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Abstract: Vehicle-bridge interaction has been studied for a long time to investigate the structural behavior of bridges and vehicle ride
comfort. An original frequency domain method is presented where the vehicle-bridge interaction problem is solved in a frame of reference
that moves with the vehicle. The Fourier transform of the interaction force is computed directly from the vehicle compliance and bridge
compliance, without requiring any iterations. The method is particularly useful when a closed-form solution of the bridge compliance is
available, as in the case of a simply supported Euler-Bernoulli beam model for the bridge. The solution is, therefore, well-suited for parametric
studies on the bridge and vehicle response characteristics and offers a reference for more detailed models of the bridge and the vehicle or more
complicated bridge configurations (e.g., continuous beam on multiple supports). The frequency domain approach also leads to enhanced
physical understanding, because it shows how the interaction force decomposes into a term resulting from the dynamic response of the bridge
to the constant moving load component and a term because of road surface unevenness. An efficient solution procedure based on random
vibration analysis is presented, which allows for the computing of the statistical characteristics of the bridge and vehicle response from the
power spectral density function of the unevenness. The procedure is validated by means of Monte Carlo simulation results for the case where
the passage of a heavy vehicle on a highway bridge is considered.DOI: 10.1061/(ASCE)EM.1943-7889.0000386.© 2012 American Society
of Civil Engineers.
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Introduction

Vehicle-bridge interaction has been a subject of significant research
for a long time. The aim of these studies is to investigate the struc-
tural behavior of bridges under moving vehicles, as well as the ride
comfort of vehicles traversing a bridge. Dynamic vehicle-bridge
interaction results in an increase or decrease of the bridge deforma-
tions, which is described by the dynamic amplification factor
(DAF) that reflects how many times the constant load must be
multiplied to cover additional dynamic effects (Frýba 1996).
Although the additional dynamic loads usually do not lead to
major bridge failures, they contribute to a continuous degradation
of the bridge, increasing the necessity of regular maintenance
(Cebon 1999).

A historical overview of research on bridge dynamics in Europe,
the United States, and Asia is given by Frýba (1996). Early research
has led to closed-form or analytical expressions for simplified
cases, e.g., considering a simply supported Euler-Bernoulli beam
model for the bridge and a moving load model for the vehicle
(Biggs 1964; Frýba 1999). In the case where the vehicle is repre-
sented by a moving mass or moving oscillator, the vehicle-bridge
interaction problem requires the simultaneous solution of a set of

coupled partial differential equations governing the motion of the
bridge and the vehicle. For a moving mass traversing a simply sup-
ported Euler-Bernoulli beam, Biggs (1964) has reformulated the set
of coupled differential equations into a single ordinary differential
equation with time-dependent coefficients that only considers the
fundamental mode of the bridge. An overview of solutions to the
moving load, moving mass, and moving oscillator problem is given
by Yang et al. (2000). Furthermore, Yang et al. (2000) present a
semianalytical solution of the moving oscillator problem, where
the response of the coupled system is formulated in terms of an
integral equation that allows for a straightforward numerical
solution. Numerical results are presented for the case of a string
and a simply supported beam.

A large number of studies have also proposed numerical solu-
tion procedures as a solution of the vehicle-bridge interaction
problem. A first approach consists in an iterative solution of the
equations of motion of the vehicle and bridge (Green et al.
1995; Henchi et al.1998; Liu et al. 2009). A drawback is the com-
putational effort involved with the iterative scheme. This can be
avoided by eliminating the vehicle-bridge interaction forces from
both sets of equations. When the finite-element method is used to
solve the problem, this results in a single stiffness matrix, damping
matrix, and mass matrix for the coupled system (Kim et al. 2005),
which may no longer be symmetric, however. Alternatively, Yang
and Lin (1995) and Yang and Yau (1997) have developed a vehicle-
bridge interaction element that allows computing the response with
a relatively small number of iterations. An experimental validation
of a three-dimensional model for vehicle-bridge interaction based
on simultaneous measurements of the vehicle response and strains
measured on a 40-m span, steel plate girder bridge has been
presented by Kim et al. (2005). Similar experiments have been
performed by Brady et al. (2006) to investigate the DAF for a single
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vehicle traversing a bridge, as well as for two vehicles crossing the
bridge simultaneously.

A distinction can be made between two excitation mechanisms
for dynamic vehicle-bridge interaction. First, the vehicle is excited
by the dynamic bridge deflection at the contact point between the
vehicle and the bridge. Even when the road surface is perfectly
smooth, this will lead to additional load effects and a modification
of the bridge response compared with the moving load case.
Second, irregularities in the bridge roadway surface will contribute
to the vehicle loads as well and will therefore also affect the res-
ponse of the coupled system. Track and road unevenness are often
modeled as a stationary Gaussian random field characterized by its
power spectral density (PSD) function (ORE 1971; ISO 1991;
Schiehlen 2009). Because of the motion of the vehicle on the
bridge, the vehicle load and bridge response are nonstationary ran-
dom processes, of which the second-order statistical characteristics
are described by the nonstationary autocorrelation function (ACF).
The problem of vehicle-bridge interaction induced by random track
unevenness has mainly been solved using Monte Carlo simulations
of the deterministic problem for a given ensemble of realizations of
the track unevenness (Green et al. 1995; Xia et al. 2001). To obtain
accurate second-order statistics of the dynamic bridge response,
however, a large number of samples may be required (Lu et al.
2009; Zhang et al. 2010), because road surface unevenness profiles
derived from the same PSD may yield a significantly different
value for the DAF (Brady et al. 2006). Recently, Lu et al.
(2009) and Zhang et al. (2010) have shown how the pseudoexci-
tation method obtains the nonstationary second-order statistical
characteristics of the bridge dynamic response, based on the deter-
ministic response to a set of so-called pseudoexcitations. The pre-
cise integration method is used to obtain an efficient iterative
solution (Zhang et al. 2010).

An original frequency domain method is presented where the
vehicle-bridge interaction problem is solved in a frame of reference
that moves with the vehicle (Clouteau et al. 2001). The method
requires calculation of vehicle and bridge compliance, which rep-
resents, for each system, the ratio between the load applied at the
contact point and the corresponding displacement. The method is
particularly appealing where closed-form solutions of the compli-
ance functions are available, as in the case of a quarter-car model
for the vehicle and a simply supported Euler-Bernoulli beam model
for the bridge (Lombaert and Conte 2011). The solution is well-
suited for parametric studies on the bridge and vehicle response
characteristics and provides a reference solution for more detailed
models of the vehicle and the bridge or more complicated bridge
configurations (e.g., continuous beam on multiple supports). The
interaction forces are computed directly without requiring any
iterations. Moreover, the method provides an enhanced insight
in the contribution of road unevenness to the interaction force
and the dynamic bridge response. In this way, the current study
complements previous research aimed at the development of
numerical methods to couple more advanced vehicle and bridge
models. Finally, the proposed solution procedure for the interaction
force also allows for a very efficient computation of the statistical
characteristics of the bridge dynamic response based on the PSD
function of the unevenness. The procedure is based on earlier de-
velopments for the calculation of the dynamic axle loads of a train
traversing a track with random track unevenness (Lombaert and
Degrande 2009).

The outline of this paper is as follows. In the subsequent section,
the bridge response to a moving concentrated load with a given
time-varying intensity f ðtÞ is computed by modal superposition.
In the derivation, a simply supported beam model is considered
for the bridge. This model is valid for a large number of single span

road and railway bridges and has the advantage of yielding closed-
form solutions. These closed-form solutions have not been included
for reasons of conciseness but can be found in Lombaert and Conte
2011. The solution by modal superposition is general, however, and
can be applied to any bridge model or bridge configuration. Next,
the time-varying intensity f ðtÞ of the vehicle load is obtained by
solving the dynamic vehicle-bridge interaction problem. Finally,
the case of random road unevenness is considered and expressions
are derived for the nonstationary second-order statistical character-
istics of the interaction force f ðtÞ and the bridge response. The
solution is illustrated with a numerical example that considers
the passage of a heavy vehicle on a single-span highway bridge
with random road unevenness.

Bridge Response to a Concentrated Moving Load

The response of the bridge to a moving concentrated load with a
given time-varying intensity f ðtÞ is computed. A simply supported
Euler-Bernoulli beam model is used for the bridge, and therefore
the vertical displacement field yðx; tÞ is governed by the following
partial differential equation of motion (Clough and Penzien 1975):

EI
∂4y
∂x4 þ csI

∂5y
∂x4∂t þ �m

∂2y
∂t2 þ c

∂y
∂t ¼ pðx; tÞ ð1Þ

where E = Young’s modulus, I = moment of inertia of the beam
cross section, EI = bending stiffness, �m = mass per unit length,
and pðx; tÞ = distributed vertical loading on the beam. Both
EI and �m are assumed constant herein. The second and fourth term
on the left-hand-side of Eq. (1) represent viscous damping forces,
where cs is the viscous resistance to the strain rate and c is the
viscous resistance to the vertical velocity.

In the case of a moving concentrated load with a given time-
varying intensity f ðtÞ and speed υ, the load pðx; tÞ can be expressed
as

pðx; tÞ ¼
(
δðx� υtÞf ðtÞ; 0 ≤ t ≤ td

0; t > td
ð2Þ

where td ¼ L∕υ is the time required for the load to cross the
bridge of length L. Eq. (1) is now solved for the load pðx; tÞ in
Eq. (2) using modal superposition. A transformation is made from
the displacement coordinates yðx; tÞ to the modal coordinates znðtÞ

yðx; tÞ ¼
X∞
n¼1

ϕnðxÞznðtÞ ð3Þ

where ϕnðxÞ = undamped deflection mode shape n in the case of
undamped free vibration. For a simply supported beam, the un-
damped natural frequencies ωn, vibration mode shapes ϕnðxÞ,
and modal damping ratios ξn are given by (Clough and Penzien
1975)

ωn ¼
n2π2

L2

ffiffiffiffiffi
EI
�m

r
; ϕðxÞ ¼ sin

�
nπx
L

�
;

ξn ¼ c∕ð2�mωnÞ þ csωn∕E; n ¼ 1; 2;…

ð4Þ

Taking advantage of the orthogonality properties of the mode
shapes, the following system of uncoupled ordinary differential
equations is obtained for the modal coordinates by introducing
the transformation of Eq. (3) in Eq. (1)

€znðtÞ þ 2ξnωn _znðtÞ þ ω2
nznðtÞ ¼ f nðtÞ ð5Þ
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where a superimposed dot = differentiation with respect to time
and f nðtÞ = modal load for the moving load in Eq. (2)

f nðtÞ ¼
1
Mn

Z
L

0
ϕnðxÞpðx; tÞdx ¼

(
1
Mn

ϕðυtÞf ðtÞ; 0 ≤ t ≤ tdn

0; t > td
ð6Þ

where Mn = modal mass �mL∕2. The modal response znðtÞ is found
from the modal impulse response function hnðtÞ by means of the
Duhamel’s integral

znðtÞ ¼
Z

minðt;tdÞ

0
hnðt � τÞ 1

Mn
ϕnðυτÞf ðτÞdτ ð7Þ

The substitution of Eq. (7) in Eq. (3) provides the vertical
displacement response yðx; tÞ at any position x.

An alternative expression is now derived where the modal
response znðtÞ is computed from the Fourier transform FðωÞ of
the moving load. The following convention is chosen for the
forward and inverse Fourier transform, respectively:(

FðωÞ ¼ Rþ∞
�∞ f ðtÞ expð�iωtÞdt

f ðtÞ ¼ 1
2π

Rþ∞
�∞ FðωÞ expðiωtÞdω ð8Þ

In the following, uppercase letters will be used for Fourier
transforms of functions denoted by lowercase letters.

Eq. (8) is used to rewrite f ðτÞ in Eq. (7) in terms of its Fourier
transform FðωÞ. Switching the orders of integration leads to

znðtÞ ¼
1
2π

Z þ∞
�∞

�Z
minðt;tdÞ

0
hnðt � τÞ 1

Mn
ϕnðυτÞ expðiωτÞdτ

�
× FðωÞdω ð9Þ

Comparison with Eq. (7) shows that the term between the square
brackets is the modal response znðtÞ to a moving concentrated load
with harmonic time-varying intensity f ðτÞ ¼ expðiωτÞ. This brack-
eted term is denoted as gnðt;�ωÞ, where the minus sign is because
of the convention in Eq. (8) assumed for the forward Fourier trans-
form. Eq. (7) for the modal response znðtÞ is now rewritten as

znðtÞ ¼
1
2π

Z þ∞
�∞

gnðt;�ωÞFðωÞdω ð10Þ

In the case of a simply supported beam, a closed-form solution
for gnðt;�ωÞ is obtained from Eq. (7) by means of the modal
impulse response function hnðtÞ, the modal mass Mn ¼ �mL∕2,
and the undamped mode shape ϕnðxÞ in Eq. (4).

Dynamic Vehicle-Bridge Interaction

General Formulation

In this section, the vehicle-bridge interaction is considered and the
dynamic vehicle load is computed. The time history of the total
vehicle load f st þ f ðtÞ applied to the bridge is decomposed into
the constant moving load f st, corresponding to the weight of
the vehicle, and the unknown variable moving load f ðtÞ resulting
from dynamic vehicle-bridge interaction (Fig. 1). A compliance
formulation in a frame of reference that moves with the vehicle
is applied to compute the variable component of the vehicle load
f ðtÞ (Clouteau et al. 2001). Assuming perfect contact between the
vehicle and the bridge allows the following compatibility equation
at any time 0 ≤ t ≤ td when the vehicle is on the bridge:

uυðtÞ ¼ ubðtÞ þ r0ðtÞ; 0 ≤ t ≤ td ð11Þ

where uυðtÞ and ubðtÞ≡ yðυt; tÞ are the displacement of the vehicle
and the bridge, respectively, at the moving contact point x ¼ υt
between the vehicle and the bridge, while r0ðtÞ is the unevenness
rðxÞ at the contact point (Fig. 1). The compatibility Eq. (11) is
written for a single contact point and is, therefore, valid for any
single-axle vehicle model. In the case where a vehicle model with
multiple axles is considered, Eq. (11) needs to be written for every
contact point between the vehicle and the bridge.

Prior to its arrival on the bridge (t ≤ 0) and after its passage on
the bridge (t ≥ td), the vehicle is assumed to travel on an uneven,
rigid road pavement. In this way, the vehicle response builds up to a
stationary level before the vehicle enters the bridge and effects
of dynamic vehicle-bridge interaction can be clearly recognized.
The corresponding compatibility equation is obtained by omitting
the term ubðtÞ in Eq. (11) for t ≤ 0 and t ≥ td or, equivalently, by
assigning a zero value to ubðtÞ for the same values of t.

The compatibility Eq. (11) is transformed into an integral equa-
tion for the variable moving load f ðtÞ by rewriting uυðtÞ and ubðtÞ
in terms of f ðtÞ. The functions vehicle response uυðtÞ and bridge
response ubðtÞ to the variable moving load f ðtÞ are the vehicle and
bridge compliance, respectively.

When a linear vehicle model is used, the impulse response
function cυðtÞ of the vehicle can be used to compute uυðtÞ from f ðtÞ
by means of the following Duhamel integral:

uυðtÞ ¼ �
Z

t

�∞
cυðt � τÞf ðτÞdτ ð12Þ

where cυðt � τÞ = vehicle response at the contact point at the time t
because of a unit impulse load at time τ . The vehicle compliance
cυðt � τÞ only depends on the difference t � τ , as a linear time-
invariant system is considered. The minus sign in Eq. (12) is
because of the assumed convention that f ðtÞ is positive when acting
on the bridge in the upward direction (Fig. 1).

The bridge response ubðtÞ at the contact point x ¼ υt between
the vehicle and the bridge is decomposed into the response to a
moving load with a constant intensity f st and a moving load with
time-varying intensity f ðtÞ. The response ustðtÞ to the constant mov-
ing load f st is computed considering a load FðωÞ ¼ f st2πδðωÞ in
Eq. (10) for the modal coordinates and a subsequent evaluation
of Eq. (3) at the position x ¼ υt of the moving contact point.
The response to the variable moving load f ðtÞ is calculated from
the bridge compliance that relates, by definition, the variable mov-
ing load f ðtÞ to the response at the moving point where the load is
applied. Because of the motion of the load, the relationship between
the load f ðtÞ and the displacement at the (moving) contact point is
time variant. The bridge compliance is, therefore, denoted by
cbðt; τÞ as a general time-variant system. This leads to the following
expression for the bridge displacement ubðtÞ:

Fig. 1. Deflected bridge shape yðx; tÞ (thin black line), bridge shape
with unevenness yðx; tÞ þ rðxÞ (thick black line), assumed convention
for the constant moving load f st and the variable moving load f ðtÞ
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uυðtÞ ¼
Z

t

�∞
cbðt; τÞf ðτÞdτ þ ustðtÞ ð13Þ

Introducing Eqs. (12) and (13) for the vehicle compliance and
the bridge compliance, respectively, in the compatibility Eq. (11)
leads to the following integral equation for the interaction force
f ðtÞ: Z

t

�∞
½cυðt � τÞ þ cbðt; τÞ�f ðτÞdτ ¼ �ustðtÞ � r0ðtÞ ð14Þ

The term between the square brackets represents the sum of
the vehicle and bridge compliance and will be denoted as
cυbðt; τÞ in the following equation when the statistical characteris-
tics of the interaction force and the bridge response are computed:

cυbðt; τÞ ¼ cυðt � τÞ þ cbðt; τÞ ð15Þ
Eq. (14) shows that the interaction force f ðtÞ is generated by

the combined excitation because of the displacement ustðtÞ at
the contact point that results from the moving constant load f st
and the unevenness r0ðtÞ.

Eq. (14) is formulated in the frequency domain as follows. First,
the upper limit t of the integral with respect to τ is extended toþ∞,
exploiting the causality of cυðt � τÞ and cbðt; τÞ. Second, f ðtÞ is
rewritten as the inverse Fourier transform of FðωÞ. A switch of
the order of integration allows for the derivation of the following
expression:

1
2π

Z þ∞
�∞

½CυðωÞ expðiωtÞ þ Cbðt;�ωÞ�FðωÞdω ¼ �ustðtÞ � r0ðtÞ
ð16Þ

Third, a Fourier transform with respect to t is performed, finally
leading to

Cυðω0ÞFðω0Þ þ 1
2π

Z þ∞
�∞

Cbðω0;�ωÞFðωÞdω ¼ �Ustðω0Þ � R0ðω0Þ
ð17Þ

Once a numerical solution for FðωÞ is obtained, the bridge
response is computed from the modal response to a moving
concentrated load with harmonic time-varying intensity in
Eq. (10) and the modal superposition in Eq. (3).

Vehicle Compliance

The vehicle compliance CυðωÞ is the frequency domain ratio
between the displacement at the contact point UυðωÞ and the inter-
action force FðωÞ. For a single-axle vehicle model consisting
of a lumped mass mυ supported by a spring and a dashpot with
characteristics kυ and cυ, respectively, the following expression is
derived for vehicle compliance CυðωÞ:

CυðωÞ≡�UυðωÞ
FðωÞ ¼ � kυ þ iωcυ � mυω2

ðkυ þ iωcυÞmυω2 ð18Þ

At limiting low frequencies ω → 0, the vehicle compliance
CυðωÞ reduces to that of a simple rigid mass mυ (without spring
and dashpot), namelyCυ ¼ �1∕mυω2. This stems from the fact that
a low-frequency base excitation or, equivalently, a long wavelength
excitation of the vehicle does not induce any deformation in the
spring and the dashpot. At zero frequency ω ¼ 0, the vehicle
compliance CυðωÞ tends to �∞, because, when the vehicle is
considered free from the bridge, the displacement of the contact
point, because of a constant load f ðtÞ ¼ f st, is unbounded. As a
result, Eq. (17) can only be formulated for ω0 > 0.

Bridge Compliance

The bridge compliance cbðt; τÞ represents the bridge response at
the moving contact point x ¼ υt and at time t because of a unit
impulse force applied at time τ at the corresponding position
x ¼ υτ of the contact point. The bridge compliance is computed
from Eqs. (3) and (7)

cbðt; τÞ ¼ Hðtd � tÞ
XN
n¼1

ϕnðυtÞhnðt � τÞ 1
Mn

ϕnðυτÞHðτÞ ð19Þ

where the Heaviside functions Hðtd � tÞ and HðτÞ ensure that
ubðtÞ ¼ 0 for t ≤ 0 and t ≥ td, as the vehicle is assumed to travel
on a rigid road pavement prior to arriving and after leaving the
bridge.

This expression is now used to obtain a formulation of the
bridge compliance in the frequency domain. A double-forward
Fourier transform with respect to t and τ is applied to Eq. (19).
Adjusting the integration limits in accordance with the Heaviside
functions in Eq. (19) allows the double forward Fourier transform
as follows:

Cbðω0;ωÞ ¼
XN
n¼1

Z
td

0
ϕnðυtÞ

�
1
Mn

Z
t

0
hnðt� τÞϕnðυτÞ expð�iωτÞdτ

�

× expð�iω0tÞdt ð20Þ

where the bracketed term = previously defined modal response
gnðt;ωÞ to a moving concentrated load with harmonic time-varying
intensity expð�iωtÞ.

Random Road Unevenness

Autocorrelation Function of the Road Unevenness

In the following, the vehicle-bridge interaction problem is solved
for the case where road unevenness with a stochastic character is
present. It is assumed that the unevenness rðxÞ is a uniformly
modulated random field

rðxÞ ¼ cðxÞ�rðxÞ ð21Þ

where cðxÞ = modulation function and �rðxÞ = underlying homo-
geneous random field. The PSD Φ�r�rðkxÞ of the underlying homo-
geneous random field �rðxÞ is usually expressed in terms of the
wave number kx ¼ 2π∕λx, where λx is the wavelength of the
unevenness. The corresponding time variation of the excitation
r0ðtÞ at the moving contact point between the vehicle and the
bridge is determined by the vehicle speed υ as

c0ðtÞ�r0ðtÞ ¼ cðυtÞ�rðυtÞ ð22Þ

where c0ðtÞ ¼ cðυtÞ and �r0ðtÞ ¼ �rðυtÞ. Unevenness with wave-
length λx corresponds to harmonic excitation of the vehicle at
frequency υ∕λx. The nonstationary ACF ϕr0r0 ðt1; t2Þ of the
stochastic excitation r0ðtÞ is computed as follows:

ϕr0r0 ðt1; t2Þ ¼ E½r0ðt1Þr0ðt2Þ� ¼ c0ðt1Þc0ðt2Þϕ�r0�r0 ðt2 � t1Þ ð23Þ

The corresponding generalized PSD Φr0r0 ðω1;ω2Þ ¼
E½R0�ðω1ÞR0ðω2Þ�, with * denoting the complex conjugate, is found
by a two-dimensional Fourier transform
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Φr0r0 ðω1;ω2Þ ¼
Z þ∞
�∞

Z þ∞
�∞

ϕr0r0 ðt1; t2Þ expðiω1t1 � iω2t2Þdt1dt2

¼
Z þ∞
�∞

Z þ∞
�∞

c0ðt1Þc0ðt2Þϕ�r0�r0 ðt2 � t1Þ

× expðiω1t1 � iω2t2Þdt1dt2 ð24Þ
An alternative expression for the generalized PSD Φr0r0 ðω1;ω2Þ

is found by rewriting the ACF ϕ�r0 ðt2 � t1Þ of the underlying
stationary stochastic process as the inverse Fourier transform of
the PSD Φ�r0�r0 ðω0Þ, finally leading to

Φr0r0 ðω1;ω2Þ ¼
1
2π

Z þ∞
�∞

C0�ðω1 � ω0ÞC0ðω2 � ω0ÞΦ�r0�r0 ðω0Þdω0

ð25Þ
where C0ðωÞ = Fourier transform of c0ðtÞ. The PSD Φ�r0�r0 ðωÞ of the
underlying stationary random process �r0ðtÞ is computed from the
PSD Φ�r �rðkxÞ of the underlying homogeneous random field �rðxÞ
in the wave number domain as follows (Schiehlen 2009):

Φ�r0�r0 ðωÞ ¼
1
υ
Φ�r �r

�
ω
υ

�
ð26Þ

The PSD Φ�r0�r0 ðω0Þ in Eq. (25) is now approximated as follows:

Φ�r0�r0 ðω0Þ ¼
XM
m¼1

Φ�r0�r0 ðω0
mÞΔω0δðω0 � ω0

mÞ ð27Þ

where ω0
m ¼ mΔω0 and Δω0 is the frequency spacing. The zero

frequency component is not considered, because this corresponds
to unevenness with an infinite wavelength and does not affect the
dynamic vehicle response. Introducing Eq. (27)for the PSD
Φ�r0�r0 ðω0Þ in Eq. (25) yields

Φr0r0 ðω1;ω2Þ ¼
1
2π

XM
m¼1

C0�ðω1 � ω0
mÞC0ðω2 � ω0

mÞΦ�r0�r0 ðω0
mÞΔω0

ð28Þ

Autocorrelation Function of the Interaction Force

The nonstationary ACF ϕf f ðt1; t2Þ ¼ E½f ðt1Þf ðt2Þ� of the interaction
force is now computed, based on the previously derived integral
form, Eq. (14), of the compatibility equation in the deterministic
case. First, the sum of the vehicle compliance and the bridge com-
pliance cυðt � τÞ þ cbðt; τÞ in Eq. (14) is replaced by cυbðt; τÞ
following the notation introduced in Eq. (15). Second, Eq. (14)
is formulated for t ¼ t1, τ ¼ τ1 and t ¼ t2, τ ¼ τ2, and the
expected value of the product of both evaluations is computed.
This leads to the following integral equation for the nonstationary
ACF ϕf f ðt1; t2Þ of the interaction force:Z

t1

�∞

Z
t2

�∞
cυbðt1; τ1Þcυbðt2; τ2Þϕf f ðτ1; τ2Þdτ1dτ2

¼ ustðt1Þustðt2Þ þ ϕr0r0 ðt1; t2Þ ð29Þ
where use has been made of the fact that the mean value of r0ðtÞ is
zero. Eq. (29) is now formulated in the frequency domain as
follows. First, a two-dimensional forward Fourier transform with
respect to t1 and t2 is performedZ þ∞

�∞

Z þ∞
�∞

Cυbð�ω1; τ1ÞCυbðω2; τ2Þϕf f ðτ1; τ2Þdτ1dτ2
¼ U�

stðω1ÞUstðω2Þ þ Φr0r0 ðω1;ω2Þ ð30Þ

Second, the ACF ϕf f ðτ1; τ2Þ of the interaction force f ðtÞ is
rewritten in terms of its two-dimensional Fourier transform

ϕf f ðτ1; τ2Þ ¼
1
4π2

Z þ∞
�∞

Z þ∞
�∞

Φf f ðω0
1;ω0

2Þ expð�iω0
1τ1

þ iω0
2τ2Þdω0

1dω0
2 ð31Þ

Substituting ϕf f ðτ 1; τ 2Þ from Eq. (31) into Eq. (30) and
rearranging the terms allows recovery of the two-dimensional
Fourier transform of the product Cυbð�ω1; τ1ÞCυbðω2; τ2Þ, with re-
spect to τ1 and τ2. Replacing Φr0r0 ðω1;ω2Þ on the right-hand-side of
Eq. (30) by the approximation in Eq. (28) finally leads to the
following integral equation for the generalized PSD Φf f ðω0

1;ω0
2Þ:

1
4π2

Z þ∞
�∞

Z þ∞
�∞

Cυbð�ω1;ω0
1ÞCυbðω2;�ω0

2ÞΦf f ðω0
1;ω0

2Þdω0
1dω0

2

¼U�
stðω1ÞUstðω2Þþ

1
2π

XM
m¼1

C0�ðω1�ω0
mÞC0ðω2�ω0

mÞΦ�r0�r0 ðω0
mÞΔω0

ð32Þ

Autocorrelation Function of the Bridge Response

The nonstationary ACF ϕyyðx1; x2; t1; t2Þ ¼ E½yðx1; t1Þyðx2; t2Þ�
of the bridge displacement is calculated based on the modal
superposition in Eq. (3)

ϕyyðx1; x2; t1; t2Þ ¼ E

�X∞
n¼1

ϕnðx1ÞZnðt1Þ
X∞
m¼1

ϕmðx2ÞZmðtzÞ
�

¼
X∞
n¼1

X∞
m¼1

ϕnðx1Þϕmðx2Þϕznzmðt1; t2Þ ð33Þ

which shows that the ACF ϕyyðx1; x2; t1; t2Þ is obtained from the
cross-modal, cross-correlation functions (CCFs) ϕzmznðt1; t2Þ.

The following expression for the cross-modal CCFs ϕzmznðt1; t2Þ
in terms of the generalized PSD Φf f ðω1;ω2Þ is derived using
Eq. (10)

ϕznzmðt1; t2Þ ¼ E½znðt1Þzmðt2Þ�

¼ E½znðt1z�mðt2Þ� ¼
1
4π2

Z ∞
�∞

Z ∞
�∞

gnðt1;ω1Þg�mðt2;ω2Þ

× Φf f ðω1;ω2Þdω1ω2 ð34Þ
When the generalized PSD Φf f ðω1;ω2Þ of the variable moving

load f ðtÞ has been obtained, Eq. (34) can be used to compute the
cross-modal CCFs ϕzmznðt1; t2Þ and, subsequently, by Eq. (33), the
nonstationary ACF of the bridge response.

Numerical Solution

Deterministic Case

The integral Eq. (17) for the variable moving load is solved by
assuming a constant value of FðωÞ in each frequency interval
[ωj � 0:5Δω, ωj þ 0:5Δω] of width Δω centered at ωj ¼ jΔω

F̂ðωÞ ¼
XNω

j¼1

F̂jΔðω� ωjÞ ð35Þ

where the hat denotes the approximation and the function
Δðω� ωjÞ ¼ 1 for ω ∈ ½ωj � 0:5Δω;ωj þ 0:5Δω� and zero else-
where. The interval centered at ωj ¼ 0 is not considered, because
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the variable moving load f ðtÞ has a zero mean value and, therefore,
FðωÞ is zero for ω ¼ 0.

A system of Nω equations with Nω unknowns F̂j is obtained
by formulating the integral Eq. (17) for Nω frequencies
ω0 ¼ ω0

k ¼ kΔω

Cυðω0
kÞF̂k þ

XNω

j¼1

�
1
2π

Z
ωjþ0:5Δω

ωj�0:5Δω
Cbðω0

k;�ωÞdω
�
F̂j

¼ �Ustðω0
kÞ � R0ðω0

kÞ ð36Þ

When Δω is sufficiently small, the second term can be approxi-
mated as follows:

Cυðω0
kÞF̂k þ

XNω

j¼1

�
1
2π

Cbðω0
k;�ωjÞΔω

�
F̂j ¼ �Ustðω0

kÞ � R0ðω0
kÞ

ð37Þ

The system of equations is rewritten in the following matrix
form:

ðCυ þ CbÞF̂ ¼ �Ust � R0 ð38Þ

whereCυ is the Nω × Nω diagonal matrix that represents the vehicle
compliance, Cb is the Nω × Nω bridge compliance matrix, F̂ is the
Nω × 1 vector that collects the unknowns F̂jðj ¼ 1;…NωÞ, and Ust
and R0 are the Nω × 1 vectors that collect the displacement at the
contact point UstðωÞ because of the constant moving load f st and
the unevenness R0ðωÞ, respectively. Eq. (38) shows that the inter-
action force results from two excitation mechanisms. First, in the
case of a perfectly smooth road surface, the deflection of the bridge
at the contact point will lead to a dynamic excitation of the vehicle.
This effect is represented by the first term UstðωÞ on the right-hand-
side of Eq. (38). Second, unevenness of the bridge roadway surface,
represented by the second term R0, will lead to additional dynamic
excitation, which will dominate in the case of a very stiff bridge,
i.e., when UstðωÞ is small compared with R0.

An inversion of the sum of the vehicle compliance matrix Cυ
and the bridge compliance matrix Cb allows rewriting of the system
as follows:

F̂ ¼ �ðCυ þ CbÞ�1ðUst þ R0Þ ¼ Hf uðUst þ R0Þ ð39Þ

where Hf u is the Nω × Nω transfer matrix of the coupled vehicle-
bridge system that relates the Fourier transform of the variable
moving load F̂ to the combined excitation Ust þ R0.

The modal response znðtÞ is subsequently calculated by
substituting Eq. (35) in Eq. (10)

znðtÞ ¼
XNω

j¼1

�
1
2π

Z
ωjþ0:5Δω

ωj�0:5Δω
gnðt;�ωÞdω

�
F̂j ð40Þ

When Δω is sufficiently small, the bracketed term can
be approximated by 1∕2πgnðt;�ωjÞΔω or, equivalently,
1∕2πg�nðt;ωjÞΔω. When Eq. (40) is evaluated for Nt time steps
tk ¼ kΔt, it can be rewritten in the following matrix form:

ẑn ¼ Ĝ�
nF̂ ð41Þ

where the Nt × 1 vector Ẑn collects the sequence znðtkÞ,
k ¼ 1;…;Nt and the Nt × Nω matrix Ĝ�

n contains the bracketed
terms in Eq. (40). The bridge displacement yðx; tkÞ is obtained
by the modal superposition in Eq. (3).

Stochastic Case

Autocorrelation Function of the Interaction Force
Instead of computing the generalized PSD Φf f ðω0

1;ω0
2Þ directly

from Eq. (32), an expression for Φf f ðω0
1;ω0

2Þ is derived from the
numerical solution in Eq. (39) for the deterministic case

Φ̂f f ¼ EfF̂ F̂Hg ¼ Ef½H�
f uðU�

st þ R0�Þ� ⊗ ½Hf uðUst þ R0Þ�g ð42Þ

where H = Hermitian or conjugate transpose and ⊗ = vector or
outer product. The Nω × Nω matrix Φ̂f f represents the generalized
PSD Φf f ðω0

1;ω0
2Þ at discretized frequencies ω0

1;ω0
2 ¼ ω0

k ¼ kΔω,
k ¼ 1;…;Nω. Because the transfer matrix Hf u and the vector
Ust are deterministic quantities, the right-hand-side of Eq. (42)
becomes

Φ̂f f ¼ H�
f uU

�
stUT

stHT
f u þH�

f uE½R0�R0T �HT
f u ð43Þ

where use has been made of the fact that E½R0� ¼ 0. The term
E½R0�R0T � matrix Φ̂r0r0 , which represents the generalized PSD
Φ̂r0r0 ðω0

1;ω0
2Þ at discretized frequencies ω0

1;ω0
2 ¼ ω0

k ¼ kΔω,
k ¼ 1;…;Nω. Introducing the approximation in Eq. (28) for the
generalized PSD Φr0r0 in Eq. (43) leads to

Φ̂f f ¼ H�
f uU

�
stUT

stHT
f u

þ 1
2π

XM
m¼1

½H�
f uC

�ðω0
mÞCTðω0

mÞHT
f u�Φ�r0�r0 ðω0

mÞΔω0 ð44Þ

where the Nω × 1 vector C�ðω0
mÞ collects the terms

C0�ðω0
k � ω0

mÞ;ω0
k ¼ kΔω, k ¼ 1;…;Nω for a particular value

of ω0
m.

The first term on the left-hand-side of Eq. (44) represents the
contribution of the deterministic excitation Ust to the generalized
PSD Φ̂f f and can be computed by solving the system of
Eq. (39) in the deterministic case with R0 ¼ 0. The second term
can be computed by solving Eq. (39) as well for each of the M
excitations R0 ¼ ð1∕ ffiffiffiffiffiffi

2π
p ÞCðω0

mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ�r0�r0 ðω0

mÞΔω0p
, representing a

modulated harmonic excitation with frequency ω0
m. In this way,

an efficient solution of the stochastic problem with random road
unvenenness is obtained. A similar solution strategy is followed
in the pseudoexcitation method (Zhang et al. 2010).

Autocorrelation Function of the Bridge Response
Once the generalized PSD Φ̂f f of the interaction force has been
obtained, the nonstationary ACF of the bridge response can be
computed. This requires the calculation of the cross-modal CCFs
ϕznzmðt1; t2Þ. Based on Eq. (41) for the modal coordinates znðtÞ in
the deterministic case, the following expression is obtained:

ϕ̂znzm ¼ E½ĜnF̂
� ⊗ Ĝ�

mF̂� ¼ ĜnΦ̂f f Ĝ
�T
m ð45Þ

where ϕ̂znzm is the Nt × Nt matrix with the discretized approxima-
tion of the cross-modal CCF Φznzmðt1; t2Þ. Next, the numerical sol-
ution in Eq. (44) for the generalized PSD Φ̂f f is inserted in Eq. (45)

ϕ̂znzm ¼ ĜnH�
f uU

�
stUT

stHT
f uĜ

�T
m

þ 1
2π

XM
m¼1

½ĜnH�
f uC

�ðω0
mÞCTðω0

mÞHT
f uĜ

�T
m �Φ�r0�r0 ðωmÞΔω0

ð46Þ
As in the case of Eq. (44), the solution is obtained by solving

one deterministic problem where the deterministic excitation Ust is
considered and M additional deterministic problems each with an
excitation R0 ¼ ð1∕ ffiffiffiffiffiffi

2π
p ÞCðω0

mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ�r0�r0 ðω0

mÞΔω0p
(m ¼ 1;…;M).
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The Nt × Nω matrices Ĝnðn ¼ 1;…;NÞ and the Nω × Nω transfer
matrix Hf u only need to be computed once. As a result, the
nonstationary second-order statistical characteristics of the
response of the vehicle-bridge system are obtained at a moderate
computational cost.

Application Examples

In this subsection, the passage of a heavy vehicle on a single span
highway bridge is considered. The vehicle is a 40-ton truck that is
modeled as a quarter-car model with 2 degrees of freedom (DOFs)
(Cebon 1999). The constant load f st of the vehicle is equal to
�392:4 kN. The sprung mass of the vehicle ms ¼ 36;000 kg is
supported by the suspension system that is represented by a
spring-dashpot connection with a spring stiffness ks ¼ 18 MN∕m
and a dashpot constant cs ¼ 1:4 MNs∕m. The suspension
system is connected to the unsprung mass of the vehicle
mu ¼ 4;000 kg, which is supported by the tires that are represented
by a spring-dashpot connection with a spring stiffness kt ¼
72 MN∕m and a dashpot constant ct ¼ 1:4 MNs∕m. The two
DOFs are the vertical displacement of the sprung and unsprung
masses, respectively. The vehicle has two vibration modes, a
bouncing mode of the sprung mass with a natural frequency of
3.18 Hz and an axle hop mode with a natural frequency of 23.9 Hz.

The bridge model is a simply supported beam model for the
Pirton Lane Highway bridge in Gloucester (UK) (Cebon 1999).
The bridge has a length L ¼ 40 m, an estimated mass per unit
length of �m ¼ 12;000 kg∕m, a first natural frequency ω1 ¼ 2π×
3:20 rad∕s, and modal damping ratio ξ1 ¼ 0:02. The first natural
frequencies of the vehicle and the bridge (considered individually)
are similar, and therefore the dynamic vehicle-bridge interaction is
expected to have an important effect on the dynamic response of the
bridge (Cantieni 1992). Based on the value for ω1, the bending stiff-
ness EI is estimated as EI ¼ �mL4ω2

1∕π4 ¼ 1:26 × 105 mN�m2.
The modal damping ratio ξ1 is used to estimate the viscous damp-
ing in the beam. Only the viscous resistance to the vertical velocity
of the beam c in Eq. (1) is considered, because this allows verifi-
cation of the solution for a moving load with constant intensity
to the closed-form solution given by Frýba (1996). The damping
constant c is computed from the modal parameters ω1 and ξ1 as
c ¼ 2�mω1ξ1 ¼ 9:60 kN� s∕m. In the solution by modal superpo-
sition, the first three bridge modes are considered with natural
frequencies ω1 ¼ 20 rad∕s, ω2 ¼ 80 rad∕s, and ω3 ¼ 180 rad∕s,
respectively. The corresponding modal damping ratios are equal
to ξ1 ¼ 0:02, ξ2 ¼ 0:005, and ξ3 ¼ 0:002, respectively.

The proposed solution procedure is used to compute the
dynamic response of the bridge to the passage of the 40-ton vehicle
at a speed of υ ¼ 100 km∕h. First, the case of a perfectly smooth
road surface is considered. Next, the case is considered where the
road surface unevenness is irregular and can be represented by a
random field.

Vehicle-Bridge Interaction for a Perfectly Smooth
Road Surface

In the case where the road surface is perfectly smooth, the coupled
vehicle-bridge system is only excited by the first term on the right-
hand-side of Eqs. (17) and (39), which represents the Fourier trans-
form UstðωÞ of the displacement of the bridge at the contact point
x ¼ υt because of the constant moving load f st .

Fig. 2(b) shows the Fourier amplitude spectrum jUstðωÞj of the
displacement at the contact point. The Fourier amplitude spectrum
is concentrated at low frequencies f ≤ 5 Hz, revealing the

low-frequency character of the excitation in Eq. (17). The time
history ustðtÞ [Fig. 2(a)] of the response has been obtained by
means of an inverse Fourier transform of UstðωÞ.

The intensity of the variable moving load is now computed
from the solution of the system of Eq. (39), based on the vehicle
compliance, the bridge compliance, and the excitation UstðωÞ. The
Fourier amplitude spectrum of the variable moving load jFðωÞj
[Fig. 3(b)] shows a high spectral peak near 3.2 Hz, where the first
natural frequency of the bridge and the vehicle are found and a
second peak near the second natural frequency of the bridge at
12.7 Hz is found. The corresponding time history of the interaction
force f ðtÞ is shown in Fig. 3(a). Because no unevenness is present
on the road, the vehicle is not excited prior to its entrance on the
bridge and the intensity of the variable moving load f ðtÞ ¼ 0 for
t ≤ 0. After excitation by the bridge, the force f ðtÞ shows a nearly
harmonic behavior with a period corresponding to the first natural
frequency of the bridge and the vehicle. The peak value of the var-
iable moving load is 6.1 kN, corresponding to only 1.6% of the
constant load f st ¼ �392:4 kN. After the vehicle leaves the bridge
ðtd ≤ tÞ, the force is no longer applied to the bridge, but to the rigid,
smooth pavement on which the vehicle travels after its passage on
the bridge.

Based on the Fourier transform FðωÞ of the variable moving
load, the total response of the bridge is obtained by introducing
the total load f st2πδðωÞ þ FðωÞ in Eq. (10) for the time history
of the modal coordinates and applying the modal superposition
in Eq. (3). Fig. 4(b) compares the Fourier amplitude spectrum
of the bridge displacement at midspan because of the total load
f st2πδðωÞ þ FðωÞ with the displacement because of a moving load
with constant amplitude f st . At low frequencies, the results are sim-
ilar, whereas around the first natural frequency of the vehicle and
the bridge, a small difference is found because of the additional
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Fig. 2. (a) Time history ystðtÞ; (b) Fourier amplitude spectrum jUstðωÞj
of the displacement at the contact point to a constant moving
load f st ¼ �392:4 kN. The vertical dotted lines indicate the times
t ¼ 0 and t ¼ td at which the vehicle enters and leaves the bridge,
respectively
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variable moving load FðωÞ. In Fig. 4(a), the time history of the
displacement at midspan because of f st is compared with the
corresponding closed-form solution of Frýba (1996) for the forced
vibration phase 0 ≤ t ≤ td. An excellent agreement is found

between the closed-form solution and the obtained solution for
the displacement at midspan because of f st.

Vehicle-Bridge Interaction Because of Random Road
Unevenness

In this section, the passage of the 40-ton vehicle on the same bridge,
but with random road unevenness, is considered. The nonstationary
ACF of the vertical bridge displacement ϕyyðx1; x2; t1; t2Þ is com-
puted for the case in which the underlying homogeneous random
field �rðxÞ assumes the PSD (Braun and Hellenbroich 1991;
ISO 1991)

Φ�r �rðkxÞ ¼ Φ�r �rðkx0Þ
�
kx
kx0

��w
ð47Þ

where w ¼ 2, kx0 ¼ 1 rad∕m, and the reference value Φ�r �rðkx0Þ ¼
2π × 10�6 m3∕rad corresponding to the average of class A road
unevenness described in ISO8608 (ISO 1991). The additional fac-
tor 2π in the value for Φ�r �rðkx0Þ is because of the assumed conven-
tion in Eq. (8) for the Fourier transform pair. The PSD in Eq. (47)
cannot be used in the entire wave number range (0–∞), because it
leads to infinite values for the limiting case kx → 0 (Schiehlen
2009). The PSD is, therefore, truncated at a lower limit of kx ¼
2π × 0:04 rad∕m and an upper limit of kx ¼ 2π × 0:20 rad∕m,
so that unevenness in a range of wavelengths between 5 and
25 m is considered. For a vehicle speed of υ ¼ 100 km∕h, this re-
sults in excitation in the frequency range between 1.11 and 5.56 Hz
that contains the first natural frequency of the bridge and the
vehicle. The corresponding PSD Φ�r0�r0 ðω0Þ in terms of the circular
frequency ω0 is found according to Eq. (26). This PSD is approxi-
mated according to Eq. (27) with Δω0 ¼ υΔkx and Δkx ¼
2π × 5 × 10�4 rad∕m, so that a total ofM ¼ 321 terms is considered
in the Eq. (27). For a vehicle speed υ ¼ 100 km∕h, Δω0 ¼
2π × 0:014 rad∕s.

The nonstationary random process r0ðtÞ ¼ c0ðtÞ�r0ðtÞ is obtained
by considering the following Gaussian modulation function cðxÞ,
see Eq. (21):

cðxÞ ¼ exp½�aðx� L∕2Þ2� ð48Þ

where a is taken equal to 1∕ð2LÞ2, and therefore the road uneven-
ness rðxÞ ¼ cðxÞ�rðxÞ on the bridge is close to the underlying
stationary random field �rðxÞ.

The corresponding generalized PSD Φr0r0 ðω1;ω2Þ from Eq. (28)
becomes

Φr0r0 ðω1;ω2Þ ¼
1
2π

XM
m¼1

C0�ðω1 � ω0
mÞC0ðω2

� ω0
mÞΦ�r �rðkx0Þv

�
kx0
ω0
m

�
2
Δω0 ð49Þ

where C0ðωÞ = Fourier transform of c0ðtÞ = cðυtÞ. Terms as
C0�ðω1 � ω0

mÞ in Eq. (49) are computed as the Fourier transform
of c0ðtÞ expðiω0

mtÞ. Based on this expression, the nonstationary
statistical characteristics of the interaction force f ðtÞ and the vertical
bridge displacement yðx; tÞ are computed. To verify the results,
realizations of the random process r0ðtÞ are generated according
to the spectral representation theorem (Shinozuka and Deodatis
1991; Shinozuka and Jan 1972) as a superposition of harmonic
functions with random phase angles

r0ðtÞ ¼ cðtÞ
XM
m¼1

1ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φ�r0�r0 ðωmÞΔω

p
cosðωmt � θmÞ ð50Þ
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Fig. 3. (a) Time history f ðtÞ; (b) Fourier amplitude spectrum jFðωÞj of
the variable moving load. The vertical dotted lines indicate the times
t ¼ 0 and t ¼ td at which the vehicle enters and leaves the bridge,
respectively
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Fig. 4. (a) Time history; (b) Fourier amplitude spectrum of the bridge
displacement at midspan because of the total moving load f st þ f ðtÞ
(solid line) and the constant moving load f st (dotted line). The vertical
dotted lines indicate the times t ¼ 0 and t ¼ td at which the vehicle
enters and leaves the bridge, respectively. The circles on (a) correspond
to the closed form solution for the response because of f st in the forced
vibration phase 0 ≤ t ≤ td
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where θm = independent random phase angles uniformly distributed
in the interval (0, 2π). The samples have a period T ¼ 2π∕Δω0 ¼
72 s and are asymptotically Gaussian as M tends to infinity and
Δω0 tends to zero for a fixed value of ωmax

m ¼ MΔω0. Fig. 5(a)
shows two realizations of the random process r0ðtÞ according
to Eq. (50).

To verify Eq. (49) for the generalized PSD Φr0r0 ðω1;ω2Þ, the
time-dependent mean square value σ2

r0 ðtÞ of the random process
r0ðtÞ is computed from the two-dimensional inverse Fourier trans-
form ϕðt1; t2Þr0r0 of the generalized PSD Φr0r0 ðω1;ω2Þ. Fig. 5(b)
shows that a good agreement is obtained between the computed
value of σ0

rðtÞ and the value that has been estimated from
2,048 realizations. This relatively high number of realizations
was required to obtain convergence of the statistics of the bridge
response shown in the subsequent paragraphs.

Next, the intensity of the variable moving load f ðtÞ is computed.
In the calculation, only the excitation R0ðωÞ, because of the uneven-
ness r0ðtÞ, is taken into account on the right-hand-side of Eq. (17) in
the deterministic case and Eq. (32) in the stochastic case. The first
term UstðωÞ on the right-hand-side of these equations has already
been considered in the previous subsection. The total response is,
therefore, found by superposing the solution previously presented
to all results shown next. Fig. 5(a) shows the deterministic solution
of the variable moving load f ðtÞ for the two samples of r0ðtÞ.
Outside the time range 0 ≤ t ≤ td, the vehicle is not on the bridge
and the variable moving load f ðtÞ is applied on the rigid road pave-
ment assumed in front of the bridge ðt ≤ 0Þ and behind the
bridge ðtd ≤ tÞ.

The generalized PSD Φf f ðω1;ω2Þ of the interaction force is now
computed according to Eq. (44), where only the second term on the
right-hand-side is considered. Fig. 6(b) shows that a good agree-
ment is obtained between the value of σf ðtÞ obtained from the
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two-dimensional inverse Fourier transform ϕf f ðt1; t2Þ of the gener-
alized PSD Φf f ðω1;ω2Þ and the estimated value based on 2,048
realizations. Furthermore, the results for σf ðtÞ suggest that in
the present case, vehicle-bridge interaction results in a reduction
of the vehicle load. Comparing the standard deviation σf ðtÞ in
Fig. 6(b) with the time history of the force in Fig. 6(a) shows that
the variable moving load f ðtÞ because of road unevenness is much
larger than for the excitation resulting from the bridge deflection
because of the constant moving load f st. The standard deviation
of the variable moving load σf ðtÞ reaches a value of 27.4 kN,
i.e., 7.0% of the constant load f st ¼ �392:4 kN.

Finally, the time history of the vertical displacement of the
bridge at midspan is computed. Fig. 7(a) shows the deterministic
solution of the time history yðx; tÞ of the displacement at midspan
x ¼ L∕2 for the samples of r0ðtÞ. The displacement increases as the
vehicle enters the bridge at t ¼ 0 and reduces again as the vehicle
leaves the bridge. At times t > td, the bridge is no longer excited by
the vehicle and is in decaying free vibration.

The cross-modal CCFs ϕzmznðt1; t2Þ are computed from the
PSD Φ�r0�r0 ðω0Þ by means of Eq. (46), where only the second term
on the right-hand-side is considered. The nonstationary ACF
ϕyyðx1; x2; t1; t2Þ of the bridge displacements at locations x1 and
x2 is evaluated subsequently using Eq. (33). Fig. 7(b) shows that
a good agreement is obtained between the computed value of
σyðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðL∕2; L∕2; t; tÞp

and the estimated value based on
2,048 realizations, thus validating the proposed analytical solution
procedure.

Conclusion

The vehicle-bridge interaction problem is solved by means of a
compliance formulation in a frame of reference that moves with
the vehicle. An expression is derived for the variable moving load
that shows how the Fourier transform of the force is determined
from the bridge displacement at the contact point for the constant
component of the vehicle load and the road unevenness. This
provides a clear physical insight into the importance of both exci-
tation mechanisms for vehicle-bridge interaction. Furthermore, an
efficient solution procedure is presented for the nonstationary
second-order statistical characteristics of the bridge response in
the case where the unevenness is modeled as a random field.
The solution procedure is illustrated by an example where the
passage of a heavy vehicle on a single span highway bridge is con-
sidered. For the calculations, use is made of closed-form solutions
that are available for a simply supported Euler-Bernoulli beam
model for the bridge. The solution procedure for the second-order
statistical characteristics of the bridge response is successfully
validated by means of Monte Carlo simulations.
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