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A b s t r a c t  

First- and second-order reliability methods (FORM and SORM) are applied as alternatives to 
the Monte Carlo simulation method in the probabilistic analysis of groundwater contaminant 
transport and remediation. A two-dimensional finite-element model is interfaced with a reliability 
analysis program to account for uncertainty in aquifer media. Hydraulic conductivity is modeled 
as a spatial random field with prescribed marginal probability distribution and correlation 
structure. FORM and SORM provide the probability that a contaminant exceeds a target level at a 
well, termed the probability of failure. Sensitivity of the probability of failure to basic uncertainty 
in grid block conductivities is also obtained, at no additional computational effort. Component 
reliability is used to analyze failure in a single well. Results indicate that, at the most likely failure 
scenario, grid block conductivities attain their maximum value near the source, the receptor well, 
and along the stream tubes connecting the two. System reliability is used to analyze the joint 
probability of failure at several wells in the aquifer. Results indicate that system failure probability 
is greater than the largest component failure probability. Correlation between component failure 
events is greater when the individual wells are closer. Sensitivity of the upper bound on system 
probability with respect to grid block conductivities is highest along the path the contaminant 
follows to reach the receptor wells. Furthermore, the probability of failure to contain a plume from 
escaping site boundaries is analyzed, along with the corresponding sensitivity information. 
Probability of failure to contain the plume decreases as the well pumping rate increases. The 
presence of regions of lower conductivity dramatically increases the probability of remediation 
failure. A careful analysis of aquifer material uncertainty and heterogeneity is vital to the success 
of groundwater remediation systems. 
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I. Introduction 

Porous media exhibit extensive intrinsic heterogeneity. Hydraulic conductivities that 
span orders of magnitude at the same site are not uncommon. Assessing the extent of 
contamination at a given site depends largely on the ability to accommodate this 
heterogeneity in the modelling process. This problem has led to a wealth of literature in 
the field of probabilistic, or stochastic, subsurface transport modeling in the past decade. 

First- and second-order reliability methods (FORM and SORM) have been developed 
in the field of structural engineering in the past 20 years. These methods have been 
recently studied as an appealing alternative to other probabilistic tools for modeling 
groundwater problems. For example, reliability methods have been found to be much 
more computationally efficient than the Monte Carlo simulation method, especially for 
the case of low-probability events (Jang et al., 1994). Furthermore, reliability methods 
provide sensitivity measures at no extra computational effort. The ability of these 
analytical reliability methods to accommodate complete, as well as incomplete statistical 
information is also of great value for groundwater modeling. 

In an earlier paper, we presented the application of FORM and SORM to simple 
analytical probabilistic groundwater models (Hamed et al., 1995). The developed models 
allowed for the assessment of the extent of groundwater contamination from a continu- 
ous leaking source at the screening level, accounting for aquifer-, chemical-, and 
source-related parameter uncertainty. Reliability methods were found to be very efficient 
in these types of analyses. 

In this paper, we extend the application of these reliability methods to the numerical 
solution of the groundwater transport equation. The use of the resulting numerical model 
allows the consideration of the spatial random variability and correlation structure of the 
aquifer material. Furthermore, complex geometry and boundary conditions can be 
considered. The analysis of the probability of exceeding a target contaminant level at 
one or several wells is presented, using component and series system reliability, 
respectively. The effect of parameter uncertainty on the efficiency of plume containment 
strategies is also presented. 

Jang et al. (1994) applied FORM and SORM methods to probabilistically model 
contaminant transport in one and two dimensions. They applied their code to estimate 
the probability of exceeding target concentrations at specific points, taking into account 
the spatial random variability of the input parameters, along with their spatial correla- 
tion. They concluded that the probability of failure increases as the correlation scale 
increases and approaches that obtained using the analytical transport model, which 
represents the transport in a perfectly correlated medium. The sensitivity analysis 
showed that the solution is most sensitive to hydraulic conductivity near both the source 
and target regions. They also found that the second-order reliability method, SORM, can 
handle large variance of the input parameters; something which is not possible with 
many of the current available techniques. 
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The work presented here extends their work in the sense that the formulation is 
similar, but more emphasis is given to issues like the analysis of failure at several wells 
in the aquifer, the use of reliability methods in plume containment and remediation, and 
the effect of the presence of a lower-conductivity lens on the estimated reliability. 

2. First- and second-order reliability methods 

Reliability methods have been extensively applied to problems of structural safety 
(Madsen et al., 1986; Melchers, 1987). Recently, the methods have been extended to 
groundwater problems (Sitar et al., 1987; Schanz and Salhotra, 1992; Wu and Cawlfield, 
1992; Cawlfield and Wu, 1993; Gureghian et al., 1994; Jang et al., 1994; Hamed et al., 
1995, 1996). In this section we present a brief review of reliability theory. 

2.1. Component reliability analysis 

Component reliability analysis is based on formulating a single scalar limit-state 
function, g(X) ,  that describes the performance of the problem, in which X is an 
n-dimensional vector of random variables. When assessing the extent of groundwater 
contamination, the limit-state function tests whether the simulated contaminant concen- 
tration at a well exceeds some selected target value: 

g ( X ) = C t - C ( X  ) (1) 

It is therefore clear that the n-dimensional space of random variables is subdivided 
into a "failure" domain and a "safe"  domain, depending on whether the simulated 
concentration C(X) exceeds the target, 6",. The boundary between failure and safe 
regions is expressed by the limit-state surface, g(X)  = O. 

The probability that the concentration at the well exceeds the predetermined target 
value is termed the "probability of failure", and is given by: 

PF = P[ g ( X )  < 0] = P [  C t < C(  X ) ]  = fg(x)<ofx(x)dx (2) 

where fx(x)  denotes the joint probability density function of X and the integration is 
performed over the failure domain. The estimation of the above n-fold integral is a 
formidable task. In fact, even classical numerical integration methods would fail to 
evaluate such an integral for large n. Simulation methods, such as the classic Monte 
Carlo simulation, have been used to estimate this probability integral. However, for 
large-number dimensional problems, and for small probability of failure, the Monte 
Carlo simulation method is computationally inefficient. In other words, the solution of 
the transport equations using the finite-element method will require a very large number 
of realizations of the random vector X; which can render the simulation approach 
practically infeasible. FORM and SORM provide a much more efficient way of 
approximating the above integral, especially for small probability of failure. Further- 
more, the reliability methods provide sensitivity information at no additional computa- 
tional burden, which the Monte Carlo simulation cannot provide. Note that the dimen- 
sionality increases when the problem scale increases, or when considering three-dimen- 
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sional problems, at which cases the number of random variables will considerably 
increase• 

FORM and SORM are based on transforming the space of the physical random 
variables, X, into the space of uncorrelated standard normal variables, U, using a 
non-linear one-to-one mapping, U = T(X) .  The transformation function T depends on 
the types of statistical information available for the basic random variables, X, and 
whether these random variables are statistically correlated (Der Kiureghian and Liu, 
1986). 

In this study, we assume that marginal probability distributions of individual vari- 
ables, along with the correlation structure, in the form of a correlation function, are 
known. Therefore, the transformation into the standard normal space proceeds in two 
stages, following the Nataf model (Der Kiureghian and Liu, 1986). First, the basic 
random variables, X, are transformed into a space of correlated standard normal 
variates, Z, such that Z i =  ~- l [Fx (x i ) ] ,  where qb[ ] denotes the standard normal 
cumulative distribution function and Fx(x  ) is the cumulative distribution function of 
X i. The variates Z have a correlation matrix R o. The second step consists of transform- 
ing the vector Z into the space of uncorrelated standard normal variates as follows: 

U = FoZ (3) 

where F o is a lower triangular matrix resulting from the Cholesky decomposition of the 
correlation matrix of Z, i.e. /'o = Lo 1 in which R o = LoLro . Elements of the matrix R o 
are the correlation coefficients, Pz,z/ These, in turn, are related to the correlation 
coefficients, p .....  of the basic random variables, X, through the following implicit 
• . t : .  . . 

integral relationship (Der Kmreghlan and Liu, 1986): 

px:, = f_~ ~ ~ 4'2( z~,zi,Pz:)dz~dzj (4) 

where 4'2(z, ,zj ,pz:j)  is the bivariate normal density function of normal variates with 
zero means, unit varmnces, and correlation coefficient Pz,zj; la, and o-~ denote the mean 
and standard deviation of X i, respectively. For each pair of marginal distributions, Fx(x  i) 
and Fx(xj) ,  and for a given correlation coefficient p . . . .  the above equation can be 
• 1 J • • . i / 

lteratively solved to obtain Pz z • Llu and Der Klureghlan (1986a), however, provided a 
• . i . j  . . . .  

set of empirical formulae relating Pzizj to Pxix, for some known marginal distributions. 
This greatly simplifies the calculations and overcomes the tedious process of iterative 
solution• 

FORM and SORM proceed to approximate the limit-state surface in the standard 
normal space at the point on the limit-state surface which is closest to the origin, called 
the "design point", u*. This point has the advantage of being the most likely failure 
point in the standard normal space, and therefore most of the probability volume in the 
failure domain is contributed by the region neighboring the design point. After the 
design point is obtained, the limit-state surface in the standard normal space is 
approximated using a hyperplane or hyper-paraboioid using FORM or SORM, respec- 
tively. The distance from the origin to the design point in the standard normal space is 
called the reliability index, ft. This is a measure of the "reliability" of the component 
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against the "failure mode" under consideration, in the sense that it measures the 
distance to the failure domain. Larger/3 indicates lower PF, and vice versa. 

The determination of the design point is a crucial step in the reliability solution. This 
is accomplished by solving a constrained nonlinear optimization problem, in which the 
distance from the origin to a point on the limit-state surface is minimized. Algorithms 
typically used to solve this problem include the specialized HL-RF method (Hasofer 
and Lind, 1974; Rackwitz and Fiessler, 1978), the sequential quadratic programming 
(SQP) method, and the modified HL-RF  method (Liu and Der Kiureghian, 1986b). 

FORM replaces the limit-state surface by a tangent hyperplane at the design point in 
the standard normal space. FORM reliability index is given by the inner vector product: 

/3FORM = O¢* "U* (5)  

where at * is the unit vector normal to the limit-state surface at the design point directed 
toward the failure region in the standard space. A first-order estimate of the probability 
of failure is then given by: 

PF .w. pF F°RM = qg(-/3FORM) = 1 -- q0(/3FORM) (6) 

The quality of the approximation provided by FORM depends on the extent of 
nonlinearity exhibited by the limit-state surface, especially in the neighborhood of the 
design point. If the limit-state function does not contain highly nonlinear terms, then the 
above first-order approximation of the probability of failure is sufficiently accurate for 
practical purposes. Otherwise, a second-order approximation provides a way to account 
for some of the nonlinearity of the limit-state surface at the design point. SORM 
approximates the limit-state surface using a second-order paraboloid fitted at the design 
point. Both curvature-fitted (Breitung, 1984) and point-fitted (Der Kiureghian et al., 
1987) paraboioid approximations have been used successfully. 

Through the process of solving a reliability problem, one obtains, at very little 
additional computational effort, sensitivity measures of the reliability results. The first 
set of sensitivities of the reliability index, /3 is with respect to variations in the 
coordinates of the design point in the standard normal space, and is given by: 

It 
= - - 7 -  Vu./3F°RM=a* lu I (7) 

The or* vector, hence, gives a measure of the change in /3 F°RM when the 
coordinates of the design point u * are perturbed one at a time. In other words, this 
vector indicates the relative importance of the standard variates, u i. The  components of 
ot * are often referred to as the sensitivity factors in structural reliability theory. Since 
at * is computed at the design point, the above sensitivity measure is obtained at no 
additional computational effort. 

The sensitivity of /3FORM with respect to the coordinates of the design point in the 
physical space, which is more physically meaningful, are obtained by the chain rule of 
differentiation: 

Vx " /3FORM = (Vu, /3FORM)ju.,x ° = Ol *Ju*,x*  (8)  
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where 

°u I . x .  

is the Jacobian of the transformation from the x-space to the u-space evaluated at the 
design point. Since the values of V x. fl~OaM are dependent on the units of x* ,  Der 
Kiureghian and Ke (1985) scaled this gradient vector by the diagonal matrix D of the 
basic random variables, and normalized the resulting vector to yield the unit gamma 
sensitivity vector: 

(Vx.¢'°"M)D 
"y= i(Vx" ~FORM)DI (9) 

Thus, the unit vector 3' gives the sensitivities of fl FORM with respect to equally likely 
changes in the coordinates of x *, thus providing a measure of relative importance of the 
basic random variable X. 

The sensitivity results provided by the first-order reliability method also may include 
the parametric sensitivity results; examples of which are the delta and eta sensitivity 
vectors defined by: 

6 i=  o ' i - -  , "Oi = o" i -  (10) 
a/xi acr i 

The delta vector gives the relative importance of the mean (central) values of the 
basic random variables, while the eta vector indicates the relative importance of the 
vari~ibilities (measured in standard deviations) of the basic random variables. These 
sensitivity measures are obtained with only a minor computational effort. 

2.2. System reliability analysis 

In the preceding section, we have looked at cases where the state of the system is 
described by a single limit-state function, i.e. having a single "mode of failure". 
However, a situation can arise that necessitates the simultaneous consideration of several 
limit-state functions, for example, if we consider the probability that the contaminant 
concentrations at any of several points exceed a predetermined critical value. This is 
important in exposure assessment situations where the interest is on more than one point 
of human exposure in the aquifer, or when assessing the performance of a remediation 
scheme based on the likelihood of success to meet the target cleanup levels at every 
point in the aquifer. In this case, the state of the system is described by the states of its 
components: 

g i ( X )  = C , -  C i (X  ) (11) 

where each limit-state function gi(X),  i= 1 . . . . .  m, defines whether the target 
concentration C t has been exceeded by the simulated concentration at point i (i = 1, 
. . . .  m) in the solution domain. 
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By definition of the problem, fa i lure  of the system occurs if at least one of its 
component fails, that is, the system under consideration is a series system. Hence, the 
system failure probability can be expressed as: 

[0, ] ] --FPsYStcm=P g i ( x ) < O _  = I - P  g , ( x ) > 0  (12) 
i i 

The calculation of p~_ystem is complicated due to the fact that the components g i ( x )  
are usually statistically dependent since they share some of the same basic random 
variables. Upper and lower bounds on the probability of failure of a series system can be 
obtained from the individual component failure probabilities, Pr~, and the joint failure 
probabilities in any two modes, PF, rj" The  uni-modal bounds make use of the Pr, terms 
only, and are given by (Madsen et al., 1986): 

m tn 
maxPF, - - 'F  < psystem __'( EPFi  (13)  
i=1 i~ 1 

The bi-modal Ditlevsen bounds (Ditlevsen, 1979) make use of the individual modal 
failure probabilities and the joint failure probabilities in any two modes: 

m l i--~_l_l ) ~2< I PF, + Y'~ max P¢ - Pr, ej ,0 --'F< psystem --< PF, q- Pr, - max P¢ ¢ (14) 
i~2 ~ ' j i= j<i ' J) 

The Ditlevsen bounds depend on the ordering of the failure modes (or components), 
F~, F 2 . . . . .  F m, and different orderings may correspond to the largest lower bound and 
the smallest upper bound. Practical experience suggests that the failure modes (i.e. 
g-functions) be numbered in a decreasing order of PF, (Madsen et al., 1986). 

The modal and joint modal failure probibilities (PF, and PF,Fj, respectively) used in 
formulating the above uni- and bi-modal bounds were assumed to be exact failure 
probabilities. A first-order (FORM) approximation of these modal and joint modal 
failure probabilities are give by (Madsen et al., 1986): 

PFi ~ p~ORM = cI)(-- [3i FORM ) 

PFiFj = p~OFRM : I~D(-- ]~iFORM)~(--  J~j FORM) "4- foPiJ~b2(- ~iFORM, - ]~FORM,R)dR 

(15) 

In which Pij denotes the correlation coefficient between the failure modes i and j 
linearized at their design point. This modal correlation coefficient is obtained as the 
inner product of the two unit normal vectors at the modal design points: 

Pij = Oti* " ¢lt~) *T (16) 

The integral in Eq. (15) must be evaluated numerically. To avoid this numerical 
integration, Ditlevsen (1979) has proposed the following simple bounds on p~ORM: 

max(P, ,Pz)  <- p~OF~M < P, + P2 if PO > 0 

--oVORM<min( ,P2) if p~j<O (17) 0 < • F,F~ -- Pl 
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where 

p, = qb ( -/3jFORM)qO 

p2 = @(--fliFORM)* I 

_ t FO.M _  /FORMp, ] 

1 
]~jFORM -- /3iFORMpi j ] 

J 

(18) 

DFORM By substituting the above bounds on --F,F, in Eq. (14), the relaxed bi-modal bounds 
Dsystem on , F are obtained: 

i -1 1 m m 
PF, + max Pri -- E PFiFj,u,O _< psystem_F m_ E PF, -- E maX{ PFirj.i} (19)  

i=2 j = l  ] i=1 i=2 J<'t 

in which PF,Fj,,, and PF,F,,I denote upper and lower bounds, respectively, on PFF/ 
Finally, a measure of the " sy s t em"  reliability can be presented by report'ing the 

system reliability index, given by: 

j~ system = t~-  ' ( l -- P/~ystem) (20) 

3. Applications 

3.1. Probabilist ic model  formulat ion 

The probabilistic model is obtained by interfacing a numerical groundwater finite-ele- 
ment model, FLOTRAN, with a general-purpose reliability analysis program, CALREL (Liu 
et al., 1989). The finite-element code ~OTRAr~ is developed by Dawson (1993), and is 
used here to solve the transport equation: 

-~t [ Oci + A(c i ) ]  - $7. ( D V c  i _ uc , )  = qci + Ri (  cl . . . . .  cta ) (21) 

in a three-dimensional spatial domain, g2 = [0,Lx] × [0,Ly] X [0, Lz]. In the previous 
equation, c i represents the concentration of species i (i = 1 . . . . .  M); 0 denotes the 
water content; A(c  i) models adsorption/desorption of species i; D is the hydrodynamic 
diffusion/dispersion tensor, which includes the effects of molecular diffusion and 
longitudinal and transverse dispersion; u = (uX,uY,u z) is the Darcy velocity; R i models 
chemical reactions between species (e.g., biodegradation); q represents flow rates at 
injection and production wells; and ?i is the concentration at wells: ?~ is specified at 
injection wells, and ~'~ = c, at production wells. Wells are treated as point sources and 
sinks in the code. For boundary conditions, the user can specify either Dirichlet or 
Neuman boundary conditions on each edge of the boundary of g2. The user can also 
specify a constant or spatially varying initial condition. 

The advection term in Eq. (21) is handled using an explicit (in time) higher-order 
Godunov procedure. This procedure is essentially a more accurate version of the 
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standard upwind differencing. The diffusion/dispersion terms are handled by centered 
finite differences in space and are implicit in time. Thus, a linear system of equations 
must be solved at each time step. This system is solved using preconditioned conjugate 
gradient iterations. Some of the appealing features of the code are the cell-by-cell and 
global mass conservation. Furthermore, strongly advective flow can be modeled with 
minimal oscillation and numerical diffusion. The underlying theory of the numerical 
solution scheme is explained in Dawson (1993). 

The reliability analysis program CALREL was used in this work for two reasons; it has 
proven an efficient tool for solving reliability problems, and the fact that the code is 
reliable and robust. 

The interface between the finite-element transport code and the reliability program is 
obtained through a FORTRAN 77 user defined subroutine. At each iteration in the process 
of determining the design point, this subroutine calls FLOTRAN to evaluate the limit-state 
function g ( x )  and its gradient for a given realization of the discretized spatial random 
field x. The gradient which is required by the nonlinear optimization scheme is 
approximated using the central finite-difference method. Thus, the ith element of the 
gradient matrix is approximated by: 

O g ( X )  g ( x i + A x i )  - g ( x i - A x i )  
- -  = ( 2 2 )  

OX i 2 A x  i 

in which the step size Ax~ is chosen as a small fraction of the standard deviation of each 
random variable x i. The combined FLOTRAN--CALREL code provides the probability of 
failure, reliability index, and sensitivity information. 

3.2. Spatial random fields 

In the following numerical probabilistic analyses, the hydraulic conductivity is 
modeled as a spatial random field, w(s).  It is assumed that the statistical information 
available on the aquifer property consists of pointwise (or marginal) probability distribu- 
tion, F w (w), and the spatial correlation coefficient function, Pww (sl, s2) (i.e. 
second-order joint moments). Thus, it is a state of incomplete probability information 
which is made complete by assuming that the transformed random field, V ( s ) =  
ci9-l[Fw{w(s)}], is Gaussian with zero mean, unit variance, and spatial correlation. 

This probabilistic model is the random field version of the Nataf model defined 
earlier for multiple random variables. The spatial correlation structure of the hydraulic 
conductivity is considered to be of the exponential type. Thus, 

where Ihl = IIs~,s2 II is the lag (separation) distance; and A denotes the correlation length. 
This formulation assumes statistical isotropy, i.e. the correlation coefficient function 
depends only on the distance between spatial locations and is independent of direction. 
The correlation length is a measure of the rate of random fluctuations of a random field. 
It corresponds to the distance over which the correlation coefficient drops from 1 to 
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0.368. The exponential function is used here since it has been shown to adequately 
describe the spatial correlation of the log-conductivity data (Bakr et al., 1978; Jang et 
al., 1994). 

To perform a finite-element reliability analysis of a system, it is required to discretize 
the spatial random field considered. This means that the spatial random field will be 
represented by an equivalent set of random variables. The random field discretization 
method employed in this study is the midpoint discretization method. Here, the random 
field values are defined at a finite set of discrete points, which correspond to the 
midpoint (or centroid) of each finite element. Then the random field is represented in 
terms of a vector of random variables, X, the elements of which are correlated (Der 
Kiureghian and Ke, 1988). The correlation coefficient matrix is obtained directly from 
the correlation coefficient function Pww(h) and the separation distances between the 
centroids of the finite element. 

4. Results 

4.1. Component and system reliability analysis 

In many groundwater contamination applications, we are interested in studying the 
reliability of more than one component in the solution domain. For example, we may be 
interested in the probability that the contaminant will exceed a predetermined level at 
any point along a property boundary. The compliance with the regulatory standards at 
more than one receptor well in the aquifer of interest is another example. In these 
situations, the problem is formulated in a system reliability framework, in which several 
limit-state functions are considered, one for every component of interest. 

As an example, consider the case where a contaminant source leaks chemicals into an 
underlying groundwater aquifer. Assume that there exists a number of downgradient 
points of human exposure (i.e. wells). In this case, we have several limit-state functions, 
one at each well. The formulation is similar to Eq. (11). 

In general, a system can be idealized as a series system, a parallel system, or a 
combination of the previous two. The problem of groundwater contamination is posed in 
a series system format since failure of any of the components constitutes failure of the 
system. In other words, in a multiple well compliance example, if the concentration at 
any of the wells exceeds the predetermined target value, the system has failed. 

As an application example, consider the probability of exceeding 2.0 mg 1-t at any 
of the three observation wells given in Fig. 1. That is, the probability of failure to meet 
the 2.0 mg I - i  threshold after the 350-day simulation time is required. Table 1 lists the 
input data for this case study. In Table 2, the system reliability results are shown for 
first-order uni-modal, bi-modal, and relaxed bi-modal bounds. As expected for a series 
system, the system failure probability obtained is higher than the largest component 
failure probability (PF FORM= 0.385, pFORM = pFFORM = 0.224). The bi-modal bounds 
are narrower than the relaxed bi-modal bounds, which are, in turn, tighter than the 
first-order uni-modal bounds. 
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Fig. I. Setup of the system reliability case study. 

The correlation coefficient between the failure event at wel ls  1 and 2 is the same as 
that between wells  1 and 3 and equals 0.726. This means that failure to meet the target 
concentration of  2.0 mg 1- m at well 1 is c losely related to the failure at well 2. A careful 

Table 1 
Input parameters for the system reliability case study 

Deterministic data 

Variable Units Value 

Grid dimension, A x = A y m 
Aquifer thickness, H m 
Longitudinal dispersivity, ct x m 
Transverse dispersivity, ay m 
Simulation time, t day 
Source concentration, C O mg I -  
Target concentration, Clarget mg I-  

6.0 
6.0 
0.2 
0.02 

350.0 
10.0 
2.0 

Random field data 

Variable Units Distribution/value 

Hydraulic conductivity, K cm s - LN(5.0 × 10- 3, 5.0 X 10- 3 ) 
Correlation length, A m 18.0 

LN(mean, standard deviation): Iognormal. 
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Table 2 
Results of the system reliability analysis for the 3-well case study 

Method Result Value 

First-order uni-modal bounds 

First-order relaxed bi-modal bounds 

First-order bi-modal bounds 

bounds on p/~ystcm 
bounds on 13 system 

bounds on p~yslem 
bounds on /3 system 

bounds on p/~ystem 
bounds on /3system 

0.385 < e/~yslem < 0.623 
0.291 > /3system > --0.331 

0.385 <~ e~Ys~em ,( 0.543 
0.291 > /3system > --0.109 

0.428 < p~yslem < 0.470 
0.182 > /3 system > 0.075 

analysis of the physics of the problem explains this result. In order for the contaminant 
to exceed the target concentration at well 1, the grid block hydraulic conductivities at the 
design point should be high enough to allow easier and less resistive paths for the 
contaminant to reach the target well at the designated threshold value. The high-conduc- 
tivity realizations also allow for more contaminant to reach well 2, hence resulting in a 
large correlation coefficient between the probability of exceeding the target level at 
wells 1 and 2. The correlation coefficient between the failure events at wells 2 and 3 is 
0.217, which is less than the correlation between wells 1 and 2. This is explained by the 
fact that wells 2 and 3 are separated by a greater distance than wells 1 and 2, hence their 
failure events are correlated at a smaller value. 

It should be noted that prior to the system reliability analysis, individual component 
reliability analyses are performed. The design point for well 1, which is the realization 
of hydraulic conductivity field corresponding to the most likely failure scenario at the 
observation well is shown in Fig. 2a. It is clear that the grid block hydraulic conductivi- 
ties at the design point attain their maxima along the path lines connecting the source to 
the observation well. FLOTRAN is a block-centered solver. Therefore, the plot shows the 
midpoint conductivities, since the visualization program used can only interpolate 
between the midpoints inside the solution domain. 

Gamma sensitivities for well 1 are displayed in Fig. 2b. As already mentioned, the 
gamma sensitivities provide a measure of  the relative importance of equally likely 
changes in the basic random variables at the design point on the reliability estimate. 
Sensitivities are higher with respect to the hydraulic conductivity of the grid blocks 
along the path connecting the source to the observation well. Sensitivity information is 
very useful in designing future sampling at the site, in the sense that samples should be 
collected from spatial locations where the sensitivity of the probabilistic event is the 
highest. This will help reduce the uncertainty regarding the estimated probability of 
exceeding the predetermined concentration levels at the target observation well. 

Fig. 2c shows the delta sensitivities for well 1. These provide the scaled variation of 
the reliability index due to an equally likely change in the mean value of the random 
variable. Negative sensitivities along the contaminant travel path indicate a decrease in 
the reliability index as the mean value of the hydraulic conductivity in this region 
increases. An increase in the hydraulic conductivity in the grid blocks that exhibit 
negative delta sensitivity will cause more contaminant to reach the target observation 
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well within the specified simulation time. Therefore, the probability of exceeding the 
target concentration level will increase, and the reliability index will decrease. The 
reverse is also true. 

Fig. 3a-c illustrates the design point, gamma, and delta sensitivities for well 2. The 
same behavior is noticed for the design point and sensitivities as they exhibit their 
maximum values along the flow paths from the source to the target well. 

Additional information gained from the system reliability analysis is the sensitivity of 
the system failure probability with respect to changes in the distribution parameters of 
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10.5 

the grid block conductivities. Fig. 4a displays the sensitivities of the upper bi-modai 
bound on p:rs~m with respect to changes in the local mean value of the hydraulic 
conductivities. The results indicate that the greater the mean hydraulic conductivity of 
the region along the flow paths, the greater the system failure probability, a behavior 
easily explained by the earlier discussion. 

Next, we look at the series system reliability in which only wells 2 and 3 are 
included. In this case, the system failure probability bounds are given in Table 3. The 
system failure probability in this case is less than in the case with three wells, as 
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Fig, 4, Sensitivity of the upper bi-modal bound on the system failure probability to the local mean hydraulic 
conductivity: (a) for the 3-well case; (b) for the 2+well case; and (c) for 2-well with lower-conductivity lens. 

expected. Fig. 4b depicts the sensit ivit ies of  the upper  b i -modal  bounds of  system failure 

probabil i ty  with respect  to changing  the mean  value of  grid block conduct ivi t ies  for the 

2-well  case, The pattern in which  the sensit ivi t ies behave is interesting, Mean  hydraulic  
conduct ivi t ies  a long the branching  path leading to both wells  2 and 3 have the highest  
impact  on the system failure probabil i ty.  The  negat ive sign indicates an inverse 

relat ionship be tween local mean  conduct ivi ty  and system failure probabil i ty.  
W h e n  a lower-conduct iv i ty  lens is considered to exist  between the two wells and in 

an or ientat ion parallel  to the mean  groundwater  f low direct ion (Fig. 5), the first-order 
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Table 3 
Results of the system reliability analysis for the 2-well case study 

Method Result Value 

First-order uni-modal bounds 

First-order relaxed bi-modal bounds 

First-order bi-modal bounds 

bounds on e~ystem 
bounds on /3 system 

bounds on e/~ystem 

bounds on /3system 

bounds on p~ystem 
bounds on /3system 

0.224 < e~ystem ( 0.398 
0.759 > /3 ~ystem > 0.259 

0.326 < p~y~tem < 0.387 
0,450 >/3 system :> 0.287 

0.377 < p~ystem < 0.377 
0.313 > /3system > 0.313 

bi-modal  bounds on system failure probabili ty changes from 0.377 to 0.369. In other 
words, the presence of the lower-conductivi ty lens affected the system reliabil i ty only 
very slightly. However,  the sensitivity of  the system failure probabil i ty with respect to 
the local mean hydraulic conductivity in this case differs considerably from the case 
without the lens. This is shown in Fig. 4c. 

4.2, Remediation / containment under uncertainty 

The impact of parameter  uncertainty on achieving remedia t ion /con ta inment  goals is 
important. Failure to account for such uncertainty can dramatically hinder the efficiency 

Contaminant source 

Yl 
No-f low boundary 

I I I I I I 
- -  Lower conductivity lens - -  

-5 j 

Observation wells 

No-f low boundary 

Constant head boundary Constant head boundary 
H = 9 . 0 m  H = 8 . 3 4 m  

Fig. 5. Setup of the system reliability case with a lower-conductivity lens. 
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Fig. 6. Setup of the plume containment case study. 

of the remediation/containment scheme, creating significant economic ramifications. In 
this section, we present a reliability formulation to study the effect of the natural 
variability of the hydraulic conductivity on achieving a plume containment goal. The 
limit-state function is formulated as in Eq. (1), however, C t in this context is the 
remediation/containment threshold or target concentration at a specific well. Fai lure  in 
this case indicates failure to contain the plume from reaching the observation well, or 
failure to remediate the plume to the predetermined threshold level. 

Fig. 6 illustrates the problem setup. The aquifer's extent is 66.0 m on the side. A 
numerical grid of 11 × 11 is used to discretize the solution domain. The random field 
mesh used to discretize the spatial random field of hydraulic conductivity is assumed to 
coincide with the numerical mesh. That is, the number of random variables is 11 × 11 = 
121, comprising the hydraulic conductivity in the center point of each grid block. Table 
4 lists the input parameters for this case study. It should be noted that the hydraulic 
gradient is assumed constant throughout the case studies. The initial contaminant plume 
is shown in Fig. 7. 

It is assumed that a property boundary is located as shown in Fig. 6. A pumping 
scheme is installed in such a manner so as to contain the plume from escaping into the 
neighboring property beyond the site boundary within the 30-day pumping period. The 
target concentration at the observation well is chosen, arbitrarily, to be 1.0 mg 1 -~. In 
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Table 4 
Input parameters for the plume containment case study 

Deterministic data 

Variable Units Value 

Grid block dimension, A x = A y m 6.0 
Aquifer thickness, H m 6.0 
Aquifer porosity, 0 m 3 m-  3 0.35 
Longitudinal dispersivity, ot x m 3.0 
Transverse dispersivity, ay m 0.3 
Hydraulic gradient, i m m-  ~ 0.001 
Simulation time, t day 30.0 
Pumping rate, q 1 s-  t 1.26 

Random field data 

Variable Units Distribution/value 

Hydraulic conductivity, K cm s- i  LN(2.0 X 10-3, 2.0× 10-3) 
Correlation length, A m 12.0 

LN(mean, standard deviation): lognormal. 

rea l i s t ic  app l ica t ions ,  the  target  c o n c e n t r a t i o n  and  wel l  loca t ion  are c h o s e n  a c c o r d i n g  to: 

(1)  the  type  o f  c o n t a m i n a n t ;  (2)  l and  use  at  the  n e i g h b o r i n g  proper ty ;  and  (3)  r i sk  

e s t i m a t i o n  at the  r ecep to r  well .  

180  - 
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Fig. 7. Initial contaminant plume (mg 1- t ). 
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Table 5 
Failure probabilities for the remediation case study for pumping rate = 2.52 1 s- i (40.0 gpm) 

19 

Method Failure probability Reliability index 

FORM 0.292 0.547 
SORM a 0.343 0.405 
SORM b 0.337 0.421 
MCS 0.334 0.429 

a Improved breitung; b Tvedt's exact integral. 

The numerical reliability model is used to estimate the probability of failure of the 
remediation/containment scheme. FORM failure probability and reliability index were 
found to be 0.743 and -0 .655,  respectively. This means that if a single, fully 
penetrating well at the middle of the domain is pumped at a rate of 1.26 1 s -  i (20 gpm) 
for 30 days, there will be a 74% probability of failure to contain the plume from 
reaching the downgradient observation well at a concentration exceeding the target 
concentration of 1.0 mg 1-1. The negative reliability index simply means that the 
probability of failure exceeds 0.5. This is clear by an examination of the definition of the 
relationship between PF and fl given in Eq. (6). 

Next, the pumping rate is increased to 1.89 and 2.52 1 s - I  (30.0 and 40.0 gpm), and 
the reliability analysis is repeated to study the effect of increasing the pumping rate on 
the failure probability. For the 1.89 1 s-1 (30 gpm) case, FORM failure probability and 
reliability index are 0.41 and 0.227, respectively. Table 5 lists FORM, SORM, and 
Monte Carlo results for the 2.52 1 s - I  (40.0 gpm) scenario. FORM and SORM results 
were in good agreement with that of the Monte Carlo simulation method. This good 
agreement in the reliability to that of the Monte Carlo results was observed for all of the 
case studies conducted. Thus, an increase in the pumping rate from 1.26 to 2.52 1 s -  
(20.0 to 40,0 gpm) caused the failure probability at the observation well to drop from 
74% to ~ 33%. The design point, gamma and delta sensitivities for this case study are 
shown in Fig. 8a, b and c, respectively. It is interesting to see that the probabilistic event 
is most sensitive to hydraulic conductivities in the region downgradient from the 
pumping well. This is due to the fact that the more conductive this region is, the more 
"c lean"  water the pump is able to flush towards the observation well, and the better the 
containment becomes. This is indicated by the positive delta sensitivities in that region, 
which indicates a direct proportionality between the local mean value of the hydraulic 
conductivity in that region and the reliability index. 

Next, we look at the impact of the presence of a lower-conductivity lens down-gradi- 
ent from the pumping well, and upgradient from the observation well, as shown in Fig. 
9. The lens has a conductivity of 2.0 × 10 -5 cm s -1, which is two orders of magnitude 
less than the prevailing hydraulic conductivity. When the pumping rate of 1.89 1 s - l  
(30.0 gpm) was applied to this case, the probability of failure to meet the target 
concentration of 1.0 mg 1-l dramatically increased to 0.985, with a reliability index of 
-2 .12 .  This illustrates the significant impact that material heterogeneity and the 
presence of lenses have on the success of cleanup schemes. Table 6 lists FORM failure 
probability and reliability index for different pumping rates. For each pumping rate, the 
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Fig. 8. Results for the plume containment case study (pumping rate = 1.26 I s i or 20 gpm): (a) design point; 
(b) gamma sensitivity; and (c) delta sensitivity. 

original  case study, as well  as that with the lower-conduct iv i ty  lens, are analyzed.  The 
table indicates that failure to meet  the target c leanup level increases s ignif icant ly for the 
case with the lens. This  emphas izes  the impor tance  of  account ing  for the material  
variabil i ty and heterogenei ty  when  des ign ing  aquifer remedia t ion  systems. Fai lure to 
account  for this factor will reduce the chances  of  success to meet  the predetermined 
target c leanup standards wi thin  the specif ied time. 

Fig. 10a, b, and c i l lustrates the design point,  gamma,  and delta sensit ivit ies,  
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Fig. 9. Setup of the plume containment case study with a lower-conductivity lens. 

respectively, for the case with the lens, and for a pumping rate of 5.68 1 s-  ~ (90.0 gpm). 
Comparison of the trends in these figures with their counterparts for the original case 
(Fig. 8) indicates that when the lower-conductivity lens is present, the failure probability 
is most sensitive to the region downgradient from the pumping well, in addition to the 
region around the lens. This is another indication of the significance of careful site 

Table 6 
FORM failure probabilities for different pumping rates for the remediation case study 

Pumping rate in 1 s -  t (gpm) Without a lower With a lower 
conductivity lens conductivity lens 

1.89 (30.0) 0.410 0,227 0.985 - 2.121 
3.15 (50.0) 0. ! 37 1.095 0.794 - 0.821 
4.42 (70,0) 0.061 1.556 0.526 - 0.066 
5.68 (90,0) 0.014 2.189 0.321 0.464 
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Fig. 10. Results for the plume containment with a lower-conductivity lens case study: (a) design point; (b) 
gamma sensitivity; and (c) delta sensitivity. 

invest igat ion to delineate the extent  o f  heterogeneity present  at the site before des igning 

a remediat ion system. 

5. Conc lus ions  

The object ive of  this work was to present  the application of  the first- and second-order  
reliabil i ty methods (FORM and SORM)  to the probabil ist ic mode l ing  of  groundwater  
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contaminant transport and plume containment. The problem was formulated in terms of 
probability of exceeding some target concentration value within a specified simulation 
time at a given point, or several points, in the aquifer. FORM and SORM provided the 
probability of failure, as well as sensitivity of such a probability with respect to basic 
uncertainty in the random variables. 

The effect of spatial random variability of the aquifer was considered by modeling 
the hydraulic conductivity as a spatial random field with a prescribed marginal probabil- 
ity distribution and a correlation coefficient function. The failure probability was found 
to be most sensitive to the basic uncertainty in grid block conductivity along the stream 
tubes that bound the transport of the chemical. In this work, we used the same mesh for 
the solution of the finite-element model, and for the random field discretization. 
However, the analysis is conducted using different discretization levels elsewhere 
(Hamed et al., 1996). 

When analyzing failure to meet the target levels at more than one location, system 
reliability was used. Series system formulation was used since failure to meet the 
predetermined target concentration at any well results in the failure of the system. 
Based on the individual (component) failure probabilities and the joint failure probabili- 
ties of any two modes, lower and upper bounds on the system failure probability were 
obtained. 

The effect of aquifer material random heterogeneity on achieving the desired cleanup 
or containment goals was studied. The presence of a lower-conductivity formation was 
found to dramatically increase the probability of failure to meet the predetermined 
cleanup level within the specified operation time. This implies that accurate delineation 
of material heterogeneity is useful before designing aquifer remediation systems. 

FORM and SORM are valuable tools for the probabilistic analysis of groundwater 
transport and remediation problems, especially for low-probability events. The sensitiv- 
ity information provided as a by-product of a FORM reliability analysis is very useful in 
quantifying the value of the available data and in designing optimal data collection 
strategies. Nevertheless, limitations of the reliability methods should be identified. For 
example, FORM and SORM could become numerically intensive for large problems 
with many uncertain variables, where many function evaluations are needed to numeri- 
cally estimate the gradients required by the optimization algorithm to determine the 
design point. Analytical estimation of the required gradients would alleviate this 
problem. 

Although results presented in this work are dependent on problem setup and 
prescribed probability distributions, the approach is general and can be applied on any 
site. The findings of this work should help improve our understanding of the intricate 
interactions between the deterministic physical models, and the stochastic nature of 
porous media. 
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