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Abstract  

The purpose of this paper is to evaluate the time-invariant reliability of reinforced concrete beams designed 
under the provisions of the ACI Building Code. A wide range of practical design situations is considered. The beams 
are subjected to bending, shear, and torsion. The interaction between shear and torsion is considered via an elliptical 
failure surface defined in the shear-torsion stress space. No interaction is assumed between flexural resistance and 
resistance in both shear and torsion. Representative statistics and appropriate probability distributions of the basic 
resistance and load variables are selected from previous related work. The reliability analysis is performed using 
modern reliability methods, in which the formulation of the limit-state functions is consistent with the underlying 
design criteria. Reliability indices for various failure modes are compared and a system reliability analysis is 
performed to include all failure modes. It is found that the reliability indices are most sensitive to live load, model 
uncertainties, and material strengths. For the failure modes considered, the reliability indices are found to be rather 
insensitive to design parameter values, indicating that the ACI Building Code achieves its desired objective of 
uniform reliability across a wide range of design situations. 
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1. I n t r o d u c t i o n  

Probability-based structural design became practically realizable in the 1970's and its 
conceptual framework was developed by Ang and Cornell [1] influenced by Freudenthal's 
pioneering work on structural safety [2]. Evaluation of structural safety associated with the 
design procedure was studied by Ellingwood and Ang [3] for reinforced concrete beams in pure 
bending and pure shear. The so-called safety index method was also used by Ravindra et al. [4] 
to design reinforced concrete beams and structural steel members. In these early studies, the 
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reliability index was calculated by the MVFOSM ~ method, which lacks invariance with respect 
to the formulation of the limit-state function, i.e., equivalent formulations of the limit-state 
lead to different values of the reliability index. Since then, rapid developments have occurred in 
reliability analysis methods and reliability-based structural design, generating a rich literature 
on the subject. Ellingwood [5] further investigated probability-based design criteria, using the 
FOSM 2 method, which is invariant with respect to the limit-state formulation. Although 
originally formulated in a deterministic framework, current design codes, such as ACI 318-89 
for reinforced concrete structures [6], have gradually incorporated results of probability theory. 

Parametric reliability analyses of reinforced concrete beams designed according to the ACI 
Code are performed in this study. Two elements of major importance are required for this 
purpose. First, appropriate behavioral models of the beam subjected to bending and combined 
shear-torsion are essential for the formulation of realistic limit-state functions or failure 
conditions. In the above referred studies, reliability analyses were carried out for members 
under single action, such as pure bending or pure shear. In the present study, the limit-state 
formulation will be improved for reinforced concrete beams by accounting for the interaction 
between shear and torsion at failure. Experimental and analytical research on reinforced 
concrete members has contributed to a refined understanding of both flexural behavior and 
interaction between shear and torsion [9-11]. These models will be employed to derive the 
limit-state functions used herein. Second, once the limit-state functions are defined, usually as 
complicated functions of the basic variables, a versatile and efficient reliability algorithm is 
necessary to estimate the corresponding modal probabilities of failure or a directly related 
quantity called the reliability index. Reliability analysis methods such as FORM 3, SORM 4 
and directional Monte Carlo simulation have been developed extensively in recent years [7,8] 
and implemented in general-purpose computer programs [12]. System reliability analysis is 
required when a structure or structural element has several potential failure modes, which is 
the case for a reinforced concrete beam subjected simultaneously to bending, shear and torsion. 
System reliability analyses of reinforced concrete beams were not performed in the above 
referred studies. Today, system reliability can also be evaluated using existing structural 
reliability computer programs. In this study, modern full-distribution reliability methods and 
refined mechanical models for concrete beam behavior, especially for shear-torsion interaction, 
are combined to evaluate the reliability of beams as implied by application of the current 
design code. 

2. Design of reinforced concrete beam 

The reliability analysis will focus on a typical spandrel beam and an interior beam of the 
continuously-supported one-way floor system shown in Fig. 1. The spandrel beam is subjected 
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Fig. 1. One-way slab and beam system. 

to bending moment,  shear force, and torque, whereas the interior beam is essentially subjected 
to bending and shear only. No slab participation effects are considered for the resistance of the 
rectangular beams. A uniform live load is applied on the floor. By changing the short-to-long 
span ratio, L 1 / L 2 ,  a number  of combinations can be obtained concerning the relative 
magnitudes of bending moment,  shear force and torque. 

The total load intensity from the floor, p (psf), consists of the factored live and dead loads: 

p = "yL L + TDWhs (1) 

where YL and YI~ are the live and dead load factors; L is the live load intensity (psf); w is the 
unit weight of concrete (pcf); and h s is the slab thickness (increased to account for additional 
dead loads such as topping and partitions). The uniform load per unit length of beam is 
calculated as follows: 

q = ½PL 1 + yDWhbw (spandrel beam) 

q = p L  1 -}- yDWhbw (interior beam) (2) 

where h and b w represent the height and width of the beam, respectively. Hence the maximum 
bending moment  and shear force, occurring at the ends of the beam, are 

1 qL  2 Mu = 2, (3)  

V u = ½qL 2. (4) 

The interior beam is free of torsion, whereas the spandrel beam has a maximum torque at the 
ends, 

Tu = ½mL 2 (5) 

l pL2 is the distributed torque along the beam as suggested by the ACI Code in which m = ~  
procedure. 

Once the external bending moment,  shear force and torque are determined, the design 
procedure for these load effects can be applied. The beam dimensions are usually selected a 
priori, leaving the reinforcement ratios as the dependent  design variables to be determined 
from strength requirements. Then, these strength models are employed to formulate the 



280 R. Lu et al. /Structural Safety 14 (1994) 277-298 

various limit-state functions in which the resistance and load variables are unfactored and 
modeled as random variables. 

Bending. To satisfy the flexural strength requirement,  the applied factored bending moment ,  
M u, must satisfy the following inequality: 

M u <~ 4'pfybw de 1 2(0.85)f~ ' (6) 

In the above relation, d = effective depth of the beam; 4' = flexural strength reduction factor 
( =  0.9); p =As/(bwd), the reinforcement  ratio; and fy and fd represent  the yield strength of 
reinforcing steel and compressive strength of concrete,  respectively. 

Shear. The shear strength requirement  is satisfied if the factored nominal shear strength of 
the beam with vertical stirrups equals or exceeds the applied factored shear force, V u, namely 

Vu <~ 4'(2vf[bwd + fyd~-~ ) (7) 

where 4' = shear strength reduction factor ( =  0.85); A v = shear stirrup area, s = spacing of 
stirrups. 

Torsion. The torsional strength requirement  is met provided that the factored nominal 
torsional strength equals or exceeds the applied factored torque, T u, i.e., 

in which a t = 0.66 + 0.33(Yl/X 1) <~ 1.5 is an empirical geometric coefficient de termined from 
test data [11]; A t = area of one leg of a closed vertical stirrup resisting torsion within a distance 
s; 4' = torsional strength reduction factor ( =  0.85); x and y correspond to the short and long 
dimensions of the rectangular beam cross section, namely b w and h, respectively, if b w ~< h; x 1 
and Yl are the shorter  and longer center- to-center  dimensions of the closed rectangular 
stirrups. 

Combined shear-torsion. In computing the beam resistance under  combined shear-torsion, 
the interaction effect has to be considered. Define r c and Vc, respectively, as the concrete 
torsional and shear strength capacity under  the combined action of shear and torsion, and let 
rco and Vco denote the concrete torsional and shear resistance under  pure torsion and pure 
shear, respectively. The code provisions of ACI 318-89 are based on the following two 
assumptions. First, in combined shear-torsion the interaction between r c and v c can be 
represented by an elliptical function (see Fig. 2): ,)2 (,)2 

.+  - -  = 1  ( 9 )  

in which the pure torsional capacity %0 = 2 . 4 f ~  (psi) and the pure shear capacity Vco = 2 . 0 f ~  
(psi). This assumption has been verified experimentally [11]. Second, the shear-to-torsion stress 
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Fig. 2. Interaction model of torsion and shear resistance. 

ratio remains constant during the loading history. Under these assumptions, the shear and 
torsion resistances of the beam are given by 

Vu<6( 
(1o) 

Av) 2"0 f~bwd  +fyd~- 

~/1+( 2"5c:u 2 Vu ) 
(11) 

where the coefficient C t : bwd/x2y. The strength reduction factor, ~b, is set to 0.85 by the Code 
for both shear and torsion. 

3. Reliability analysis 

3.1. Analysis methods 

The objective of a "component" reliability analysis is to estimate the probability of failure 

P f=  f fx(x)dx (12) 
"{g(x) < O} 

where the random vector X contains all the uncertain basic variables such as material 
properties, loads, member dimensions, and model uncertainty parameters; fx(X) represents the 
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joint probability density of the basic random variables; and g(x) is the limit-state function 
corresponding to the failure mode considered and defined such that the failure event corre- 
sponds to g ~< 0. In the present study, first- and second-order reliability methods, commonly 
referred to as FORM and SORM, as well as the directional simulation method are employed. 
These methods are described elsewhere in the literature [7,13,14] and only a brief summary is 
presented below. 

FORM and SORM reliability methods have been developed to approximately evaluate the 
probability of failure (Eq. (12)) or probability volume in the failure region defined by 
{g(x) ~< 0}. First, the original space X is transformed into the standard normal space U through 
a transformation U = T(X) which always exists for random variables having strictly increasing 
continuous joint cumulative distribution functions. Then Eq. (12) becomes 

1 
Pf = f(G(u)~o}(2rr)-n/2 exp(-- ~uVu)du (13) 

where n is the number of random variables; and G(u) the limit-state function in the standard 
normal space. The next stage consists in finding the point u* on the limit-state surface 
G(u) = 0 which is nearest to the origin. This point, known as the design point, is the most likely 
failure point and is an opt imum point at which to approximate the surface G(u) = 0, since the 
primary contribution to the probability integral in Eq. (13) comes from the part of the failure 
region closest to the origin. The FORM approximation is obtained by replacing G(u)= 0 by 
the tangent hyperplane at u*, and the corresponding first-order estimate of Pf is Pfl = qb(-/3), 
where ~ ( . . . )  is the standard normal probability distribution function and /3, called the 
reliability index, is the distance from the origin to the nearest point on the limit-state surface, 
u*. The SORM approximation is obtained by replacing the limit-state surface by a hyper- 
parabolic surface at the design point u*. The corresponding second-order estimate of the 
failure probability, Pf2, is obtained in terms of /3 and the principal curvatures of the hyper- 
parabolic surface [7]. Several exact and approximate techniques to fit the approximating 
second-order surface to the limit-state surface at the design point have been developed. In the 
present study, the point-fitting method developed by Der Kiureghian et al. [14] is used. 

FORM analysis has the most important feature of readily providing the sensitivities of the 
reliability index /3 and of the first-order estimate of the failure probability Pf~ with respect to 
both probability distribution and limit-state function parameters. These sensitivities are very 
useful in identifying the relative importance of the basic variables in terms of the failure 
probability; they also provide insight into the behavior of complex systems, and can be used to 
suggest design alternatives to improve the reliability of the system such as in reliability-based 
opt imum design. 

The joint distributions of the random variables employed in this study are assumed to be of 
the Natal type, as described by Liu and Der Kiureghian [13]. The Natal  model assumes that 
available observations of the random variables are sufficient for selecting appropriate marginal 
distributions but insufficient for determining joint statistics beyond the covariances, which 
corresponds to a case of incomplete probability information. 

Estimation of the failure probability accounting for multiple failure modes and therefore 
multiple limit-state functions is a system reliability problem. The reliability of the reinforced 
concrete beams considered in this study against failures in flexure, shear, and torsion is 
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determined by representing the beams as a series system. Second-order approximations of the 
system failure probability are obtained based on the second-order modal approximation 
surfaces together with a directional simulation method [15]. All the component  and system 
reliability calculations reported hereafter have been performed using CALREL, a general-pur- 
pose reliability analysis code [12]. 

3.2. Basic variables 

(1) Live load. The National Bureau of Standards (NBS) has published the results of the first 
extensive load survey of office buildings in the U.S., wherein the data on unit floor loads were 
presented for various conditions. Ellingwood et al. [16] suggested that the live load in office 
buildings fit a type I extreme value distribution. The mean of the 50 year maximum value is 
given by 

[ E[L] = L  0 0.25 + ~ - -  (psf) (14) 

in which L 0 = basic unreduced live load (see Table 2 of ANSI A58.1-1982); A = influence 
(rather than tributary) area expressed in square feet. However, in order to evaluate the 
reliability of the Code-based design, E[L] is varied by specifying a live-to-dead load ratio in 
order to cover a wide range of possible live loads. In this manner,  numerous design situations 
and corresponding reliability analyses are performed. If this ratio is denoted by 0, then the 
design live load intensity L in Eq. (1) is given by 

L=O'(whs)  (15) 

where (wh S) is the dead load per unit floor area. The design live load intensity of Eq. (15) is 
also used as the expected value, E[L], for the reliability analysis. A coefficient of variation 
(c.o.v.) of 25 percent is assigned to L as suggested by Ellingwood et al. [16]. Using a type I 
extreme value distribution to describe the probabilistic nature of the maximum live load, a 
time-invariant reliability problem under  extreme live load condition is solved. 

(2) Material strengths. The variability of the static yield strength fy of reinforcing steel based 
on nominal area of bar cross section can be represented by a beta distribution as shown in a 
statistical study by Mirza and MacGregor [17]. The mean and c.o.v, of the yield strength are 
48.8 ksi and 0.107, respectively, for Grade 40 reinforcing bars, and 71.0 ksi and 0.093, respec- 
tively, for Grade 60 steel. The lower and upper  bounds of these beta distributions are 33/62 ksi 
for Grade 40 bars, and 54/102 ksi for Grade 60 bars. The overall variability of reinforcing bars 
from many locations is considered here, as opposed to within a single bar and in-batch 
variabilities. 

In a different study on the variability of concrete strength, Mirza et al. [18] found that the 
compressive strength of in-situ normal weight concrete for loading rates similar to that of a 
cylinder test (35 psi /s)  can be described by a normal distribution. The mean value of this 
distribution is equal to 0.675f" + 1100 ~< 1.15f~ (psi) where f~ is the nominal design strength. 
Based on several studies on the dispersion of concrete strength [3,5,18], a representative value 
for the c.o.v, of f~ was taken as 0.18. This c.o.v, includes the inherent variability of the "real" 
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cylinder strength and the in-situ variations; the variations due to the loading rate effects are 
negligible. In this study, two types of concrete  corresponding to f" = 3 and 4 ksi are considered. 

Although the splitting tensile strength of concrete  is usually related to the square root  of  its 
compressive strength, the variability of the former  variable derived analytically from the 
variability of f~ is very different  from the observed variability. Therefore ,  f ~  is introduced as 
an additional basic variable. According to the recommendat ions  of Mirza et al. [18], a normal 
distribution is used to describe ~/~ with a mean equal to the square root of the nominal 
compressive strength, and a c.o.v, of 0.18. 

(3) Dimensions.  Uncertaint ies  in member  geometry  are functions of the care and quality 
control  exercised during construction. Based on an extensive study on the variations in 
dimensions of reinforced concrete  members  from field data, Mirza and MacGregor  [19] 
recommend normal distributions as probability models for all geometr ic  imperfections.  Since 
mean deviations from nominal dimensions are small, they are neglected in this study, and the 
designed values are taken as the mean values. The  c.o.v.'s for the various geometr ic  variables 
have been adapted from [19] and are listed in Table 1. 

(4) Model  uncertainty factors. Model uncertainty is character ized by the variability of the 
ratio B of  the measured to predicted (or nominal) resistance. Such an overall model factor can 
be incorporated in the formulation of  each limit state and t reated as a random variable in the 
reliability analysis. The  normal distribution model  is typically used to represent  these modeling 
factors whose mean and c.o.v, depend on the limit-state considered. These  parameters  will be 
discussed in the following section for each failure mode. 

The basic random variables and their respective marginal distributions are described in 

Table 1 
Description of random variables 

X i Description Distribution Mean c.o.v. 

h s 
h 
d 
bw 
A~ 
A v / s  
A t / s  
fy 
f; 
C 
L 
XI 

Yl 
Bf 
Bv 
B" 
Bt 
Bvt 

Slab thickness Normal Nominal a 0.070 
Beam height Normal Nominal a 0.010 
Effective beam depth Normal Nominal a 0.020 
Beam width Normal Nominal a 0.020 
Tension reinforcement area Normal Nominal a 0.040 
Shear stirrup area per unit length Normal Nominal a 0.040 
Torsional stirrup area per unit length Normal Nominal a 0.040 
Yield strength of steel Beta 48.8/71.0 ksi 0.107/0.093 
Compressive strength of concrete Normal 3.125/3.800 ksi 0.180 
Measure of concrete splitting strength Normal Nominal a 0.180 
Live load intensity Type I largest Eq. (16) 0.250 
Short center-to-center dimension of stirrup Normal Nominal ~ 0.100 
Long center-to-center dimension of stirrup Normal Nominal ~ 0.060 
Flexure model uncertainty Normal 1.10 0.120 
Shear model uncertainty (ACI model) Normal 1.20 0.112 
Shear model uncertainty (Zsutty's model) Normal 1.09 0.120 
Torsion model uncertainty Normal 1.03 0.063 
Shear-torsion interaction model uncertainty Normal 1.00 0.060 

a The value selected or obtained during the deterministic design procedure is taken as mean value. 
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Table 1. Although not a limitation of F O R M / S O R M  analysis, all variables are assumed to be 
mutually statistically independent .  Most of the random variables considered are inherently 
uncorrelated and the weak correlation between beam section and stirrup dimensions, and 
reinforcement location, is neglected. The prescribed floor dimensions are assumed to be less 
variable than the beam cross section dimensions and are therefore taken as deterministic. 

3.3. Limit-state functions 

The limit-state functions gi(X) for the various failure modes are formulated as gi(X)= 
Ci (X) -  Oi(X) where C i and O i denote the modal capacities and demands, respectively, and 
are given below. 

Bending. When a reinforced concrete beam is loaded up to failure, three distinct flexural 
failure modes are possible. The particular failure mode that occurs is dictated by the percent- 
age of reinforcement steel located in the tension zone. If the beam is lightly reinforced, the 
beam will fail due to sudden yielding of the steel which cannot carry the stress redistribution 
caused by the cracking of concrete; such a failure is of the brittle type, characterized by a rapid 
crack development. If the beam is over-reinforced, the beam will fail by crushing of the 
concrete, also in a brittle fashion. The following two limit-state functions define analytically the 
conditions of light and heavy reinforcement: 

200 
gl =As -~-ybwd, (16) 

0.85/31f" 87000 
g2 =As  bwd. (17) 

fy 87000 + fy 

The condition {gl < 0} corresponds to a lightly reinforced member,  whereas the condition 
{g2 > 0} indicates an over-reinforced member,  since in the latter case the tension reinforcement 
area A S is larger than the balanced one. The beam is moderately reinforced otherwise, namely 
when the condition {(gl > 0) n (g2 < 0)} holds. In Eq. (17), 0.85f~ is the average concrete stress 
acting over an equivalent compression zone of depth /31c where c is the distance between the 
compression face and the neutral axis. Based on experimental results, ACI 318-89 prescribes 
/31 = 0.85 for concrete with fc ~< 4 ksi and 0.05 less for each ksi of f" in excess of 4 ksi. The 
conditional probabilities of flexural failure given that the beam is lightly, moderately, or 
over-reinforced are determined respectively by using the following limit-state functions: 

g3 = B f (1 .25bwh2~cc  ) - M ,  

g4 = B f A s f y  d 1 . 7 f ~ b  w 

(18) 

1 2 r g5=nf(~bwd f~)-M (20) 

where the external bending moment  M is produced by the unfactored floor live and dead loads 
and the own weight of the beam, as expressed by Eqs. (1)-(3). The model factors for g3, g4, 
and gs should be treated as having different means and c.o.v.'s. However, due to the scarcity of 

- M ,  (19) 
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experimental data for lightly and over-reinforced beams, the distribution parameters for the 
moderately reinforced case have been adopted uniformly for the three cases. This approxima- 
tion is further justified by the negligible contribution of g3 and g5 to the failure probability as 
discussed below. Based on the results of the statistical studies reported by MacGregor et al. [20] 
on the resistance of reinforced concrete members, a mean of 1.10 and c.o.v, of 0.12 have been 
chosen for Bf. These statistics have also been adopted by Israel et al. [21]. 

Shear. When the concrete shear strength is not sufficient to resist the external shear force, 
shear reinforcement in the form of stirrups, assumed vertical in this study, is required to 
provide the additional resistance. With A v defined as the area of shear reinforcement within a 
distance s, the limit-state function representing shear failure is given by 

g6 = Bv( 2~-f~ bwd + f yd ~ ) - V (21) 

according to ACI 318-89 [6], or by 

' = Bvbd' [ 2"29'6"4vJ ~( ' / f ' -77)(As]l /3(d)  ] ~ + fY -blAv l - s  - V  (22) g6 

according to Zsutty [22]. In Eqs. (21) and (22), V is the shear force produced by the external 
live and dead loads as calculated from Eqs. (1), (2), and (4), omitting the load factors. The 
Zsutty's model is more accurate for predicting the shear capacity than the more commonly used 
ACI model. However, it is used here only for purposes of comparison with the ACI model. If 
the amount of shear reinforcement is relatively high with respect to the size of the beam cross 
section, shear reinforcement will not yield and shear failure is controlled by the strength of 

FF/- concrete. In this case, the shear strength contribution of the steel is limited to 8vf c bwd, and the 
corresponding limit-state function is 

g7=BvlO(f;bwd-V. (23) 

In all cases of this study, the beams are purposely designed such that lateral shear reinforce- 
ment is needed and shear failure occurs by diagonal cracking followed by yielding of the 
stirrups and crushing of concrete. In other words, the analysis examines the reliability of beams 
designed under normal situation, namely moderate reinforcement; this also applies to flexure 
and torsion. According to the results of Mirza and MacGregor [23] on statistical analysis of 
shear strength, the following parameters have been used: a mean of 1.20 and c.o.v, of 0.112 for 
the shear modeling factor B v of the ACI model, and a mean of 1.09 and c.o.v, of 0.125 for the 
shear modeling factor B'v of the Zsutty's model. In the ACI models g6 and g7, the same shear 
modeling factor has been assumed for the moderately and over-reinforced cases for lack of 
experimental results. 

Torsion. When lateral torsional reinforcement is required to supplement the torsional 
resistance provided by the concrete, the limit-state function corresponding to torsion failure is 
of the form 

gs= Bt(O.8~ffcX2y + atxly,fy-~ ) - T (24) 
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in which the applied torque T is obtained from Eqs. (1) and (5) without the load factors. When 
the amount of torsion reinforcement is relatively high with respect to the size of the beam cross 
section, the limit-state function reduces to 

g 9 =  B t ( 4 . 0 f f ~ x Z y )  - V (25) 

following the same reasoning as in developing Eqs. (21) and (23). The following statistics for the 
torsion modeling factor B t a r e  given in [10]: a mean of 1.03 and c.o.v, of 0.063 for the 
moderately reinforced case, and a mean of 1.18 and c.o.v, of 0.14 for the over-reinforced case. 

Combined  shear-torsion. When a cross section is subjected to both shear and torsion, the 
concrete is resisting the total shear stress in a combined and optimal way. The interdependence 
between the shear resistance contribution, v¢, and the torsional resistance contribution, r c, is 
represented by the interaction equation expressed in Eq. (9), which corresponds to a quarter 
ellipse in the first quadrant of the torsion-shear stress space, see Fig. 2. When expressed in 
parametric form, Eq. (9) reads 

r c = "rco cos a,  v c = Vco sin a. (26) 

The direction a, which is uncertain, can be treated as a random variable distributed in the 
range (0, "rr/2). An option for the distribution of a is the uniform distribution which would 
imply that, regardless of the relative amplitude of the applied shear and torsional stresses, the 
relative amplitude of the shear and torsional resistance contributions provided by the concrete, 
Vc/'r c = tana,  can take any value between 0 and ~, as long as these two resistance components 
are related by Eq. (9). Notice that the total shear and torsional load effects are balanced by the 
shear and torsional actions developed by both concrete and steel. The assumption of a uniform 
distribution for a is physically unrealistic and should result in a conservative estimate of the 
resistance to shear and torsion, and consequently of the reliability estimate. An alternative is 
the Dirac delta distribution for c~, implying that the ratio -Cc/V c, of the shear to torsional 
resistance contribution of concrete is identical to the ratio of shear to torsional load effect. A 
better choice for the probability distribution of a, f~(a), is to consider a distribution concen- 
trated around the direction of the load effects as indicated in Fig. 2. Accordingly, the 
distribution parameters of a are functions of the loading random variables. Since no experi- 
mental or analytical information is available to deduce such a distribution, the Dirac delta 
distribution is adopted in this study. A closer examination of the Code design formulas 
indicates that they are based on the same assumption. 

Under combined shear-torsion, the beam section fails when the concrete has reached its full 
combined shear-torsional resistance and the total lateral reinforcement provided has yielded 
and is incapable of resisting further shearing stresses. With this argument, the interaction 
between torsion stirrups and shear stirrups is accounted for as well. The underlying assumption 
is that torsion stirrups should not remain unyielded while the beam cross section has already 
failed in shear, and vice versa. Following this reasoning, the required contribution of the 
stirrups to the torsional resistance, Ts, is given by the applied torque minus the torsional 
resistance provided by concrete. The required torsion stirrup area per unit length of beam, 
A~eq/s,  is then computed from the relation: 

A~q 
T s = T -  T c = o l t X l Y l f y - -  (27) 

s 
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Similarly, the required shear stirrup area per unit length of beam, / [ r e q / ~  is obtained from 
A A  V / ~ ,  

Areq 
V 

V s = V -  V c = f y d - -  (28) 
s 

Therefore, the limit-state function representing section failure under combined shear-torsion 
can be expressed as 

A t + - - -  (29) 
gl0 = Bvt s 2 s s 2 s 

in which ( A t / s  +½Av/s) is the provided area (capacity) per unit length of one leg of a closed 
1Areq/e) stirrup, and ( A ~ e q / s  + 2za v / o ,  is the corresponding required quantity (demand). Due to the 

symmetry of shear deformation and the anti-symmetry of torsional deformation, failure occurs 
on the side where shear and torsional stresses act in the same direction. For the shear-torsion 
interaction failure mode, the model uncertainty is expressed in this study as the ratio of the 
"equivalent" lateral reinforcement (which would result into the actual shear-torsion capacity by 
using the proposed interaction model) to the provided one. Based on judgement and interpre- 
tation of scarce experimental results [24], a mean of 1.0 and a c.o.v of 0.06 have been selected 
to represent the normal random variable Bvt. 

Beam failure as a series system. When subjected to bending, shear and torsion, the beam 
could fail either in flexure or combined shear-torsion or both. Thus the reliability of the beam 
can be analyzed as a series system whose components are the flexure and shear-torsion failure 
modes. Other system failure conditions exist such as failure in flexure and shear without 
torsion, but they will not be given separate consideration here, since their treatment is not 
different from that for the flexure-shear-torsion failure mode. 

4. Results and discussion 

Based on the basic random variables defined above and limit-state functions consistent with 
traditional mechanical models of reinforced concrete behavior, the general-purpose structural 
reliability analysis program CALREL [12] is used to compute component and system reliability 
indices for various loading conditions. The component reliability indices for the flexure, shear, 
and torsion individual failure modes are shown in Figs. 3, 4 and 5, respectively, in terms of the 
live-to-dead load ratio. Two groups of material strength have been considered, namely (fy = 
40 ksi, f" = 3 ksi) a n d  ( f y  = 60 ksi, f" = 4 ksi). In Fig. 4, the results for both the ACI and the 
Zsutty's shear failure models are presented. It is seen that the Zsutty's model leads to a larger 
sensitivity of/3 with respect to the material strengths than the ACI model. Overall these two 
models result into similar/3 values. In the sequel, only the ACI shear model will be used for 
comparison purposes with other failure modes. The drop of the reliability index at the lower 
end of the live-to-dead ratio can be explained by the fact that in this parameter range, shear 
resistance is increasingly contributed by concrete which has a wider strength distribution than 
steel. 

In the design phase, the beam is sized to attain a moderate reinforcement ratio. However, 
even though the beam is designed to be moderately reinforced, the reliability analysis must 
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Fig. 3. Flexure reliability index vs. live-to-dead load ratio. 

consider the events in which the reinforcement ratio is below the minimum or above the 
balanced ratio if, according to the chosen probability distribution functions, these events have a 
non-zero probability of occurrence. For the probability distributions used and the values of the 
steel ratio adopted in the design, it was found that the probabilities of  light- and over-rein- 
forcement are of  very small magnitude (10  -4  or  less). Therefore, the probabilities of  the 
intersections of light-reinforcement and over-reinforcement with flexure failure are negligible 
compared to the probability of flexure failure under moderate reinforcement, and have been 
neglected. 
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Fig. 4. Shear reliability index vs. live-to-dead load ratio. 
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Fig. 5. Torsion reliability index vs. live-to-dead load ratio. 

Then the beam is examined under the shear-torsion interaction mode. The shear-torsion 
component reliability index is reported in Fig. 6 in terms of  the live-to-dead load ratio, in Fig. 7 
in terms of the total lateral reinforcement ratio (1/bwd)(2At/s +Av/s), and in Fig. 8 as a 
function of the torsion-to-shear reinforcement ratio (At/s)/(A,:/(2s)). Both Figs. 6 and 7 
contain two sets of material strengths (fy and f ' ) .  Notice that each point defining the/3-curves 
corresponds to a specific design; hence all design parameters change from one point to 
another. The reliability index /3 is found to be relatively insensitive to the total lateral 
reinforcement ratio and to the torsion-to-shear reinforcement ratio. The results of  this study 
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Fig. 6. Shear-torsion reliability index vs. live-to-dead load ratio. 
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Fig. 7. Shear-torsion reliability index vs. total lateral reinforcement ratio. 

indicate that the reliability index/3  for shear-torsion interaction is mostly influenced by the live 
load, the material strengths, and the model  uncertainty factor. 

The component  reliability index as a function of  the live-to-dead load ratio is plotted in Fig. 
9 for all the individual failure modes,  namely flexure, shear, torsion, and combined shear-tor- 
sion. First, it is noticed that all the component  failure probabilities are of  the same order of  
magnitude, namely from 10 -3 to 10 -4. In the range of  l ive-to-dead load ratio larger than one 
(e.g., warehouses) ,  the reliability against flexure failure is lower than the reliability against any 
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Fig. 8. Shear-torsion reliability index vs. torsion-to-shear reinforcement ratio (L/D = 0.75 and h / b  w = 1.8). 
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individual shearing failure mode (by shearing mode, it is meant  either shear, or torsion, or 
combined shear-torsion). The fact that the flexure mode controls the safety of the beam in this 
parameter  range is desirable, since flexure failure is of a ductile type and gives warnings. On 
the other  hand, for live-to-dead load ratios less than one (e.g., office buildings), the reliability 
calculations show that safety is controlled equally by flexure and shear failures. The reliability 
curves in Fig. 9 also reveal a slight systematic conservatism of designs obtained using lower 
strength materials (fy = 40 ksi, f" = 3 ksi) as compared to those generated using higher strength 
materials (fy = 60 ksi, f" = 4 ksi). 

Table 2 lists the range (min, max) and average value of the sensitivity o f /3  for flexure and 
shear-torsion with respect to the mean and standard deviation of each basic variable, normal- 
ized by the corresponding standard deviation so that the parameter  variations are statistically 
equivalent. These ranges and averages of sensitivity values were obtained from reliability 
analyses performed on ensembles of designs corresponding to different live-to-dead load ratios 
and material strengths. The sensitivity results for all failure modes are also represented 
graphically in Fig. 10. The following conclusions can be drawn from these sensitivity results. 
The six most influential distribution parameters  are by order  of decreasing importance in the 
average sense: 
- for bending: 
- for shear: 

- for torsion: 

- for shear-torsion: 

O'L, O'Bb , /tZBb , O ' f ,  /.Zfv , /.EL, 

trL, O-B,, ~B,, o-/~, gL, ~V~'  

O'L, O '~c  , O'fv , ]..b ~ ,  ['£L' ]'L fv 

O-L, ~r:,, ~z/;, ~L, ~ X/~' O-V~ 
The largest sensitivity of the reliability index corresponds to the distribution parameter  or L 

for all four failure modes. This result indicates the extreme importance of an accurate 
estimation of the extreme live load variability prior to design, since overestimation of this 
variability results into a large loss of reliability. The bending and shear reliability indices are 
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Table 2 

Sensitivity of reliability index /3 with respect to the basic variables 

xi  /3 ( f l e x u r e )  /3 (shear-torsion interaction) 
0/3 ~/3 0/3 0/3 

[ - 0 . 0 7 1 ,  0 . 0 2 7 ]  [ - 0 . 0 1 9 ,  - 0 . 0 0 2 ]  [ - 0 . 0 7 5 ,  - 0 . 0 2 8 ]  [ -  0 . 0 2 1 ,  - 0 . 0 0 3 ]  

h s - 0 . 0 4 4  - 0 . 0 0 8  - 0 . 0 5 1  - 0 . 0 1 1  

[ - 0 . 0 0 5 ,  0 . 0 0 2 1  [ - 0 . 0 0 1 ,  - 0 . 0 0 0 ]  [ 0 . 0 0 5 ,  0 . 0 1 0 ]  [ - 0 . 0 0 0 ,  - 0 . 0 0 0 ]  

h - 0 . 0 0 3  - 0 . 0 0 0  0 . 0 0 7  - 0 . 0 0 0  

[ 0 . 0 7 5 ,  0 . 0 8 6 ]  [ - 0 . 0 2 6 ,  - 0 . 0 1 8 ]  [ 0 . 0 1 9 ,  0 . 0 2 5 ]  [ - 0 . 0 0 2 ,  - 0 . 0 0 1 ]  

d 0 . 0 8 0  - 0 . 0 2 2  0 . 0 2 2  - 0 . 0 0 2  

[ - 0 . 0 0 7 ,  0 . 0 1 1 ]  [ - 0 . 0 0 0 ,  0 . 0 0 0 ]  [ 0 . 0 2 4 ,  0 . 0 5 4 ]  [ - 0 . 0 1 1 ,  - 0 . 0 0 2 ]  

b w 0 . 0 0 2  - 0 . 0 0 0  0 . 0 3 6  - 0 . 0 0 5  

[ 0 . 1 1 0 ,  0 . 1 5 5 1  [ - 0 . 0 8 8 ,  - 0 . 0 4 1 1  

A s 0 . 1 2 9  - 0 . 0 5 9  - - 

[ 0 . 0 3 2 ,  0 . 0 3 5 ]  [ - 0 . 0 0 4 ,  - 0 . 0 0 4 1  

A v / s - - 0 . 0 3 4  - 0 . 0 0 4  

[ 0 . 0 8 2 ,  0 . 0 9 4 ]  [ - 0 . 0 3 4 ,  - 0 . 0 2 3 ]  

A t / s  - - 0 . 0 8 7  - 0 . 0 2 7  

[ 0 . 3 1 1 ,  0 . 4 6 8 ]  [ - 0 . 8 0 9 ,  - 0 . 3 1 6 ]  [ 0 . 2 9 4 ,  0 . 3 8 2 ]  [ - 0 . 5 6 0 ,  - 0 . 3 0 0 ]  

f y  0 . 3 7 7  - 0 . 5 1 0  0 . 3 3 7  - 0 . 4 0 9  

[ 0 . 0 3 3 ,  0 . 1 5 5 ]  [ - 0 . 0 8 2 ,  - 0 . 0 0 4 ]  

0 . 0 7 8  - 0 . 0 2 8  - - 

[ 0 . 1 3 1 ,  0 . 3 5 3 ]  [ - 0 . 4 5 9 ,  - 0 . 0 5 6 ]  

V t ~  - - 0 . 2 1 1  - 0 . 1 8 7  

[ - 0 . 3 5 2 ,  - 0 . 3 0 0 ]  [ - 1 . 3 3 4 ,  - 0 . 9 5 8 ]  [ - 0 . 3 5 7 ,  - 0 . 3 1 4 ]  [ - 1 . 7 2 8 ,  - 1 . 6 5 5 ]  

L - 0 . 3 3 0  - 1 . 1 9 9  - 0 . 3 3 6  - 1 . 6 8 4  

[ 0 . 0 8 8 ,  0 . 1 1 7 ]  [ -  0 . 0 5 1 ,  - 0 . 0 2 9 ]  

x 1 - - 0 . 1 0 1  - 0 . 0 3 7  

[ 0 . 1 2 9 ,  0 . 1 8 3 ]  [ -  0 . 1 2 6 ,  - 0 . 0 6 0 ]  

YL -- -- 0 . 1 5 2  - -  0 . 0 8 4  

[ 0 . 5 0 1 ,  0 . 6 7 8 ]  [ - -  1 . 6 9 4 ,  - -  0 . 8 3 3 ]  

B b 0 . 5 6 5  - 1 . 1 2 8  - - 

[ 0 . 1 7 9 ,  0 . 1 9 7 ]  [ - 0 . 1 3 9 ,  - 0 . 1 1 4 ]  

Bvt - - 0 . 1 8 7  - 0 . 1 2 4  

mostly sensitive to the mean and standard deviation of the three variables L, B, and material 
strength (i.e., fy for bending and f ~  for shear), whereas the torsion and shear-torsion 
reliability indices are mostly influenced by L, f ~ ,  and fy. The next important parameter is f~ 
for flexure, fy for shear, and B for both torsion and shear-torsion. Thus, model uncertainty was 
found to have an important effect on the reliability results for flexure and shear. This signifies 
that reduction of model uncertainty through development of more refined mechanical models 
is crucial to increase the reliability of concrete structures in the future. The large sensitivity of 
the reliability indices with respect to fy suggests that poor manufacturing of steel inducing a 
larger variability of its yield strength results into a significant loss of reliability. The importance 
of the concrete strength parameter emphasizes the significance of quality control in producing 



2 9 4  R. Lu et al. / Stntctural Safety 14 (1994) 277-298 

this material. The normalized sensitivity results also indicate that the sensitivity of /3 with 
respect to the standard deviation of a basic variable tends to be larger than the sensitivity with 
respect to the mean of this variable. 

The geometric parameters do not influence significantly the reliability index. However, the 
most influential among them are the longitudinal tension reinforcement area A S and the 
effective beam depth d for flexure, the shear stirrup area per unit length Av/s and d for shear, 
and the torsional stirrup area per unit length At/s and the center-to-center stirrup dimensions 
x I and Yl for torsion and shear-torsion. 

Finally, the reliability of the beam as a system is examined. The beam is designed for the 
simultaneous effects of bending moment, shear force, and torque. The influence of the 
live-to-dead load ratio and material strengths is considered here. The reliability indices /3 of 
the componental failure modes (flexure and combined shear-torsion) and of the system defined 
as a series system of the above two components are displayed in Fig. l l  against the live-to-dead 
load ratio for two sets of material strengths. The system reliability analysis was performed using 
directional simulation with second-order modal approximation [15]. It appears that the system 
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Fig. 11. Component and system reliability indices vs. live-to-dead load ratio. 

reliability (or overall reliability of the beam) cannot be assessed accurately on the basis of a 
single failure mode. In the lower end of the live-to-dead load ratio, the system effect is more 
pronounced for high strength than for low strength materials. 

5. C o n c l u s i o n s  

Based on the results of the present study on reliability evaluation of reinforced concrete 
beams, the following conclusions and remarks are made: 
(1) For all the failure modes (flexure, shear, torsion, and combined shear-torsion), the reliabil- 

ity index remains confined in a relatively narrow band and varies slowly over a wide realistic 
range of design parameter  values. All component  reliability indices computed vary from 3.2 
to 4.2. This indicates that, for the particular type of structure studied here, ACI Code 
318-89 fulfills its objective of approaching a uniform reliability for many design situations. 

(2) The component  and system reliability indices are most sensitive to live load, material 
strengths, and model uncertainty. Furthermore,  the sensitivity of the reliability index with 
respect to the standard deviation of a basic variable tends to be larger than the sensitivity 
with respect to the mean of this variable. 

(3) Designs using the lower strength steel and concrete have a slightly larger reliability (more 
conservative) than those adopting higher strength materials. However, this difference is 
practically negligible. 

(4) The flexure failure mode is found to control the reliability of the beam in the case of large 
live-to-dead load ratios (larger than one), a result which differs from the findings of most 
previous investigators such as [3] and [5]. For small live-to-dead load ratios (less than one), 
however, it was found that shear failure tends to control safety. 
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(5) The reliability index /3 corresponding to the shear-torsion failure mode is insensitive to the 
total lateral reinforcement  ratio and to the torsion-to-shear reinforcement ratio obtained by 
complying with the ACI Code recommendations.  

Fur ther  research in evaluating the reliability of reinforced concrete beams should address 
the following issues: (1) the interaction between flexure, shear and torsion should be incorpo- 
rated. This interaction becomes significant at the failure stage as the longitudinal reinforce- 
ment  plays a role in the shear and torsion resisting mechanisms; (2) the assumption that the 
shear-to-torsional resistance ratio equals the shear-to-torsional load effect ratio should be 
relaxed. Therefore,  a physically more representative probability density function for the angle 
defining the resistance direction (see Fig. 2) should be investigated; (3) finally, given that the /3  
values are not fully uniform across the range of design parameter  values considered, a 
calibration procedure should be developed to determine a new set of load and resistance 
factors leading to more uniform reliability values. 

Notation 

A 

A s = 

A v / S ,  A t / s  = 

A r~"/Sv . , A T n / s  = 

b , , , d , h  = 

g ( x ) ,  G ( u )  = 

hs,  L l ,  L2 = 
L ,  p ,  q = 

m 

M ,  M u = 

P f ,  Pf l ,  Pf2 = 

T,  To = 
T~ ,T ,  = 

S 

V, VL, = 

I/c, V, = 
w = 

Xl, Yl,  O~t, Ct  = 

influence floor area (ft2), 1 ft 2 = 0.093 m2; 
area of tension reinforcement (in2), 1 in 2 = 6.45 cm2; 
design area of shear, torsion reinforcement  per unit length of beam (in2/ft) ,  
1 inZ/f t  = 21.17 cm2/m;  
required area of shear, torsion reinforcement to resist the uncertain load 
effects ( ine/f t ) ;  
width, effective depth, and height of beam cross section (in), 1 in = 2.54 cm; 
compressive strength of concrete,  yield strength of steel (psi), 1 psi = 
6.895 kN/m2;  
limit-state function in the physical space x, and in the standard normal space 
u; 
thickness (in), short span (ft), and long span (ft) of slab, 1 ft = 0.3049 m; 
floor live load intensity (psf), total factored load on floor (psf), total factored 
load on beam ( lb / f t ) ,  1 psf = 47.88 N / m  2, 1 l b / f t  = 14.6 N / m ;  
uniformly distributed torque on beam (k-f t / f t ) ,  1 k - f t / f t  = 4.448 k N - m / m ;  
uncertain applied moment,  applied factored moment  (k-ft), 1 k - f t =  
1.356 kN-m; 
probability of failure, first- and second-order  estimate of Pf; 

uncertain applied torque, applied factored torque (k-ft); 
torsional resistance contributions of concrete and stirrups (k-ft); 
longitudinal spacing of stirrups (in); 
uncertain applied shear force, applied factored shear force (kips), 1 kips = 
4.448 kN; 
shear resistance contributions of concrete and stirrups (kips); 
unit weight of concrete (pcf), 1 pcf = 16.02 kg/m3;  
geometric parameters  associated to stirrups and beam cross section; 
direction of concrete resistance in the shear-torsion stress space (rad); 
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,;b, YD, 7L 
/~, 0", C.O.V. 

P 
Tc, Uc 

• " r c o ,  t . )co  

= reliability index; 
= strength reduction factor, dead and live load factors; 
= mean, standard deviation, and coefficient of variation; 
= tension reinforcement ratio; 
= torsional and shear stress capacities of concrete under combined shear-tor- 

sion action (psi); 
= torsional and shear stress resistance of concrete under pure torsion and pure 

shear, respectively (psi). 
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