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a b s t r a c t

The extensive use of lightweight compositematerials in composite aircraft structures drastically increases
the sensitivity to both fatigue- and impact-induced damage of their critical structural components
during their service life. Within this scenario, an integrated hardware–software system that is capable
of monitoring the composite airframe, assessing its structural integrity, identifying a condition-based
maintenance, and predicting the remaining service life of its critical components is therefore needed.
As a contribution to this goal, this paper presents the theoretical basis of a novel and comprehensive
probabilistic methodology for predicting the remaining service life of adhesively bonded joints within
the structural components of composite aircraft, with emphasis on a composite wing structure. Non-
destructive evaluation techniques and recursive Bayesian inference are used to (i) assess the current
state of damage of the system and (ii) update the joint probability distribution function (PDF) of the
damage extents at various locations. A probabilistic model for future aerodynamic loads and a damage
evolution model for the adhesive are then used to stochastically propagate damage through the joints
and predict the joint PDF of the damage extents at future times. This information is subsequently used
to probabilistically assess the reduced (due to damage) global aeroelastic performance of the wing by
computing the PDFs of its flutter velocity and the velocities associated with the limit cycle oscillations of
interest. Combined local and global failure criteria are finally used to compute lower and upper bounds
for the reliability index of the composite wing structure at future times.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Probabilistic design, structural health monitoring (SHM), and
risk assessment methodologies for commercial, transport, and
fighter aircraft have been under development by the research com-
munity for a considerable time [1–3]. Moreover, the increasing use
of high-performance lightweight composite materials is rendering
rigorous probabilistic approaches essential: fiber-reinforced poly-
mer (FRP) and adhesive materials are in fact characterized by a
large statistical variability in their mechanical properties and are
extremely sensitive to both fatigue- and impact-induced damage
— phenomena that cannot be treated deterministically and require
periodic monitoring of the structure in order to prevent unex-
pected failures. Unmanned aerial vehicles (UAVs), such as the one
shown in Fig. 1, are an example of how extensively composite ma-
terials can be used in aircraft structures; additionally, the absence
of a pilot on these vehicles leads to higher levels of damage tol-
erance. Various damage mechanisms — e.g., debonding, inter-ply
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delamination, fiber breakage, andmatrix cracking — can thus initi-
ate and invisibly propagate up to catastrophic levels in the most
damage-sensitive structural components, such as the wings, the
tail stabilizers, and the fuselage. In particular, the adhesive joints
that bond the aircraft skin to the primary airframe components
(e.g., wing spars, bulkheads, stringers) are recognized as the most
fatigue-sensitive subcomponents of a lightweight composite air-
craft, with the wing skin-to-spar adhesive joints being the most
critical. The progressive debonding, evolving from the wing root
along these joints (see Fig. 1 and [4]), compromises both local
component strength and global aeroelastic performance of the
vehicle [5,6]. There is therefore the need for a field-deployable
system capable of monitoring the composite airframe, assessing
its structural integrity, identifying a cost-efficient condition/risk-
based maintenance program, and predicting its remaining useful
life (damage prognosis; see [7]).

The probabilistic framework for remaining service life pre-
diction presented in this paper was inspired by a performance-
based analysis framework developed in the area of earthquake
engineering [8]. According to this approach, data collected dur-
ing on-ground and in-flight non-destructive evaluation (NDE) in-
spections [9] are used to assess the current state of damage of the
monitored structural components (i.e., damage location, damage
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Fig. 1. Example of a composite UAV and idealized composite UAVwingwith emphasis on the skin-to-spar adhesive joints and the four possible locations of damage initiation
at the wing root.
mechanism, and damage size/extent) considering potential mul-
tiple damage mechanisms and locations. The uncertainty charac-
terizing the NDE inspection results is efficiently assimilated by a
recursive Bayesian inference schemeused to update the joint prob-
ability distribution function (PDF) of the damage extents. A load
hazard model for future aerodynamic loads and a damage evo-
lution model are then used to stochastically propagate the iden-
tified damage mechanisms in time. Finally, combined local (e.g.,
exceedance of a critical damage size at a damage location) and
global (e.g., exceedance of the flutter instability boundary, or initia-
tion of limit cycle oscillation (LCO) behavior) failure criteria, similar
to those introduced by Lin et al. [10] and Styuart et al. [11], are used
to compute the evolution in time of the probability of system failure
using well-established component and system reliability analysis
methods.

2. Overview of proposed damage prognosis methodology

The flowchart shown in Fig. 2 illustrates conceptually the pro-
cess of uncertainty propagation necessary to estimate the remain-
ing service life of a composite aircraft structural component (e.g., a
composite UAVwing) once a new NDE inspection outcome, at cur-
rent time tp, becomes available. The inspection outcome is rep-
resented by the measured (through NDE sensor data processing)
damage size/extent vector, apm, at the inspected locations at time
tp. This new information is used (in the first step of the method-
ology, Bayesian inference) to compute the posterior joint PDF of
the (np

A-dimensional) actual damage size vector, Ap
a , conditional

on the material (2mat) and damage model (2dam) parameters, as
well as on all the previous p + 1 NDE measurement outcomes ob-
tained up to time tp, denoted as a[0,p]m =


a0m, a

1
m, . . . , a

p
m

. For

the sake of simplicity, this posterior joint conditional PDF, given
in full form as f ′′

Ap
a |2mat,2dam,A

[0,p]
m


apa |θmat, θdam , a

[0,p]
m


, is hereafter

denoted f ′′

Ap
a |2mat,2dam


apa |θmat, θdam


, without explicitly including

the dependency onA[0,p]
m . Similarly, the prior knowledge is denoted

as f ′

Ap
a |2mat,2dam


apa |θmat, θdam


. Furthermore, the actual size of the

jth detected damage mechanism evolving at the ith monitored
damage location at time tp is denoted as A(i,j,p)a . The random pa-
rameter vector 2mat (of length nmat) exclusively describes the un-
certainty in the material properties used to model the parts of the
airframe which are herein assumed to be non-damageable,
while the random vector 2dam (of length ndam) quantifies the
uncertainty of those parameters that control the fatigue-induced
material degradation [12–14] in the pre-identified damageable
subcomponents. In this study, 2mat and 2dam are assumed to be
statistically independent (s.i.) and time invariant [15].

The second step of the methodology, probabilistic load hazard
analysis, defines the joint PDF of the s.i. [15] turbulence and
maneuver intensitymeasures (IMT, IMM), conditional on the flight
profile (2F) and the assumed s.i. turbulence (2T) and maneuver
(2M) random parameter vectors; i.e., the joint conditional
PDF fIM|2F(im |θF ) = fIMT,IMM|2F(imT, imM |θF ). This step thus
provides the information on the aerodynamic loads necessary to
stochastically compute the structural response of interest at future
time t > tp. In the proposed methodology, this task is achieved
in a discrete fashion [15] by defining q̄ equally spaced future
times


tqp = tp + q∆τ , q = 1, 2, . . . , q̄


. Within the time window

tp, t
q̄
p


an unknown number of flight segments (ns) can occur, and

therefore2F collects the flight profile parameters for each of these
ns flight segments as 2F =


2
(k)
F , k = 1, . . . , ns


. Examples of

parameters collected in 2
(k)
F include the altitude of flight, H(k);

the mean airstream velocity with respect to (w.r.t.) a reference
system fixed to the aircraft, V(k); and the time of flight during
the kth flight segment, T (k). Similarly, it is possible to rewrite the
vectors IMT, IMM, 2T, and 2M as IMT =


IM(k)

T , k = 1, . . . , ns


,

IMM =


IM(k)

M , k = 1, . . . , ns


, 2T =


2
(k)
T , k = 1, . . . , ns


, and

2M =


2
(k)
M , k = 1, . . . , ns


, respectively. The ns subvectors IM

(k)
T

are assumed to be mutually s.i. and independent of 2M. Similarly,
the ns subvectors IM(k)

M are assumed to be mutually s.i. and
independent of 2T.

In the third step of the proposed methodology, namely
probabilistic structural response analysis, the joint conditional PDF
of the structural response of the system – expressed in terms of
the predicted (from time tp) damage size vector (A[p,q]

a ) at the
generic future time tqp = tp + q∆τ with q ∈ {1, 2, . . . , q̄} –
is computed through extensive Monte Carlo (MC) simulations or
semi-analytical methods using either the detailed finite element
(FE) model of the structure or a computationally more efficient
surrogate model [16]. This joint PDF, conditional on 2mat, 2dam,
and all the previous NDE outcomes a[0,p]m (not explicitly included
in the notation), is denoted fA[p,q]

a |2mat,2dam


a[p,q]
a |θmat, θdam


, and is

computed as shown later in Eq. (3).
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Fig. 2. Overview of proposed reliability-based damage prognosis methodology for remaining service life prediction.
The fourth step, namely probabilistic flutter and LCO analyses,
estimates the joint PDF of the predicted damage size vector A[p,q]

a ,
flutter velocity V [p,q]

F , and the (nLCO-dimensional) vector of LCO
velocities (V[p,q]

LCO ) at the generic future time tqp = tp + q∆τ , i.e.,

the joint PDF fA[p,q]
a ,V [p,q]

F ,V[p,q]
LCO


a[p,q]
a , v

[p,q]
F , v[p,q]

LCO


= fD[p,q]

L,G


d[p,q]
L,G


,

where D[p,q]
L,G is defined as D[p,q]

L,G =


A[p,q]
a ,V[p,q]

F,LCO


, and the nG-

dimensional (with nG = 1+nLCO) vector V
[p,q]
F,LCO is given by V[p,q]

F,LCO =
V [p,q]
F ,V[p,q]

LCO


. The flutter velocity represents the lowest velocity

at which flutter occurs, whereas each of the nLCO LCO velocities,
collected in the random vector V[p,q]

LCO , indicates the velocity at
which the corresponding LCO amplitude (e.g., maximum wing
tip displacement or twist amplitude) reaches a predefined limit
threshold.

Once the joint PDF fD[p,q]
L,G


d[p,q]
L,G


= fA[p,q]

a ,V[p,q]
F,LCO


a[p,q]
a , v[p,q]

F,LCO


is

determined, the probability of system failure at time tqp , P

F [p,q]
sys


,

is estimated by performing component and system reliability anal-
yses [17]. These analyses are part of the fifth step of the frame-
work, namely damage prognosis analysis, through three substeps:
(i) computation of the modal conditional failure probabilities,
P

F [p,q]
L,ij

a[p,q]
a


and P


F [p,q]
G,r

v[p,q]
F,LCO


, (ii) computation of the un-

conditionalmodal failure probabilities, P

F [p,q]
L,ij


and P


F [p,q]
G,r


, and

(iii) computation of the lower and upper bounds for P

F [p,q]
sys


.

Using the assumptions stated in the current section, and the
notation dP [X] = P [x < X ≤ x + dx] = fX (x)dx, the probability
of system failure at time tqp can be obtained by using the total
probability theorem (TPT) multiple times in a nested fashion as

P

F [p,q]
sys


=


D[p,q]
L,G

P

F [p,q]
sys

D[p,q]
L,G


dP

D[p,q]

L,G


=


A[p,q]
a


V[p,q]
F,LCO

P

F [p,q]
sys

A[p,q]
a ,V[p,q]

F,LCO


dP

A[p,q]
a ,V[p,q]

F,LCO


, (1)

where the term dP

D[p,q]

L,G


= dP


A[p,q]
a ,V[p,q]

F,LCO


can be expressed

as

dP

A[p,q]
a ,V[p,q]

F,LCO


=


2mat


2dam

dP

V[p,q]
F,LCO

A[p,q]
a , 2mat, 2dam



× dP

A[p,q]
a |2mat, 2dam


dP [2mat] dP [2dam] , (2)

and the quantity dP

A[p,q]
a |2mat, 2dam


can be obtained as [15]

dP

A[p,q]
a |2mat, 2dam


=


Ap
a


IM


2F

dP

A[p,q]
a

2mat, 2dam,Ap
a, IM,2F


× dP ′′


Ap
a |2mat, 2dam


· dP [IM |2F ] · dP [2F] . (3)

Finally, the term dP [IM |2F ] can conceptually be written as the
product of two s.i. subterms as

dP [IM|2F] = dP [IMT, IMM|2F]

=


2T

dP [IMT|2T,2F] · dP [2T|2F]

×


2M

dP [IMM|2M,2F] · dP [2M|2F] . (4)

The ultimate step allowed by the proposed methodology
consists of the decision-making process. It essentially uses the
damage prognosis results to optimize the maintenance and repair
programs, and consequently reduce the life-cycle cost of the
structure. The decisionsmade at current time tp can be revised later
(at times tp+1, tp+2, etc.) as new NDE data are collected, a concept
illustrated in Fig. 3. Scheduling of the next maintenance or repair
is obtained by estimating the time at which P


F [p,q]
sys


will exceed a

specified safety threshold p̄F [15].

3. Recursive Bayesian inference analysis

The following three assumptions regarding an NDE inspection
are made herein. (i) An NDE inspection can detect and locate dam-
age, identify the damage mechanisms simultaneously evolving at
a certain damage location, and, in the best-case scenario, quantify
the damage extents – by using, for instance, an equivalent dam-
age size – for each damagemechanism detected and identified. (ii)
The overall uncertainty (i.e., including both systematic and random
errors) in the measured extent of damage is dependent on dam-
age location [15], damage mechanism, and extent of damage [18].
(iii) Detection and measurement of the extent of a certain dam-
age mechanism evolving at a certain damage location only depend
on the true (and unknown) damage size of that particular damage
mechanism at the time of inspection.
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Fig. 3. Conceptual representation of proposed damage prognosis algorithm for two successive NDE inspections (at times tp and tp+1), emphasizing the alternative and
recursive use of statistical and predictive analysis steps.
The detection capability of a particular NDE technique is
quantified by the so-called probability of detection (POD). The POD,
for a particular (i, j, p) combination, is defined as the probability of
detecting damage of any size (i.e., A(i,j,p)m > 0), given that the actual
damage size, at current time tp, is A

(i,j,p)
a = a(i,j,p)a (with a(i,j,p)a > 0),

i.e.,

POD

a(i,j,p)a


= P


A(i,j,p)m > 0 | A(i,j,p)a = a(i,j,p)a


. (5)

On the other hand, the probability that the NDE outcome
constitutes a false alarm – i.e., damage detected (A(i,j,p)m > 0) when
in reality there is no actual damage (a(i,j,p)a = 0) – is referred to as
false-call probability (FCP) and is defined as

FCP(i,j,p) = P

A(i,j,p)m > 0 | A(i,j,p)a = 0


= POD


a(i,j,p)a = 0


. (6)

The two pieces of information provided in Eqs. (5) and (6), with
the former viewed as a continuous function of a(i,j,p)a , are combined
together in the so-called POD curve. Several parametric models, for
defining a POD curve from the curve fit of experimental binary data
(i.e., A(i,j,p)m > 0 | A(i,j,p)a = a(i,j,p)a and A(i,j,p)m = 0 | A(i,j,p)a = a(i,j,p)a ),
can be found in the literature. Among thesemodels, those proposed
by Berens [19] and Staat [20] are shown below:

POD

a(i,j,p)a


=

exp

−α

(i,j)
0 + α

(i,j)
1 ln


a(i,j,p)a


1 + exp


−α

(i,j)
0 + α

(i,j)
1 ln


a(i,j,p)a

 (7)

POD

a(i,j,p)a


=

1 − p(i,j)

∞

 
1 − exp


−α

(i,j)
2 a(i,j,p)a


. (8)

The terms α(i,j)0 , α(i,j)1 , and α(i,j)2 are regression coefficients, and p(i,j)∞

accounts for the fact that the POD for a very large damage size,
a(i,j,p)a , is not necessarily equal to 1. The POD curves that can be
obtained from Eqs. (7) and (8), for some particular values of the
regression coefficients mentioned above, are depicted in Fig. 4.

For a particular (i, j, p) combination, once damage is de-
tected and its extent measured, it is natural to question the
fidelity/precision of that NDE measurement conditional on the ac-
tual damage size. To this end, the NDE measurement accuracy is
herein accounted for by the following (linear) damage-size mea-
surement model, used by Zhang and Mahadevan [21]:

A(i,j,p)m


A(i,j,p)a = a(i,j,p)a


= β

(i,j)
0 + β

(i,j)
1 a(i,j,p)a + εij, (9)

where the random variables A(i,j,p)a and A(i,j,p)m are respectively the
actual and the measured damage size for damage location i, dam-
age mechanism j, and inspection time tp. The quantity a(i,j,p)a de-
notes the value of the actual damage size for the particular (i, j, p)
combination considered. The two terms β(i,j)0 and β(i,j)1 are the
Fig. 4. Examples of two POD curve models found in the literature [19,20]. (For a
colour version of this figure, the reader is referred to theweb version of this article.)

coefficients of the (assumed) linear model in Eq. (9). Finally, εij ∼

N

0, σεij


represents the random measurement error/noise, as-

sumed to be Gaussian distributed with zero-mean and standard
deviation σεij (considered herein, for the sake of simplicity, to be
independent of the actual damage size A(i,j,p)a [21]). The quantities
β
(i,j)
0 , β(i,j)1 , and σεij are unknown, and have to be estimated through

a linear regression analysis [15]. The estimated linear regression
coefficients and standard deviation of the random measurement
error are respectively denoted β̂(i,j)0 , β̂(i,j)1 , and σ̂εij . It is nowpossible
to estimate the PDFof themeasureddamage sizeA(i,j,p)m , conditional
on the actual damage size A(i,j,p)a = a(i,j,p)a and the estimated linear
regression parameters, as f (i,j,p)Am|Aa (am|aa) = ϕ


a(i,j,p)m ; µ̂

(i,j,p)
Am|Aa , σ̂εij


,

where ϕ

a(i,j,p)m ; µ̂

(i,j,p)
Am|Aa , σ̂εij


is the conditional normal PDF of

A(i,j,p)m with mean µ̂(i,j,p)Am|Aa = µ̂A(i,j,p)m |A(i,j,p)a =a(i,j,p)a
= β̂

(i,j)
0 + β̂

(i,j)
1 a(i,j,p)a

and standard deviation σ (i,j,p)Am|Aa = σ̂εij . However, this conditional

PDF is meaningful only in the range A(i,j,p)m > 0, and is therefore
renormalized as

ϕ̃

a(i,j,p)m ; µ̂

(i,j,p)
Am|Aa , σ̂εij


= ϕ


a(i,j,p)m ; µ̂

(i,j,p)
Am|Aa , σ̂εij


×


Φ


β̂
(i,j)
0 + β̂

(i,j)
1 a(i,j,p)a

σ̂εij

−1

, (10)
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Fig. 5. Damage-size measurement model adopted in this study [21]. (For a colour
version of this figure, the reader is referred to the web version of this article.)

where Φ (·) represents the standard normal cumulative distribu-
tion function (CDF). All these concepts described above are illus-
trated in Fig. 5.

The POD curve and the damage size measurement model are
then used to build the likelihood function, L


apa|a

p
m

, needed to

recursively update [10,21–23] the prior joint conditional PDF,
f ′

Ap
a |2mat,2dam


apa|θmat, θdam


, into the posterior joint conditional

PDF, f ′′

Ap
a |2mat,2dam


apa|θmat, θdam


, as the new measurement result,

apm, becomes available. This updating scheme can be written as

f ′′

Ap
a |2mat,2dam


apa|θmat, θdam


∝ L


apa|a

p
m


f ′

Ap
a |2mat,2dam


apa|θmat, θdam


. (11)

Furthermore, by assuming that the conditional NDEmeasurements
a(i,j,p)mk |a(i,j,p)a , k = 1, . . . , n(i,j,p)MS


(where n(i,j,p)MS is the number of

NDE measurements performed at time tp, at location i, for damage
mechanism j) are realizations from s.i. random variables for every
(i, j) combination, Eq. (11) can be rewritten as

f ′′

Ap
a |2mat,2dam


apa|θmat, θdam


∝

 npL
i=1

n(i,p)DM
j=1

n(i,j,p)MS
k=1

L

a(i,j,p)a

a(i,j,p)mk


× f ′

Ap
a |2mat,2dam


apa|θmat, θdam


, (12)

where np
L denotes the number of inspected damage locations at

time tp and n(i,p)DM represents the number of detected damagemech-
anisms at location i at time tp. The vector Ap

a = {A(i,p)a , i =

1, . . . , n[0,p]
L }, with A(i,p)a = {A(i,j,p)a , j = 1, . . . , n(i,[0,p])DM }, represents

the collection of the actual damage sizes at all inspected locations
and all detected damage mechanisms up to time tp. Additionally,
n[0,p]
L represents the total number of damage locations inspected up

to time tp, and n(i,[0,p])DM denotes the total number of detected dam-
age mechanisms at location i up to time tp. The size (at time tp) of

the damage size vector Ap
a is thus equal to np

A =
n[0,p]

L
i=1 n(i,[0,p])DM .

On the other hand, the vector apm = {a(i,p)m , i = 1, . . . , np
L} – with

its subvectors defined as a(i,p)m = {a(i,j,p)m , j = 1, . . . , n(i,p)DM } and

a(i,j,p)m = {a(i,j,p)mk , k = 1, . . . , n(i,j,p)MS } – collects all the np
MS =

npL
i=1
n(i,p)DM
j=1 n(i,j,p)MS NDEmeasurement results obtained at time tp. Finally,

L

a(i,j,p)a |a(i,j,p)mk


represents the likelihood function of a(i,j,p)a given

the kth NDE measurement result, a(i,j,p)mk . It should be noted that

(i) the equality L

apa|a

(i,j,p)
mk


= L


a(i,j,p)a |a(i,j,p)mk


is a direct con-

sequence of the measurement model used in Eq. (9), and (ii) the
mathematical form of the likelihood function depends on the NDE
inspection outcome, a(i,j,p)mk , as

L

a(i,j,p)a |a(i,j,p)mk


=

ϕ̃

a(i,j,p)mk

; µ̂
(i,j,p)
Am|Aa , σ̂εij


· POD


a(i,j,p)a


if a(i,j,p)mk

> 0

1 − POD

a(i,j,p)a


if a(i,j,p)mk

= 0.
(13)

It must also be mentioned that (i) the initial (i.e., at time t0)
damage-size PDF model, f ′

A0
a


a0a

, is defined on the basis of engi-

neering judgment [10], and (ii) the components of the random vec-
tor A0

a , at time t0, can be reasonably considered mutually s.i. and
s.i. of 2mat and 2dam [15].

4. Probabilistic load hazard analysis

In this study, two types of external action are considered to
contribute significantly to the fatigue damage accumulation in
the skin-to-spar adhesive joints of a composite wing structure:
turbulence-induced and maneuver-induced loads. Turbulence is
modeled as a zero-mean, isotropic, stationary (in time), and
homogeneous (in space) stochastic Gaussian randomvelocity field,
as discussed in detail by Hoblit [24] and Van Staveren [25]. Its
intensity, associated with the kth flight segment in the time
window


tp, t

q̄
p


, is a scalar random variable taken as the root

mean square (Σ (k)
T ) of the wind velocity fluctuations. This random

quantity is characterized by the conditional PDF

f(k)
T |2

(k)
T ,2

(k)
F


σ
(k)
T |θ

(k)
T , θ

(k)
F


= P0


h(k)

δ

σ
(K)
T


+

P1

h(k)


b1

h(k)
 2

π
exp

−
1
2


σ
(k)
T

b1

h(k)
2


+

P2

h(k)


b2

h(k)
 2

π
exp

−
1
2


σ
(k)
T

b2

h(k)
2

 , (14)

where P0(h(k)), P1(h(k)), P2(h(k)), b1(h(k)), b2(h(k)) are altitude-
dependent distribution parameters collected (for each flight
segment) in the vector2

(k)
T . Another essential piece of information

is provided by the spatial extent, ∆S(k)T , of the turbulent patches
during the kth flight segment. In this study, the quantity ∆S(k)T
is considered as a random variable following an exponential
distribution with mean value (collected in 2

(k)
T and potentially

dependent on h(k)) denoted as µ
∆S(k)T

; this is an assumption
that is well validated by some recorded flight data found in the
literature [26,27], as shown in Fig. 6. Turbulence intensity (Σ (k)

T )
and the extent of the turbulent patches (∆S(k)T ) are collected in

the turbulence intensity measure vector IM(k)
T =


Σ
(k)
T , ∆S(k)T


.

The random sequence of the intensities of the turbulent patches
during each of the ns flight segments in


tp, t

q̄
p


can be modeled

and simulated using homogeneous Poisson rectangular pulse
processes [15,31] with mean rate of occurrence λ(k)T = 1/µ

∆S(k)T
.

Each arrival (in space) of a Poisson event raises a rectangular
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Fig. 6. Probability of turbulent patches exceeding a specified extent in different
geographical areas (from Ref. [27]). (a) From flight data collected in Southern USA
and altitudes above 40,000 ft. (b) From flight data collected in Western Europe and
altitudes between 20,000 and 40,000 ft. The lines represent the fitted exponential
complementary CDF (CCDF). (For a colour version of this figure, the reader is
referred to the web version of this article.)

pulse of random intensity Σ (k)
T – according to the conditional PDF

f
Σ
(k)
T |2

(k)
T ,2

(k)
F


σ
(k)
T |θ

(k)
T , θ

(k)
F


in Eq. (14) – until the next arrival. An

illustrative example is shown in Fig. 7. Additionally, a generic
realization of the random vector IMT in


tp, t

q̄
p


is herein denoted

as imT =


im(k)

T , k = 1, . . . , ns


, where the subvector im(k)

T

is defined as im(k)
T ,


im(k,m)

T , m = 1, . . . , n(k)T


, with (i)

im(k,m)
T =


σ
(k,m)
T ,∆s(k,m)T


denoting the intensity and extent of

themth turbulent patch and (ii) n(k)T representing the total number
of turbulence patches (within the kth flight segment) randomly
generated during a generic realization of IM(k)

T . Once an ensemble

of turbulence intensity time histories in

tp, t

q̄
p


is generated, Von

Karman or Dryden turbulence velocity spectra are then used (as
described in Ref. [25]) to stochastically realize an ensemble of
1-, 2-, or 3-dimensional spatially correlated turbulence velocity
paths for each turbulence intensity σ (k,m)T realized in the previous
step. These paths are subsequently employed, together with
the remaining flight profile information stored in 2F (e.g.,
V(k), k = 1, . . . , ns


and


T (k), k = 1, . . . , ns


), to generate the

ensemble of time histories of the turbulence-induced loads for
each flight segment in


tp, t

q̄
p


.

On the other hand, the maneuver-induced loads experienced
during the kth flight segment are characterized by (i) themean rate
of occurrence of maneuvers during that segment, λ(k)M (collected
in 2

(k)
M , and assumed here to be a deterministic function of 2

(k)
F ),

(ii) the maneuver-induced load factor, Z (k)M (see Ref. [15]), and
(iii) the maneuver duration, ∆T (k)M , also represented by a random
variable (renewed at each occurrence of a maneuver) following an
exponential distribution with mean value µ

∆T (k)M
. The maneuver-

induced load factor and maneuver duration are collected in the
vector IM(k)

M as IM(k)
M =


Z (k)M ,∆T (k)M


. These measures are typically

characterized on the basis of flight data [28–30], from which it is
possible to (i) derive λ(k)M as a function, for instance, of the altitude

of flight, (ii) assign a certain PDF, fZ(k)M


ζ
(k)
M


, to the load factor,

Z (k)M , and (iii) estimate the mean value, µ
∆T (k)M

, of the maneuver
duration within a given flight segment. The time histories of the
maneuver-induced loads are modeled and simulated as censored
homogeneous Poisson rectangular pulse processes with mean rate
of occurrence λ(k)M for the random arrival in time of the rectangular
pulses [15,31]. The random components Z (k)M and ∆T (k)M can in
general be statistically correlated and their statistical parameters
– such as themean value of themaneuver duration,µ

∆T (k)M
, and the

distribution parameters of the PDF fZ(k)M


ζ
(k)
M


– are collected (for

each flight segment) in the vector 2M =


2
(k)
M , k = 1, . . . , ns


.

Finally, with a notation very similar to the one used previously
in this section, a generic realization of the random vector IMM is
denoted imM =


im(k)

M , k = 1, . . . , ns


, where the subvector im(k)

M

is defined as im(k)
M ,


im(k,m)

M ,m = 1, . . . , n(k)M


, with (i) im(k,m)

M

=


ζ
(k,m)
M ,∆t(k)M


denoting the intensity and duration of the mth

maneuver and (ii) n(k)M representing the total number ofmaneuvers
(within the kth flight segment) randomly generated in a generic
Fig. 7. Illustrative example of the homogeneous Poisson rectangular pulse process used as the stochastic model for the turbulence-induced intensities (within the kth flight
segment) for a given set of turbulence distribution parameters and an average turbulence patch extent of 84 miles (i.e., the average extent from flight data collected in
Southern USA from Fig. 5-b).
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realization of IM(k)
M . Further insight on themodeling and simulation

of maneuver-induced loads is provided in Ref. [15].

5. Probabilistic structural response analysis

Once the two types of aerodynamic load intensity measure
are characterized probabilistically, the joint conditional PDF
fA[p,q]

a |2mat,2dam


a[p,q]
a |θmat, θdam


, at time tqp = tp + q∆τ

(with q = 1, 2, . . . , q̄), is computed through extensive MC
simulations during which the random vectors Ap

a , IM, and 2F are
sampled according to their PDFs – i.e., f ′′

Ap
a |2mat,2dam


apa|θmat, θdam


,

fIM|2F (im|θF), and f2F(θF) – in the application of the TPT
shown in Eq. (3). The uncertainty of A[p,q]

a for given/fixed
values of 2mat = θmat, 2dam = θdam, A

p
a = apa, IM = im, and

2F = θF arises from the record-to-record variability of the
structural response across the ensemble of turbulence paths
stochastically realized for a given value of the turbulence intensity.
Therefore, providing the complete probabilistic characterization of
fA[p,q]

a |2mat,2dam,A
p
a,IM,2F


a[p,q]
a |θmat, θdam, a

p
a, im, θF


and solving Eq.

(3) represents a formidable task. Under this perspective, estimating
the conditional mean ā[p,q]

a = ā[p,q]
a (θmat, θdam, a

p
a, im, θF)

= Eens

A[p,q]
a |θmat, θdam, a

p
a, im, θF


across the ensemble of

turbulence patches stochastically realized is thus a more realistic
and computationally achievable goal. Following this approach, Eq.
(3) can be simplified as follows [15]:

fA[p,q]
a |2mat,2dam


a[p,q]
a |θmat, θdam


=


Ap
a


IM


2F

δ

a[p,q]
a − ā[p,q]

a


× f ′′

Ap
a |2mat,2dam


apa|θmat, θdam


fIM|2F(im|θF)

× f2F(θF)dapa dim dθF. (15)

The use of metamodels – such as polynomial response surface
models [16] andGaussian Process (GP)models [32] – has to be con-
sidered in order to efficiently compute fA[p,q]

a |2mat,2dam
(a[p,q]

a |θmat,

θdam). This joint conditional PDF is obtained by computing the
quantity a[p,q]

a , through a series of MC simulations (performed us-
ing themetamodel) during which the input parameters apa , im, and
θF are sampled from their joint PDFs, while the samples from the
random parameter vectors θmat and θdam are kept constant [15].
Following a dimensional analysis approach [33,34] applied to the
specific case studied herein, a possible mathematical form for the
metamodel capable of providing (as output) the average rate of
fatigue-induced damage propagation (across the ensemble of the
turbulence paths realized) for a given set of the input parameters
is given by

Eens


d
dt


A[p,t]
a

θmat, θdam, apa, im, θF


= G

ā[p,t]
a , v, ζM, σT; θmat, θdam


, (16)

where Eens

d

A[p,t]
a

θmat, θdam, a
p
a, im, θF


/dt

–with dt being a

‘‘macro’’ increment of time expressed in flight hours – represents
the expected rate of damage propagation at time t ≥ tp for fixed
values of θmat, θdam, a

p
a , im, and θF; the vector ā[p,t]

a (of length np
A)

represents the conditional expectation of the damage-size vector
(at time t ≥ tp) defined as ā[p,t]

a = ā[p,t]
a


θmat, θdam, a

p
a, im, θF


=

Eens

A[p,t]
a

θmat, θdam, a
p
a, im, θF


; the three-component vector v

quantifies the velocity of the mean airstream w.r.t. a reference
system fixed to the aircraft; ζM defines a particular realization
of the maneuver-induced load factor; and σT characterizes the
intensity of the turbulence field. The general nonlinear mapping

G (·) :Rninp → R
npA
+ (with ninp = np

A + 5 + nmat + ndam), between
the input and output real vector spaces, represents the metamodel
fitted (through an appropriate and computationally feasible design
of experiments) over the desired design space for the input
parameters using the simulation results from the (physics-based)
nonlinear FE model of the composite wing. Furthermore, if
the condition for mean square differentiability of the random
process


A[p,t]
a

θmat, θ
p
dam, a

p
a, im


is satisfied, the expectation

and differentiation operators can permute, and Eq. (16) can be
rewritten as

d
dt

ā[p,t]
a = G


ā[p,t]
a , v, ζM, σT; θmat, θdam


āpa = apa,

(17)

where āpa represents the value of the vector ā[p,t]
a at time t = tp

and apa is a particular realization of Ap
a according to the posterior

joint PDF f ′′

Ap
a |2mat,2dam


apa |θmat, θdam


. Eq. (17) represents a system

of first-order ordinary differential equations that can now be
numerically integrated between current time tp and tqp to compute
ā[p,q]
a .
An exhaustive treatment of all the steps necessary to com-

pute the conditional joint PDF fA[p,q]
a |2mat,2dam


a[p,q]
a |θmat, θdam


(with q = 1, 2, . . . , q̄) is presented in Ref. [15]. Herein, the
outcome of these steps is conceptually illustrated in Fig. 8 for
the case of a single damage location (i.e., i = 1 and np

L =

n[0,p]
L = 1) and a single damage mechanism (i.e., j = 1 and

n(1,p)DM = n(1,[0,p])DM = 1). In this figure, a set of damage ex-
tents (sample points at time tp), sampled according to the poste-

rior conditional PDF f ′′

A(i,j,p)a |2mat,2dam


a(i,j,p)a |θmat, θdam


, is stochas-

tically propagated at future times tqp = tp + q∆τ with q =

1, 2, . . . , q̄ and q̄ = 4 (i.e., the four sets of sample points appro-
priately numbered in Fig. 8). Furthermore, the interpolated con-
ditional PDF at time tp+1, f ′

A(i,j,p+1)
a |2mat,2dam


a(i,j,p+1)
a |θmat, θdam


,

is also highlighted in Fig. 8 through the set of sample points be-
tween time t2p = tp + 2∆τ and time t3p = tp + 3∆τ . This
conditional PDF is used as prior information for the next Bayesian
updating, aimed at computing the posterior conditional PDF
f ′′

A(i,j,p+1)
a |2mat,2dam


a(i,j,p+1)
a |θmat, θdam


at time tp+1, as the next

NDE inspection outcome becomes available.

6. Probabilistic flutter and limit cycle oscillation analyses

This fourth step of the methodology uses the damage evolu-
tion prediction from time tp to time tqp (with q = 1, 2, . . . , q̄),
for estimating (at future time tqp ) the joint PDF of (i) the damage
size vector A[p,q]

a , (ii) the flutter velocity V [p,q]
F , and (iii) the vec-

tor of LCO velocities V[p,q]
LCO =


V (r,[p,q])LCO , r = 1, . . . , nLCO


. Each

of the nLCO LCO velocities is computed via aerodynamic anal-
yses performed in the time domain, and they can potentially
be lower – in the case of a damaged wing – than the (lin-
ear) flutter velocity [35]. The total number of global aeroelastic
failure modes considered in this fourth step is therefore equal
to nG = 1 + nLCO, and also represents the dimension of the ran-
dom vector V[p,q]

F,LCO =


V (r,[p,q])F,LCO , r = 1, . . . , nG


probabilistically

characterized by the joint PDF fV[p,q]
F,LCO


v[p,q]
F,LCO


. The final out-

come of this fourth step is represented by the joint PDF,
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Fig. 8. Illustrative example of the proposed damage prediction approach for a particular combination of damage location (i), damage mechanism (j), and four evaluations
(i.e., q̄ = 4) of the damage-size PDF across the predicted (at time tp) ensemble of damage sizes. (For a colour version of this figure, the reader is referred to the web version
of this article.)
fD[p,q]
L,G


d[p,q]
L,G


= fA[p,q]

a ,V[p,q]
F,LCO


a[p,q]
a , v[p,q]

F,LCO


, of the random vector

D[p,q]
L,G =


A[p,q]
a ,V[p,q]

F,LCO


. This joint PDF can be obtained through

two substeps. In the first substep, the joint conditional PDF
fV[p,q]

F,LCO

A[p,q]
a ,2mat,2dam


v[p,q]
F,LCO

a[p,q]
a , θmat, θdam


is numerically esti-

mated by performing multiple flutter and LCO analyses — each of
them for a fixed realization of (i) the predicted (during the prob-
abilistic damage evolution analysis) damage size vector a[p,q]

a , and
(ii) the vectors θmat and θdam sampled from their PDFs f2mat(θmat)
and f2dam(θdam) at the time of the first NDE inspection asmentioned
in Section 5. In the second substep, the unconditional joint PDF of
D[p,q]

L,G is computed according to Eq. (2).
The use of metamodels is also extremely useful in this step

of the framework in order to reduce the computational cost
of the probabilistic flutter and LCO analyses aimed at determining
the joint conditional PDF fV[p,q]

F,LCO

A[p,q]
a ,2mat,2dam


v[p,q]
F,LCO

a[p,q]
a , θmat ,

θdam


. It is well known that both flutter and LCO velocities are

primarily governed by the stiffness, strength, and level of dam-
age of the wing. Additionally, if the air density – which renders
both the flutter and LCO velocities dependent on 2F through the
altitude of flight H(k), k = 1, . . . , ns – is considered as a deter-
ministic quantity and assumed (as a simplification) to be indepen-
dent of H(k), then a possible mathematical form for themetamodel
is given by v̄[p,q]

F,LCO = Q(a[p,q]
a ; θmat, θdam). The vector v̄[p,q]

F,LCO, de-

fined as

v̄[p,q]
F,LCO = V[p,q]

F,LCO

a[p,q]
a , θmat, θdam


, represents the out-

put of the metamodel for a given set of the input parameters
a[p,q]
a , θmat, and θdam. The function Q (·) :Rninp → RnG

+ (with ninp
= nA + nmat + ndam) is instead a general nonlinear map-
ping, between the input and (positive) output real vector spaces,
representing the metamodel fitted – over the desired de-
sign space for the input parameters – using the simulations
from the coupled FE and aerodynamic models of the com-
posite wing structure. Furthermore, as a direct consequence
of these considerations, the joint conditional PDF of V[p,q]

F,LCO

can be rewritten as fV[p,q]
F,LCO|A[p,q]

a ,2mat,2dam


V[p,q]
F,LCO|a

[p,q]
a , θmat, θdam



= δ

v[p,q]
F,LCO − v̄[p,q]

F,LCO


, and the marginal joint PDF of the vector

V[p,q]
F,LCO can thus be computed as

fVp,q
F,LCO


v[p,q]
F,LCO


=


A[p,q]
a


2mat


2dam

δ

v[p,q]
F,LCO − v̄[p,q]

F,LCO


× f ′′

A[p,q]
a |2mat,2dam


a[p,q]
a |θmat, θdam


× f2mat(θmat) f2dam(θdam)

× da[p,q]
a dθmat dθdam. (18)

7. Damage prognosis analysis

The fifth step of the proposed framework – namely damage
prognosis analysis – can be carried out in three substeps by
(i) using the joint probabilistic information of the local and global
states of damage at time tqp , and (ii) defining appropriate limit-
state functions for both local and global (aeroelastic) potential
failure modes. The first substep consists of computing the modal
failure probability conditional on the actual damage size (for
local failure modes) and the flutter or LCO velocities (for global
failure modes); i.e., P


F [p,q]
L,ij

a[p,q]
a


(with i = 1, . . . , n[0,p]

L and

j = 1, . . . , n(i,[0,p])DM ) and P

F [p,q]
G,r

v[p,q]
F,LCO


(with r = 1, . . . , nG),

respectively. In the second substep, the local and global conditional
modal failure probabilities are unconditioned w.r.t. A[p,q]

a and
V[p,q]
F,LCO, respectively, and the two outcomes are denoted by P


F [p,q]
L,ij


(with i = 1, . . . , n[0,p]

L and j = 1, . . . , n(i,[0,p])DM ) and P

F [p,q]
G,r


(with

r = 1, . . . , nG). Finally, in the third and last substep, lower and
upper bounds for the probability of system failure, P


F [p,q]
sys


, are

computed by abstracting the composite wing structure – or any
other structural component of interest – to a series system.

The local failure event F [p,q]
L,ij – i.e., the failure event (at time tqp )

associated with the jth detected damage mechanism, evolving at
the ith monitored damage location – can be defined as F [p,q]

L,ij ,
A(i,j,[p,q])a ≥ aijc


, where aijc represents a predefined critical damage
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Fig. 9. Failure and false-call domains according to the local failure and false-call
criteria in Eqs. (23) and (25), respectively.

size [15]. According to this definition, the conditionalmodal failure
probability P


F [p,q]
L,ij

a[p,q]
a


is given by

P

F [p,q]
L,ij

 a[p,q]
a


= P


F [p,q]
L,ij |a(i,j,[p,q])a


=


0 if a(i,j,[p,q])a < aijc
1 if a(i,j,[p,q])a ≥ aijc ,

(19)

and the unconditional modal failure probability is then computed
as

P

F [p,q]
L,ij


=


+∞

0
P

F [p,q]
L,ij

a(i,j,[p,q])a


× fA(i,j,[p,q])a


a(i,j,[p,q])a


da(i,j,[p,q])a

=


+∞

aijc

fA(i,j,[p,q])a


a(i,j,[p,q])a


da(i,j,[p,q])a

= 1 − FA(i,j,[p,q])a


aijc

, (20)

where FA(i,j,[p,q])a
(·) represents the CDF of the random variable

A(i,j,[p,q])a .
Alternative definitions for the local failure event can be

adopted in the proposed framework [15]. For instance, in pre-
vious research by Lin et al. [10], Huang and Lin [36], and Back-
man [37], the local failure event F [p,q]

L,ij is defined as F [p,q]
L,ij ,

A(i,j,[p,q])a ≥ aijc


∩


A(i,j,[p,q])m < aijc


. This definition, graphically

illustrated in Fig. 9, represents the event that the actual damage
size, A(i,j,[p,q])a , is greater than the predefined critical damage size
(aijc ), and that the outcome, A(i,j,[p,q])m , from the (assumed) single
NDE inspection opportunity at time tqp is lower than aijc . In this case,
the probability of the failure event F [p,q]

L,ij conditional on the true
damage size A[p,q]

a = a[p,q]
a is given by

P

F [p,q]
L,ij |a[p,q]

a


= P


F [p,q]
L,ij |a(i,j,[p,q])a


=


0 if a(i,j,[p,q])a < aijc
1 − ψ̂


a(i,j,[p,q])a


· POD


a(i,j,[p,q])a


if a(i,j,[p,q])a ≥ aijc ,

(21)

where the non-negative function ψ̂

a(i,j,[p,q])a


= ψ̂


a(i,j,[p,q])a ;

β̂
(i,j)
0 , β̂

(i,j)
1 , σ̂εij


– the derivation of which is provided in
Appendix A – is defined as

ψ̂

a(i,j,[p,q])a


= Φ


β̂
(i,j)
0 + β̂

(i,j)
1 a(i,j,[p,q])a − aijc
σ̂εij



×


Φ


β̂
(i,j)
0 + β̂

(i,j)
1 a(i,j,[p,q])a

σ̂εij

−1

. (22)

Using the TPT, the unconditional modal failure probability,
P

F [p,q]
L,ij


, is then computed as

P

F [p,q]
L,ij


=


+∞

0
P

F [p,q]
L,ij

a(i,j,[p,q])a


× fA(i,j,[p,q])a


a(i,j,[p,q])a


da(i,j,[p,q])a

=


1 − FA(i,j,[p,q])a


aijc


−


+∞

aijc

ψ̂

a(i,j,[p,q])a


× POD


a(i,j,[p,q])a


fA(i,j,[p,q])a


a(i,j,[p,q])a


da(i,j,[p,q])a . (23)

Besides the modal probability of failure (computed according
to the alternative definition of the local failure event, F [p,q]

L,ij ), it
is also of interest to compute the modal probability of false-
call (or false-alarm) events for each of the np

A local reliability
components, with the false-call event defined as FC [p,q]

L,ij ,
A(i,j,[p,q])a < aijc


∩


A(i,j,[p,q])m ≥ aijc


and shown in Fig. 9. The

probability of the false-call event FC [p,q]
L,ij , conditional on the true

damage size A[p,q]
a = a[p,q]

a (referred herein as conditional modal
false-call probability), is given by

P

FC [p,q]

L,ij

 a[p,q]
a


= P


FC [p,q]

L,ij

 a(i,j,[p,q])a


=


ψ̂

a(i,j,[p,q])a


· POD


a(i,j,[p,q])a


if a(i,j,[p,q])a < aijc

0 if a(i,j,[p,q])a ≥ aijc .
(24)

Using the TPT, the unconditional modal false-call probability,
P

FC [p,q]

L,ij


, is then computed as

P

FC [p,q]

L,ij


=


+∞

0
P

FC [p,q]

L,ij

a(i,j,[p,q])a


× fA(i,j,[p,q])a


a(i,j,[p,q])a


da(i,j,[p,q])a

=

 aijc

0
ψ̂

a(i,j,[p,q])a


POD


a(i,j,[p,q])a


× fA(i,j,[p,q])a


a(i,j,[p,q])a


da(i,j,[p,q])a . (25)

On the other hand, a possible global failure criterion can
consider the structural system to have failed when the maximum
operational aircraft velocity (VMAX) exceeds either the reduced
(due to damage) flutter velocity (V [p,q]

F ), or any of the nLCO

components of the LCO velocity vector (V[p,q]
LCO ), at time tqp [10,11].

Each of the nG = 1 + nLCO global failure events, with graphical
interpretation provided in Fig. 10, is defined as F [p,q]

G,r ,
VMAX ≥ V (r,[p,q])F,LCO


(with r = 1, . . . , nG), where the variable

VMAX can be characterized probabilistically by the extreme value
type I (Gumbel) distribution (Styuart et al., [11]). Furthermore,
in this study, VMAX is considered to be s.i. of V[p,q]

F,LCO. According to
this definition for the global component failure event, F [p,q]

G,r , the
conditional modal failure probabilities can be expressed as

P

F [p,q]
G,r

v[p,q]
F,LCO


= P


F [p,q]
G,r

v(r,[p,q])F,LCO


= 1 − FVMAX


ν
(r,[p,q])
F,LCO


, r = 1, . . . , nG, (26)
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Fig. 10. Failure domain according to the global failure criterion in Eq. (27): VMAX

exceeding the rth component of the velocity vector V[p,q]
F,LCO , at future time tqp , after

damage propagation from time tp to time tqp .

and, using the TPT, the corresponding unconditional modal failure
probabilities, P


F̃ [p,q]
G,r


(with r = 1, . . . , nG), are then computed as

P

F [p,q]
G,r


=


+∞

0
P

F [p,q]
G,r

v(r,[p,q])F,LCO


× fV (r,[p,q])F,LCO


v
(r,[p,q])
F,LCO


dv(r,[p,q])F,LCO

= 1 −


+∞

0
FVMAX


v
(r,[p,q])
F,LCO


× fV (r,[p,q])F,LCO


v
(r,[p,q])
F,LCO


dv(r,[p,q])F,LCO . (27)

Once component reliability analysis has been performed for
all, local and global, failure modes, and the corresponding modal
failure probabilities have been computed, lower and upper bounds
for the probabilities of system failure and false call, P


F [p,q]
sys


and

P

FC [p,q]

sys


, can be provided. The system failure event F [p,q]

sys is
defined as the union of all the np

A local and nG global component
failure events described earlier (see Ref. [15]). Lower and upper
unimodal bounds for the probability of this failure event are given
by Ditlevsen and Madsen [17]:

max
i,j,r


P

F [p,q]
L,ij


, P

F [p,q]
G,r


≤ P


F [p,q]
sys


≤ min

1,

n[0,p]
L
i=1

n(i,[0,p])DM
j=1

P

F [p,q]
L,ij


+

nG
r=1

P

F [p,q]
G,r

 . (28)

Furthermore, the structural system is considered failed (conserva-
tively) when the upper bound for P


F [p,q]
sys


reaches or exceeds a

critical and predefined safety threshold (p̄F).
Finally, the false-call event for the entire system, FC [p,q]

sys (i.e.,
the event of having a false alarm during an assumed single NDE
inspection opportunity at time tqp ), is defined as

FC [p,q]
sys ,


n[0,p]

L
i=1

n(i,[0,p])DM
j=1

A(i,j,[p,q])a < aijc


nG
i=1

F [p,q]
G,r


 n[0,p]
L
i=1

n(i,[0,p])DM
j=1

A(i,j,[p,q])m ≥ aijc

 , (29)

where F [p,q]
G,r denotes the complement of the global component fail-

ure event F [p,q]
G,r . Eq. (29) represents the event that, at least for one

(i, j) combination, the measured damage size A(i,j,[p,q])m , from the
single NDE inspection opportunity at time tqp , is larger than or equal
to aijc and (at the same time) all local and global reliability compo-
nents, associated with the local and global failure events F [p,q]

L,ij and
F [p,q]
G,r , have not failed. Unimodal bounds for P


FC [p,q]

sys


are specified

in terms of (i) the modal false-call probabilities, P

FC [p,q]

L,ij


(with

i = 1, . . . , n[0,p]
L and j = 1, . . . , n(i,[0,p])DM ), provided in Eq. (25),

(ii) the complements of the local component failure probabilities,
FA(i,j,[p,q])a


aijc

(with i = 1, . . . , n[0,p]

L and j = 1, . . . , n(i,[0,p])DM ), de-
rived in Eq. (20), and (iii) the complements of the global compo-
nent failure probabilities P


F [p,q]
G,r


= 1 − P


F [p,q]
G,r


(with r =

1, . . . , nG). Unimodal lower and upper unimodal bounds for
P

FC [p,q]

sys


can be expressed as (see Appendix B)

P

FC [p,q]

sys


≥ max


0, Plow


FC [p,q]

local


+

nG
r=1


1 − P


F [p,q]
G,r


− nG


(30)

P

FC [p,q]

sys


≤ min


Pup

FC [p,q]

local


,min

r


1 − P


F [p,q]
G,r


, (31)

where

Plow

FC [p,q]

local


= max

i,j

 P

FC [p,q]

L,ij


FA(i,j,[p,q])a


aijc



× max

0,

n[0,p]
L
i=1

n(i,[0,p])DM
j=1

FA(i,j,[p,q])a


aijc
−


np
A − 1

 (32)

and

Pup

FC [p,q]

local


= min

1,

n[0,p]
L
i=1

n(i,[0,p])DM
j=1

P

FC [p,q]

L,ij


FA(i,j,[p,q])a


aijc




× min
i,j


FA(i,j,[p,q])a


aijc

. (33)

8. Conclusions

A comprehensive reliability-based methodology for predict-
ing the remaining service life of composite aircraft structures
(with emphasis on a composite wing structure) has been pre-
sented. These structures are fabricated using high-performance
lightweight composite materials with outstanding in-plane (fiber
dominated) strengths but very low out-of-plane and adhesive
strengths, a weakness fostering the initiation of damage mech-
anisms (e.g., debonding, inter-ply delamination, etc.) which can
then rapidly propagate up to catastrophic levels (i.e., in-flight air-
craft failure). In this study, it is assumed that the damage propaga-
tion process is purely fatigue driven (even though impact-induced
damage could also be integrated in the proposed methodology).
The prognosis framework presented in this research relies on
(i) in-flight (through abuilt-in sensor network) andon-groundNDE
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inspections to probabilistically assess and recursively update the
current state of damage of the monitored structural component,
and (ii) stochastic prediction of the evolution in time of the de-
tected damage mechanisms at multiple damage locations through
calibrated and validated computationally efficient metamodeling
approaches. Probabilistic damage evolution analysis and proba-
bilistic flutter and LCO analyses are used in the proposed method-
ology to provide estimates of the joint PDF of the local and global
states of damage at the generic future time tqp = tp +q ·∆τ (where
tp denotes the time of the last NDE inspection and ∆τ is a fixed
time interval between two successive damage prognosis predic-
tions). This probabilistic information of the overall state of damage
is then used, through state-of-the-art component and system reli-
ability analysis methods, to compute lower and upper bounds for
the probability of system failure, P


F [p,q]
sys


, accounting for both lo-

cal (structural) and global (aeroelastic) failure modes. Finally, the
estimates of P


F [p,q]
sys


at future times tqp (with q = 1, 2, . . . , q̄) can

then be used as rational decision-making parameters/variables to
schedule and/or update the maintenance/repair plan on the basis
of a predefined maximum acceptable threshold (p̄F) for P


F [p,q]
sys


.

The proposed methodology thus represents an advanced tool
for fatigue damage prognosis of a composite wing structure
by integrating NDE inspection, Bayesian inference, stochastic
characterization, and superposition of turbulence-induced and
maneuver-induced aerodynamic loads, mechanics-based damage
evolution prediction and its surrogate modeling for uncertainty
propagation, and decision making. However, it can be extended
to the entire airframe, or more generally to any structural system
with potential multi-site fatigue-driven and/or corrosion-driven
damage growth, monitored (nearly continuously or periodically)
through NDE inspections during its service life. Potential fields
of applicability include the following: mechanical systems, such
as wind turbines; civil infrastructures, such as FRP-retrofitted
concrete bridges, offshore platforms, nuclear facilities, and water
dams; automotive and naval systems; and military infrastructure
and equipment, such as lightweight deployable bridges. The
proposed probabilistic damage prognosis framework can also be
used to assess the time-varying reliability of aging structures
and infrastructures and develop a sustainable, reliability-based,
cost-efficient management and maintenance program. Finally,
the work presented herein constitutes the fundamental basis
for forthcoming additional theoretical developments, numerical
applications, validations, and extension to other engineering fields.
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Appendix A. Derivation of equations (21) and (22)

For a given value of the actual damage size A(i,j,[p,q])a = a(i,j,[p,q])a ,
and in the range a(i,j,[p,q])a ≥ aijc , the conditional modal probability
of failure, P


F [p,q]
L,ij

a(i,j,[p,q])a


, with the failure event F [p,q]

L,ij defined
as F [p,q]
L,ij , {(A(i,j,[p,q])a ≥ aijc ) ∩ (A(i,j,[p,q])m < aijc )}, can be written

as

P

F [p,q]
L,ij

 a(i,j,[p,q])a


= P


A(i,j,[p,q])a ≥ aijc


A(i,j,[p,q])m < aijc

 a(i,j,[p,q])a


= P


A(i,j,[p,q])m < aijc

a(i,j,[p,q])a


. (A.1)

Using the TPT and the definition of POD given in Eq. (5) in Section 3,
Eq. (A.1) can be rewritten as

P

F [p,q]
L,ij |a(i,j,[p,q])a


= P


A(i,j,[p,q])m < aijc

a(i,j,[p,q])a ,D

POD


a(i,j,[p,q])a


+ P


A(i,j,[p,q])m < aijc

a(i,j,[p,q])a ,ND
 

1 − POD

a(i,j,[p,q])a


= P


A(i,j,[p,q])m < aijc

a(i,j,[p,q])a ,D

POD


a(i,j,[p,q])a


+

1 − POD


a(i,j,[p,q])a


, (A.2)

where D represents the detection event defined as D ,
A(i,j,[p,q])m > 0


and ND denotes its complement (i.e., the non-

detection event) defined asND ,

A(i,j,[p,q])m = 0


. Using Eq. (10) to

express the probability P

A(i,j,[p,q])m < aijc

a(i,j,[p,q])a ,D

, the above

equation further simplifies to

P

F [p,q]
L,ij

 a(i,j,[p,q])a


= 1 −


1 −

 aijc

0+

ϕ̃

a(i,j,[p,q])m , µ̂

(i,j,[p,q])
Am|Aa , σ̂εij


da(i,j,[p,q])m


× POD


a(i,j,[p,q])a


, (A.3)

where the integral between 0+ and aijc of the function ϕ̃

a(i,j,[p,q])m ;

µ̂
(i,j,[p,q])
Am|Aa , σ̂εij


is given by aijc

0+

ϕ̃

a(i,j,[p,q])m , µ̂

(i,j,[p,q])
Am|Aa , σ̂εij


da(i,j,[p,q])m

=

Φ


aijc−µ̂

(i,j,[p,q])
Am |Aa
σ̂εij


− Φ


−
µ̂
(i,j,[p,q])
Am |Aa
σ̂εij


Φ


µ̂
(i,j,[p,q])
Am |Aa
σ̂εij



= 1 −

Φ


µ̂
(i,j,[p,q])
Am |Aa

−aijc
σ̂εij


Φ


µ̂
(i,j,[p,q])
Am |Aa
σ̂εij



= 1 −

Φ


β̂
(i,j)
0 +β̂

(i,j)
1 a(i,j,[p,q])a −aijc
σ̂εij


Φ


β̂
(i,j)
0 +β̂

(i,j)
1 a(i,j,[p,q])a
σ̂εij


= 1 − ψ̂


a(i,j,[p,q])a ; β̂

(i,j)
0 , β̂

(i,j)
1 , σ̂εij


. (A.4)

Lastly, by substituting the final result from Eq. (A.4) in Eq. (A.3), the
conditional modal probability of failure, P


F [p,q]
L,ij

a(i,j,[p,q])a


(with

a(i,j,[p,q])a ≥ aijc ), can be expressed as

P

F [p,q]
L,ij |a(i,j,[p,q])a


= 1 − ψ̂


a(i,j,[p,q])a ; β̂

(i,j)
0 , β̂

(i,j)
1 , σ̂εij


× POD


a(i,j,[p,q])a


. (A.5)
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Appendix B. Derivation of lower and upper unimodal bounds
for the probability of the false-call event FC [p,q]

sys

The logical expression for the false-call event FC [p,q]
sys , provided

in Eq. (29), clearly represents a combination of series and parallel
systems, and can be rearranged as

FC [p,q]
sys ,


n[0,p]

L
i=1

n(i,[0,p])DM
j=1

A(i,j,[p,q])a < aijc


nG
i=1

F [p,q]
G,r


 n[0,p]

L
i=1

n(i,[0,p])DM
j=1

A(i,j,[p,q])m ≥ aijc


, FC [p,q]

local


nG
i=1

F [p,q]
G,r


, (B.1)

where the event FC [p,q]
local would represent the false-call event (at the

overall system level)whenonly the local reliability components (or
local failure modes) are considered. The probability of this event,
herein denoted by P


FC [p,q]

local


, can be computed as

P

FC [p,q]

local


= P


n[0,p]
L
i=1

n(i,[0,p])DM
j=1

A(i,j,[p,q])m ≥ aijc




n[0,p]
L
i=1

n(i,[0,p])DM
j=1

A(i,j,[p,q])a < aijc




× P


n[0,p]
L
i=1

n(i,[0,p])DM
j=1

A(i,j,[p,q])a < aijc




= P[E1|E2] × P[E2], (B.2)

where the two events E1 and E2 are introduced for the sake of
conciseness. Event E1 in Eq. (B.2) can be viewed as the failure

event of a series system with np
A =

n[0,p]
L

i=1 n(i,[0,p])DM components.
Thus, similarly to Eq. (28), lower and upper unimodal bounds for
P[E1|E2] can be obtained (see Eqs. (B.3) and (B.4)) by making use of
assumption (iii) about the damage size measurement model used
herein (see Section 3) and the definition of the false-call event
FC [p,q]

L,ij ,


A(i,j,[p,q])a < aijc


∩


A(i,j,[p,q])m ≥ aijc


.

P[E1|E2] ≥ max
i,j


P

A(i,j,[p,q])m ≥ aijc |E2


≥ max

i,j


P

A(i,j,[p,q])m ≥ aijc

A(i,j,[p,q])a < aijc


≥ max
i,j

 P

FC [p,q]

L,ij


FA(i,j,[p,q])a


aijc

 (B.3)

P[E1|E2]

≤ min

1,

n[0,p]
L
i=1

n(i,[0,p])DM
j=1

P

A(i,j,[p,q])m ≥ aijc |E2


≤ min

1,

n[0,p]
L
i=1

n(i,[0,p])DM
j=1

P

A(i,j,[p,q])m ≥ aijc

 A(i,j,[p,q])a < aijc


≤ min

1,

n[0,p]
L
i=1

n(i,[0,p])DM
j=1

P

FC [p,q]

L,ij


FA(i,j,[p,q])a


aijc

 . (B.4)
The second term on the right-hand side of Eq. (B.2) – i.e., P [E2] –
can be viewed as a parallel system for which the narrowest lower
and upper unimodal bounds [38] are expressed as

max

0,

n[0,p]
L
i=1

n(i,[0,p])DM
j=1

FAa(i,j,[p,q])

aijc
− (nP

A − 1)


≤ P[E2] ≤ min

i,j


FA(i,j,[p,q])a


aijc

. (B.5)

Then, substituting the results of Eqs. (B.3)–(B.5) in Eq. (B.2)
(multiplying lower bound with lower bound and upper bound
with upper bound) yields the lower and upper unimodal bounds
of P


FC [p,q]

local


provided in Eqs. (32) and (33). Finally, the lower and

upper unimodal bounds for the parallel system defined as FC [p,q]
sys ,

FC [p,q]
local ∩


∩

nG
r=1 F

[p,q]
G,r


are computed, according to Ref. [38]. This

approach leads to the final results shown in Eqs. (30) and (31).

References

[1] Yang JN, Trapp WJ. Reliability analysis of aircraft structures under random
loading and periodic inspection. AIAA Journal 1974;12(12):1623–30.

[2] Deodatis G, Asada H, Ito S. Reliability of aircraft structures under non-periodic
inspection: a Bayesian approach. Engineering FractureMechanics 1996;53(5):
789–805.

[3] Lin KY, Styuart AV. Probabilistic approach to damage tolerance design of
aircraft composite structures. Journal of Aircraft 2007;44(4):1309–17.

[4] Oliver JA, Kosmatka JB, Farrar CR, Park Gyuhae. Development of a composite
UAV wing test-bed for structural health monitoring research. In: Proceedings
of SPIE Smart Structures and Materials & Nondestructive Evaluation and
Health Monitoring; 2007.

[5] Bauchau OA, Loewy RG. Nonlinear aeroelastic effects in damaged composite
aerospace structures. Technical report, School of Aerospace Engineering.
Georgia Institute of Technology, Atlanta. GA, 1997.

[6] Wang K, Inman DJ, Farrar CR. Crack-induced changes in divergence and flutter
of cantilevered composite panels. Structural Health Monitoring 2005;4(4):
377–92.

[7] Inman DJ, Farrar CR, Lopez Jr V, Steffen Jr V. Damage prognosis for aerospace,
civil and mechanical systems. West Sussex, England: John Wiley and Sons;
2005.

[8] Moehle J, Deierlein GG. A framework methodology for performance-based
earthquake engineering. In: Proceedings of 13th conference on earthquake
engineering; 2004.

[9] Lanza di Scalea F, Matt HM, Bartoli I, Coccia S, Park G, Farrar CR. Health
monitoring of UAV skin-to-spar joints using guided waves and macro fiber
composite transducers. Journal of Intelligent Material Systems and Structures
2007;18(4):373–88.

[10] Lin KY, Du J, Rusk D. Structural design methodology based on concepts
of uncertainty. In: NASA/CR-2000-209847. Hampton, VA: NASA Langley
Research Center; 2000.

[11] Styuart AV, Mor M, Livne E, Lin KY. Aeroelastic failure risk assessment
in damage tolerant composite airframe structures. In: Proceedings of 48th
AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials
conference; 2007.

[12] Paris PC, Erdogan FA. Critical analysis of crack propagation laws. Journal of
Basic Engineering, TRANS ASME 1963;85(Series D):528–34.

[13] Degrieck J, Paepegem WV. Fatigue damage modeling of fibre-reinforced
compositematerials: review. AppliedMechanics Reviews 2001;54(4):279–99.

[14] Alfano G, Crisfield MA. Finite element interface models for the delamination
analysis of laminated composites: mechanical and computational issues.
International Journal for Numerical Methods in Engineering 2001;50(7):
1701–36.

[15] Gobbato M, Conte JP, Kosmatka JB, Farrar CR. Reliability-based damage
prognosis framework for bonded joints in composite unmanned aircrafts.
Report No. SSRP-11/03. Department of Structural Engineering. University of
California, San Diego, 2011.

[16] Myers RH, Montgomery DC. Response surface methodology. New York, NY:
John Wiley and Sons, Inc; 1995.

[17] Ditlevsen O,MadsenHO. Structural reliabilitymethods.West Sussex, England:
John Wiley and Sons; 1996.

[18] Silk MG, Stoneham AM, Temple JAG. The reliability of nondestructive
inspection. Institute of Physics Publishing; 1987.

[19] Berens AP. NDE reliability analysis. 9th ed. Metals handbook, vol. 17. ASM
International; 1989. p. 689–701.

[20] Staat M. Sensitivity of and influences on the reliability of an HTR-module
primary circuit pressure boundary. In: Proceedings of 12th international
conference on structural mechanics in reactor technology (SMiRT); 1993.



188 M. Gobbato et al. / Probabilistic Engineering Mechanics 29 (2012) 176–188
[21] Zhang R, Mahadevan S. Fatigue reliability analysis using non-destructive
inspection. Journal of Structural Engineering 2001;127(8):957–65.

[22] ZhengR, EllingwoodBR. Role of non-destructive evaluation in time-dependent
reliability analysis. Structural Safety 1998;20(4):325–39.

[23] Kulkarni SS, Achenbach JD. Structural health monitoring and damage
prognosis in fatigue. Structural Health Monitoring 2008;7(1):37–49.

[24] Hoblit FM. Gust loads on aircraft: concepts and applications, AIAA Ed. Series.
Washington, D.C; 1988.

[25] Van Staveren WH. Analyses of aircraft responses to atmospheric turbulence.
Ph.D. Dissertation. The Netherlands: Department of Aerospace Design,
Integration & Operations. Delft University of Technology; 2003.

[26] Kordes EE, Love BJ. Preliminary evaluation of XB-70 airplane encounters with
high-altitude turbulence. Edwards, California, NASA: NASA Flight Research
Center; 1967. TN D-4209.

[27] Coleman TL, Steiner R. Atmospheric turbulence measurements obtained from
airplanes operations at altitudes between 20,000 and 75,000 feet for several
areas in the northern hemisphere. Hampton, Virginia, NASA: NASA Langley
Research Center; 1960. TN D-548.

[28] Rustenburg JW, Skinn D, Tipps DO. An evaluation of methods to separate
maneuver and gust load factors from measured acceleration time histories,
US Department of Transportation. Federal Aviation Administration. Report No.
DOT/FAA/AR-99/14, 1999.

[29] Rustenburg JW, Skinn D, Tipps DO. Development of an improved maneuver-
gust separation criterion. University of Dayton Research Institute (UDRI),
Structural Integrity Division; 2008.
[30] Rustenburg JW, Skinn D, Tipps DO. Statistical loads data for Boeing 737–400
aircraft in commercial operations. US Department of Transportation, Federal
Aviation Administration; 1998.

[31] Wen Y-K. Structural load modeling and combination for performance and
safety evaluation. Elsevier; 1990.

[32] McFarland JM. Uncertainty analysis for computer simulations through
validation and calibration. Ph.D. Thesis. Nashville. TN: Department of
Mechanical Engineering, Vanderbilt University; 2008.

[33] Sanford RJ. Principles of fracture mechanics. Prentice Hall; 2003.
[34] Navarro A, De Los Rios ER. On dimensional analysis of fatigue crack growth

rate and geometrical similitude of cracks. Fatigue & Fracture of Engineering
Materials and Structures 1987;9(5):373–8.

[35] Safi SA, Kelly DW, Archer RD. Interaction between wear processes and
limit cycle oscillations of a control surface with free-play nonlinearity.
Proceedings of Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering 2002;216(3):143–53.

[36] Huang C, Lin KY. A method for reliability assessment of aircraft structures
subject to accidental damage. In: Proc. 46th AIAA/ASME/ASCE/AHS/ASC
structures, structural dynamics, & materials conference; 2005.

[37] Backman BF. Composite structures, design, safety and innovation. Elsevier;
2005.

[38] Fréchet M. Généralisations du théorème des probabilités totales. Fundamenta
Mathematicae 1935;25:379–87.


	A reliability-based framework for fatigue damage prognosis of composite aircraft structures
	Introduction
	Overview of proposed damage prognosis methodology
	Recursive Bayesian inference analysis
	Probabilistic load hazard analysis
	Probabilistic structural response analysis
	Probabilistic flutter and limit cycle oscillation analyses
	Damage prognosis analysis
	Conclusions
	Acknowledgments
	Derivation of equations (21) and (22)
	Derivation of lower and upper unimodal bounds for the probability of the false-call event  FCsys[p, q] 
	References


