene undergoes natural anaerobic biodegradation by
indigenous microorganisms following first-order kinetics. Due
to changing depths of ground-water elevation and fluctuation
in levels of nutrients and electron acceptors, there is uncer-
tainty in the value of the first-order decay coefficient for the
contaminant. This is taken into account by assuming the decay
coefficient to be random. The choice of the range of equally
likely values of the first-order decay coefficient used in this
work takes into account actual rates for natural biodegra-
dation reported by Wilson et al. (1993) for o-xylene. As for
the organic carbon partition coefficient K, the range of val-
ues were obtained from the listed values given by Fetter (1993).

In this case study, we look at actual o-xylene concentration

TABLE 4. Random Input Variables to Case of Reactive Solute
Transport

Variable Unit Distribution
(1) (2) (3)

(a) Aquifer-related parameters

Seepage velocity U m/yr LN (126.7, 227.37)
Dispersivity (x-direc-
tion) o, m SLN (10, 4, 0.01)
Dispersivity ( y-direc-
tion) a, m SLN (1, 0.4, 0.001)
Dispersivity (z-direc-
tion) a, m SLN (0.1, 0.04, 0.0001)
Soil porosity 8 U (0.3, 0.5)
Soil bulk density p, g/cm? U (1.2, 1.8)
Fraction of organic car- :
bon f,. % weight | SLN (0.0031, 0.0003, 0.001)
(b) Source-related parameters
Source length L, m U (50, 100)
Source width L, m U (50, 100)

(¢) Chemical-related parameters

Organic carbon parti-

tion coefficient K. cm’/g U (200.0, 900.0)
First-order decay coef-
ficient A yr-! U (1.456, 5.72)

Note: LN (mean, standard deviation) = lognormal; SLN (mean, stan-
dard deviation, lower limit) = shifted lognormal; U (lower limit, upper
limit) = uniform.
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FIG. 10. Effect of o-xylene Target Concentration Levels on Prob-
ability of Failure

at the receptor well, resulting from the continuous leaking
source. Note that the o-xylene undergoes adsorption to the
soil matrix and biodegradation in addition to advection and
dispersion, thus the actual concentration of o-xylene at the
receptor well will be much smaller than that of a similar leak
of a nonreactive solute. The limit-state function for this case
is formulated as follows:

8(X) = €, - C(X) (14)

The effect of changing the target concentration levels at
the receptor-well location on the probability of failure is il-
lustrated in Fig. 10. Both FORM and SORM (curvature-
fitted) were used for the component reliability analysis. As
was observed and explained in the nonreactive case, there is
a similar trend in decreasing the failure probability with in-
creasing target concentration. For this application, FORM
and SORM results agree reasonably well for the whole range.
A similar trend was also noted in good agreement between
FORM and SORM reliability index for the whole range of
target concentration levels. For the sake of brevity, this result
is not presented. The effect of correlation between some of
the input random variables in this case was similar to that of
the nonreactive case, and the resulting difference in the prob-
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ability of failure was within about 5% of the uncorrelated
case.

The importance factors for a range of o-xylene target con-
centration levels is shown in Fig. 11. It is clear that over the
range of target concentration selected, and for the probability
distributions prescribed for this case study, the probability
failure at the receptor well is most sensitive to the basic un-
certainty in the seepage velocity, the first-order decay coef-
ficient, the organic carbon partition coefficient, and, to a
lesser extent, the source length L,. Therefore, although the
impact of seepage velocity on the probabilistic outcome is
pronounced, the significance of the chemical-related and
source-related uncertainty should be recognized, and failure
to account for these uncertainties would cast shadows of doubt
over the risk-assessment results. The importance factors for
other variables were negligible (below 1.0%), therefore they
were not plotted. The apparent oscillation in the results are
spurious numerical artifact due to the fact that the level of
accuracy of the reliability algorithm varies slightly with the
level of target concentration levels resulting from the nonlin-
ear nature of the limit-state surface at the design point in the
standard normal space. The trend of the true behavior of the
solution, however, remains clear.

In Fig. 12, the failure probabilities obtained by FORM,
curvature-fitted SORM, and the classic Monte Carlo simu-
lation are plotted. The MCS and SORM results seem to be
in a very good agreement (as shown in the inset). FORM
results, however, departs considerably from the ‘“‘true’ so-
lution predicted by the ensemble mean of the large number
of Monte Carlo simulations. It should be emphasized that
10,000 Monte Carlo simulations were required to get a reli-
able estimate of the probability of failure (i.e., a coefficient
of variation of the estimate within the permissible limits, 0.02
in this case). FORM and SORM results were obtained in less
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than 20 iterations, and the required run time (user + system
time) on a SUN SPARCstation 2 was in the order of 2 min
and 3 min, respectively. The 10,000 Monte Carlo results, on
the other hand, were obtained in about 60 min of run time
on the same machine.

This clearly illustrates the power and computational effi-
ciency of SORM through which the results can be obtained
at a small fraction of the computational cost required for the
Monte Carlo~simulation results. The figure also indicates the
inaccuracy of the FORM results in this case. Nevertheless,
the FORM results were obtained in a very short run time,
thus it could be used to provide a first estimate of the failure
probability. The asymptotic convergence of the classic Monte
Carlo simulation is evident by the way the simulation estimate
converges to the failure probability that is predicted by SORM.

CONCLUSIONS

The significant role that the parameter uncertainty plays
in modeling ground-water contaminant transport has been
recognized by environmental engineers as well as regulatory
agencies. Recently there have been considerable attempts to
address such an issue using the various stochastic hydro-
geology approaches. In this work we have presented a simple
and efficient screening tool for the probabilistic assessment
of ground-water contamination at a given receptor well re-
ceiving contamination from an upgradient source. The model
is based on a semianalytical model of simple structure, thus
it does not take into account the spatial variability of the
aquifer parameters. Nevertheless, the intention was twofold:
to perform a proof-of-concept type of study for illustrating
the potential power of the reliability methods; and to develop
a probabilistic tool that can provide general indication of
contamination risk, along with sensitivity of the results with
respect to the various basic sources of uncertainty, in a frame-
work that can explicitly account for aquifer-related, source-
related, and, in the case of reactive solutes, chemical-related
parameter uncertainty.

We have shown that first- and second-order reliability
methods (FORM and SORM, respectively) can be a potential
alternative to the classical Monte Carlo—simulation method
when dealing with ground-water contamination events that
have very small probability of occurrence, therefore requiring
thousands of Monte Carlo simulations to provide reliable re-
sults. In this work, FORM and SORM were used to assess
the probability that a given contaminant exceeds a certain
target concentration level at a given point in space and time
in the solution domain, and to provide the sensitivity of such
a probabilistic event with respect to the basic variability in
the input variables. Contamination scenarios with both re-
active and nonreactive solutes were presented for demon-
stration purposes.

FORM and SORM results were compared and were tested
against those obtained using the classical Monte Carlo-sim-
ulation method. In selecting the analysis method, it should
be emphasized that SORM is more accurate than FORM,
but computationally more expensive. In this paper, because
the problem analyzed was fairly simple, computer time re-
quired for SORM was still very low (on the order of a few
minutes on a SUN SPARCstation 2) and the use of SORM
was warranted. However, for larger problems, and when us-
ing more complex numerical models (based on finite-differ-
ence or finite-element methods) this becomes a matter of
considerable significance, and a careful trade-off analysis be-
tween computational effort and accuracy should be conducted
to determine which approximation method to use. We also
showed that FORM results are sometimes very different from
SORM results, and in such cases, SORM analysis is war-
ranted, even with the extra computational effort required.



The impact of the basic uncertainty in seepage velocity was
identified. However, chemical-related and source-related pa-
rameter uncertainty have also appeared as significant factors
to consider in the probabilistic analysis of ground-water trans-
port problems, and their importance should not be over-
shadowed by the aquifer-related parameter uncertainty.

Although the probabilistic model used in this work is based
on a semianalytical transport code, the methodology is equally
applicable to more sophisticated and realistic numerical models
as well. The writers are currently working on the integration
of FORM and SORM with a three-dimensional numerical
finite-element transport code in order to account for the effect
of spatial correlation structure of the relevant aquifer- and
chemical-related parameters.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

C = actual concentration of contaminant at receptor well
(MIL?);
C, = deterministic target concentration at receptor well
(M/L?);
C, = source concentration (M/L%);
F = failure domain of component of interest;
Fx(x) = joint cumulative distribution function of x;

foc = fraction of organic carbon (percentage by weight);
fx(x) = joint probability density function of x;
G(U) = limit-state function in standard normal space;
g(X) = limit-state function in physical space;
H = aquifer thickness (L);
L, = length of leaking source in x-direction (L);
L, = width of leaking source in y-direction (L);
P, = probability of failure;
PFORM = FORM approximation to probability of failure;
PFORM = SORM approximation to probability of failure;
QO = infiltration rate (L/T);
R = retardation factor;

S = survival domain of component of interest;
U = seepage velocity (L/T);
u* = design point in standard normal space;

u-space = standard normal space;
X = n-dimensional random vector;

x = particular realization of random vector X;
x-space = physical space of random variables;
a® = unit vector normal to limit-state surface at design
point in standard normal space;
a, = dispersivity in x-direction (L);
a, = dispersivity in y-direction (L);
a, = dispersivity in z-direction (L);
BFORM = first-order reliability index;
BSORM = second-order reliability index;
6 = aquifer porosity;
k;, = principal curvatures of limit-state surface in standard

normal space;
A = first-order decay coefficient;
p, = soil bulk density (M/L?); and
® = standard normal cumulative distribution function.
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