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Abstract: The general realization algorithm �GRA� is developed to identify modal parameters of linear multi-degree-of-freedom dynamic
systems subjected to measured �known� arbitrary dynamic loading from known initial conditions. The GRA extends the well known
eigensystem realization algorithm �ERA� based on Hankel matrix decomposition by allowing an arbitrary input signal in the realization
algorithm. This generalization is obtained by performing a weighted Hankel matrix decomposition, where the weighting is determined by
the loading. The state-space matrices are identified in a two-step procedure that includes a state reconstruction followed by a least-squares
optimization to get the minimum prediction error for the response. The statistical properties �i.e., bias, variance, and robustness to added
output noise introduced to model measurement noise and modeling errors� of the modal parameter estimators provided by the GRA are
investigated through numerical simulation based on a benchmark problem with nonclassical damping.
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Introduction

As the performance of computational algorithms and computers
have drastically increased, the problem of identifying the proper-
ties and conditions of structures from their measured response to
an external excitation has received considerable attention. There
has been a vast number of studies and algorithms concerning the
construction of state-space representations of linear dynamic sys-
tems in the time domain, starting with the work of Gilbert �1963�
and Kalman �1963�. One of the first important results in this field
is about minimal state-space realization, indicating a model with
the smallest state-space dimension among realized systems that
have the same input–output relations within a specified degree of
accuracy �Juang and Pappa 1985�. It was shown by Ho and Kal-
man �1966� that the minimum representation problem is equiva-
lent to the problem of identifying the sequence of real matrices,
known as the Markov parameters, which represent the impulse
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response of a linear dynamic system. Numerous studies �Silver-
man 1971; Phan et al. 1991� have been conducted on the subject
of Markov parameters and their relations to different representa-
tions of linear dynamic systems.

Following a time-domain formulation and incorporating re-
sults from control theory, Juang and Pappa �1985� proposed the
eigensystem realization algorithm �ERA� for modal parameter
identification and model reduction of linear dynamic systems.
ERA extends the Ho–Kalman algorithm and creates a minimal
realization that mimics the output history of the system when it is
subjected to a unit pulse input. Later, this algorithm was refined to
better handle the effects of noise and structural nonlinearities, and
ERA with data correlations �ERA/DC� was proposed �Juang et al.
1988�. The natural excitation technique combined with ERA
�NExT-ERA�, first proposed by James et al. �1993�, is based on
the same idea as ERA/DC in order to identify the modal param-
eters of a system using output–only ambient vibration data.
Peeters and De Roeck �2001� reviewed several output-only sys-
tem identification methods, which are useful for operational
modal analysis under the condition that the input excitation is
broadband �ideally white noise�. Although these methods are
powerful in generating dynamic models from impulse response
and/or ambient vibration data, realization algorithms similar to
ERA that can handle arbitrary input signals are needed. For arbi-
trary input signal, identification methods based on prediction error
minimization �Ljung 1999� or subspace methods �Van Overschee
and de Moor 1996� can be used. Unfortunately, prediction error
methods require an intricate model parametrization, particularly
for multivariable systems, along with a nonlinear optimization to
identify model parameters. These issues have been resolved in
subspace based identification, but the link with direct realization
algorithms is not transparent. This paper establishes a straightfor-
ward extension of the well-known eigensystem realization algo-
rithm, by development of the general realization algorithm �GRA�
on the basis of an arbitrary input signal.

The proposed GRA allows for the realization of a state-space
model on the basis of input–output measurement data using a

Hankel matrix based realization algorithm similar to the well-
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known ERA. GRA allows for an explicit use of the input signal
through construction of a so-called weighted Hankel matrix from
the input–output measurements. In the special case where the
input excitation is an impulse signal, GRA reduces down to ERA
in which a Hankel matrix is formed on the basis of impulse �free
vibration� response measurements. The explicit use of the input
signal to construct the weighted Hankel matrix in GRA shows an
advantage in comparison to the case where only Markov param-
eter estimates are used to initiate a standard Hankel matrix based
realization as in ERA. This advantage is more significant when
the input excitation is a short-duration and/or nonbroadband �col-
ored� signal, such as earthquake ground motions.

In this paper, the GRA is presented to identify the dynamic
characteristics of linear multi-degree-of-freedom dynamic sys-
tems subjected to arbitrary loading from zero �at rest� or known
nonzero initial conditions. The identified state-space matrices are
improved by a least-squares algorithm, upon state reconstruction,
to get the minimum prediction error for the response. Statistical
properties �i.e., bias, variance, and robustness to added output
noise� of the modal parameter estimators provided by the GRA
are investigated through a numerical simulation study based on a
benchmark problem with nonclassical damping.

Eigensystem Realization Algorithm

In order to present clearly the foundation of the GRA for arbitrary
input signals, first the ERA for pulse input signal is briefly re-
viewed in this section; more details can be found in Juang and
Pappa �1985�. In the next section, ERA is generalized for arbi-
trary input signals, which often characterize the input excitation
of actual dynamic systems �e.g., seismic excitation of a bridge or
building structure�.

Consider a P degree-of-freedom �DOF� linear dynamic system
represented in state-space form at discrete times t=k�T,
k=0,1 ,2 , . . ., with a constant sampling time �T, as

x�k + 1� = Ax�k� + Bu�k�

y�k� = Cx�k� + Du�k� �1�

in which x�k��Rn�1 �n=2P� denotes an n-dimensional state vec-
tor; state matrix A�Rn�n; input matrix B�Rn�r; output matrix
C�Rm�n; and feed-through matrix D�Rm�r completely define a
linear dynamic system with an r-dimensional forcing function,
u�k�, and m-dimensional output measurement, y�k�. To simplify
notations, the discrete time impulse response measurements, g�k�,
�also referred to as Markov parameters for unit pulse input�, are
assumed to be vector valued �i.e., single input, multiple output
system�. The formulation of ERA can be generalized to multiple
input–multiple output systems �Juang and Pappa 1985� that is
avoided here in order to focus on the main concepts.

Given the discrete time state-space model of a linear dynamic
system, as in Eq. �1�, the output y�k� due to the arbitrary input
signal u�k� can be written explicitly as

y�k� = Du�k� + �
i=1

�

g�i�u�k − i�, g�i� = CAi−1B �2�

where g�i� denote the Markov parameters, and k indicates
the input and output samples at discrete times t=k�T,
�k=0,1 , . . . ,2N�. Given the discrete output measurements y�k�
and possibly the input measurements u�k� for k=0,1 ,2 , . . . ,2N,

the objective is to determine the appropriate size n �McMillan
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degree� of the state vector x�k� in Eq. �1� �i.e., order of the model
to realize�, and to estimate a discrete time state-space realization
�A ,B ,C ,D� of the dynamic system considered.

For the special case of a unit pulse input, the output y�k�
corresponds to the Markov parameters, g�k�, of the discrete time
system. To set up the realization algorithm on the basis of the
impulse response measurements, g�k�=y�k� �k=0,1 ,2 , . . . ,2N�,
first an �m�N��N Hankel matrix H is constructed as

H = �
g�1� g�2� ¯ g�N�
g�2� g�3� ¯ g�N + 1�
] ] ] ]

g�N� g�N + 1� ¯ g�2N − 1�
�

�m�N��N

�3�

and a corresponding shifted Hankel matrix H̄ of the same size is
defined as

H̄ = �
g�2� g�3� ¯ g�N + 1�
g�3� g�4� ¯ g�N + 2�
] ] ] ]

g�N + 1� g�N + 2� ¯ g�2N�
�

�m�N��N

�4�

In case g�k� are noise-free impulse response, it follows that

g�k� = �D , for k = 0

CAk−1B , for k � 0
�5�

The Hankel matrix H in Eq. �3� can be expressed as

H = H1H2 �6�

in which H1 and H2�observability and controllability matrices,
respectively

H1 = �
C

CA

CA2

]

CAN−1
�

�m�N��n

, H2 = �B AB A2B ¯ AN−1B�n�N

�7�

For a discrete time state-space model, Eq. �1�, of order �or
McMillan degree� n, it can be shown via the Cayley–Hamilton
theorem that both H1 and H2 have full column rank n and full row
rank n, respectively. As a result, the Hankel matrix H has rank n.

Further, from its definition, the shifted Hankel matrix H̄ can be
shown to have the following shift property:

H̄ = H1AH2 �8�

where H1 and H2 are defined in Eq. �7�. As both H1 and H2 have,
respectively, full column and row rank n, there exists a left in-
verse H1

† and a right inverse H2
† such that

H1
†H1 = In�n, H2H2

† = In�n �9�

so that, from Eq. �8�

A = H1
†H̄H2

† �10�

The previous left and right inverses are obtained as

H1
† = �H1

TH1�−1H1
T

H† = HT�H2HT�−1 �11�
2 2 2
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¯

During the identification process, the decomposition of H into
H1 and H2 according to Eq. �6� can be performed through a
singular value decomposition �SVD�, H=U�VT, where both U
and V are orthonormal matrices and ��diagonal matrix with the
�nonnegative� singular values ordered in decreasing magnitude on
the main diagonal. The SVD provides insight into the rank of H
�Vandewalle and de Moor 1988�, as the rank of H is given by the
number of nonzero diagonal elements �singular values� in � for
the case of noise-free measurements. In the case where the rank
of H is significantly larger than n �due to the presence of mea-
surement noise�, a decision can be made regarding the order n of
the system �or effective rank of the Hankel matrix H� on the basis
of the plot of the singular values. In this case, the SVD allows to
approximate the high-rank Hankel matrix H into a lower-rank
�n� matrix via a separation of large and small singular values of
matrix H. The use of SVD to compute a low-rank decomposition
of the Hankel matrix is essential in the realization method and has
been used in the classical Kung’s realization algorithm �Kung
1978� as well as in ERA �Juang and Pappa 1985�. The SVD of the
Hankel matrix H can be expressed as

H = U�VT = �Un Us�	�n 0

0 �s

	Vn

T

Vs
T 
 �12�

in which � is split up in the two diagonal matrices �n and �s,
where �s and �n denote the part of � with the s small �zero in the
case of noise-free measurements� singular values and the part of
� with the n large �nonzero in the case of noise-free measure-
ments� singular values, respectively. As already mentioned, a de-
cision on an appropriate value of the rank n of the reduced-rank
Hankel matrix can be made by plotting the singular values.

Using the partitioned SVD in Eq. �12�, the high-rank Hankel
matrix H can be approximated by a reduced-rank n matrix Hn of
the same dimension as

Hn = Un�nVn
T �13�

which can be shown to minimize �H−Hn�2 where �¯ �2 denotes
the induced two-norm or maximum singular value of a matrix. On
the basis of the previous rank n decomposition, the matrices H1

and H2 in Eq. �6� can be estimated as

H1 = Un�n
1/2

H2 = �n
1/2Vn

T �14�

from which the expressions for the left inverse H1
† and right in-

verse H2
† simplify to

H1
† = �n

−1/2Un
T

H2
† = Vn�n

−1/2 �15�

From the results in Eqs. �13�–�15� and using Eqs. �5�, �7�, and
�10�, it follows that the state-space matrices of the discrete time
model in Eq. �1� are given by

D = g�0�, C = H1�1: m, :�, B = H2�: ,1�, A = H1
†H̄H2

†

�16�

where the notations �1:m , : � and �: ,1� denote the first m rows and
the first column of a matrix, respectively. It should be noted that
ERA is also readily applicable to free vibration response data. In
this case, the Hankel matrix is constructed using free vibration
data �i.e., y�0� as first element of the Hankel matrix�, and the

identified input matrix B represents the nonzero initial state x0,
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which is related to the initial nodal displacements and velocities
in the physical state x̄0 through the linear transformation
x0=Tx0.

General Realization Algorithm

As discussed in the previous section, ERA assumes either a pulse
input signal or free vibration response to construct the Hankel
matrix. In many practical situations, the dynamic excitation acts
over a finite time or continually and the dynamic response of the
structure during forced vibration contains valuable information on
the system dynamics. Unfortunately, ERA cannot incorporate this
information directly. The objective of this section is to extend
ERA to accommodate arbitrary excitation signals.

Although ERA is not directly applicable to general excitation
signals, estimates of the Markov parameters can be obtained sepa-
rately and fed into ERA. Such an estimation can be achieved via
�1� nonparametric estimation methods such as correlation analy-
sis, e.g., NExT-ERA by James et al. �1993�; �2� estimation of a
finite impulse response �FIR� model, e.g., Oppenheim and Scha-
fer �1989�; �3� inverse Fourier transformation of an empirical
transfer function estimate, e.g., Ljung �1999�; or �4� wavelet
transformation, e.g., Alvin et al. �2003�. Unfortunately, for accu-
rate estimation of the Markov parameters, these methods require a
broadband excitation signal u�k�. A narrow band excitation will
lead to biased and noisy �large variance� estimation of the Markov
parameters that will in turn pollute the results of the subsequent
application of ERA. An alternative would be to reconstruct the
Markov parameters from a Kalman filter or other state observer,
as done in Phan et al. �1992�. Although this is a powerful method,
it requires relatively long input–output data in the least-squares
procedure used to compute the Markov parameters �Lus et al.
2002�. The method presented in the following aims at estimating
the dynamic properties of the structure based on a �short-time�
input–output data sequence available.

To illustrate the main idea behind GRA, consider the discrete
time input–output relationship given in Eq. �2� that can be rewrit-
ten in the following Hankel matrix based representation:

Y = HU + E �17�

where H�truncated �the first i block rows with i�N� Hankel
matrix given in Eq. �3� and

Y = �
y�1� y�2� ¯ y�N�
y�2� y�3� ¯ y�N + 1�
] ] ] ]

y�i� y�i + 1� ¯ y�i + N − 1�
�

�m�i��N

U = �
u�0� u�1� ¯ u�N − 1�

0 u�0� ¯ u�N − 2�
] ] ] ]

0 0 ¯ u�0�
�

N�N
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E = �
g�0�u�1� g�0�u�2� ¯ g�0�u�N�

g�0�u�2� + g�1�u�1� g�0�u�3� + g�1�u�2� ¯ g�0�u�N + 1� + g�1�u�N�
] ] ] ]

�
l=0

i−1

g�l�u�i − l� �
l=0

i−1

g�l�u�i − l + 1� ¯ �
l=0

i−1

g�l�u�i + N − l − 1� �
�m�i��N

�18�
In the previous equations, H�conventional Hankel matrix of im-
pulse response coefficients g�k� and Y�Hankel matrix consisting
of the measured output data due to the �arbitrary� input u�k�. The
input data are stored in the N�N square matrix U, which is
nonsingular provided that u�0��0. It is observed from Eqs. �17�
and �18� that matrix E contains terms defined as the sum of input
signals weighted by the corresponding Markov parameters, which
can be estimated from input–output data. To show this, consider
the input measurement u�0�, which corresponds to the start of the
nonzero input signal during the experiment, to be normalized to
u�0�=1 without loss of generality �i.e., both the input u and the
output y are scaled by the same factor, namely the original/
unscaled value of u�0��. This greatly simplifies the formulation
and with u�k�=0 for k�0, g�l� can be computed recursively from
the input–output data as

g�l� = y�l� − �
k=0

l−1

g�k�u�l − k�, g�0� = y�0� �19�

which is equivalent to

GN = YN · U−1 �20�

where U is given in Eq. �18� with u�0�=1, and

YN = �y�0� y�1� ¯ y�N − 1��m�N

GN = �g�0� g�1� ¯ g�N − 1��m�N �21�

Although matrix U is an upper triangular matrix with a determi-
nant of one, this matrix can be ill-conditioned, especially for a
large number of data points N. Numerically, it is advantageous to
replace Eq. �20� by

GN = YN · U† �22�

where U†�Moore–Penrose pseudoinverse �Noble and Daniel
1988� of U with a tolerance on the singular values considered in
computing this matrix. It should be noted that the impulse re-
sponse estimate �or Markov parameter estimates� can also be ob-
tained using different methods than the one shown in Eq. �22�.
Some of these methods such as Observer/Kalman filter identifi-
cation �Phan et al. 1991� can be used to estimate Markov param-
eters without requiring knowledge of the initial conditions. The
impulse response estimates are then used to compute the elements
of matrix E which can be calculated as

E�i,k� = �
l=0

i−1

GN�l + 1�u�k + i − l − 1� �23�

where E�i ,k� denotes the kth column of ith block row of matrix E
and GN�l+1� is the �l+1�th column of GN matrix given in Eq.
�22�. In the case of noisy measurements YN, the variance of GN�l�
increases with l. It can be observed from Eq. �23� that increas-

ingly values of l in GN�l� are needed to compute the successive
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block rows of the matrix E. To mitigate the effects of the increas-
ing variance �as a function of l� of the impulse response estimates
GN�l�, a limited number i �n� i�N� of block rows of matrix E of
dimension �m� i��N is used such that GN�i� has a reasonably
small variance. In the previous statement, N denotes the total
number of data points minus i, and n is the anticipated order of
the model to be estimated. Defining R=Y−E=HU as a weighted
Hankel matrix, it follows from the full-rank property of U that
rank �H��rank �R�. In the case of noise-free measurements, rank
�R� is equal to the exact order of the system to be identified. GRA
allows a state-space realization of the system directly on the basis
of the weighted Hankel matrix R, from which the modal param-
eters of the system can be obtained. Alternatively to the previous,
matrix H could be computed via H=RU−1 �or H=RU†�, but that
would require an additional inverse �or pseudoinverse� of the pos-
sibly ill-conditioned matrix U which would result in large vari-
ances of the high column entries of the Hankel matrix H.

To continue the development of GRA, a lower-rank decompo-
sition via SVD is applied to R as

R = U�VT = �Un Us�	�n 0

0 �s

	Vn

T

Vs
T 
 �24�

which is similar to Eq. �12� for Hankel matrix H. Using this SVD
decomposition, matrix R can be approximated by a rank n matrix
Rn of the same dimensions as

Rn = Un�nVn
T �25�

which can be shown to minimize �R−Rn�2. Therefore, Rn can be
factorized as

Rn = R1R2 �26�

in which

R1 = Un�n
1/2

R2 = �n
1/2Vn

T �27�

Similar to Hankel matrix H in Eq. �8�, matrix R has the shift
property

R̄ = R1AR2 �28�

where R̄= Ȳ− Ē in which shifted matrix Ȳ is defined similar to H̄
¯
in Eq. �4� and E is given by
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Ē = �
g�0�u�2� + g�1�u�1� g�0�u�3� + g�1�u�2� ¯ g�0�u�N + 1� + g�1�u�N�

] ] ] ]

�
l=0

i

g�l�u�i + 1 − l� �
l=0

i

g�l�u�i − l + 2� ¯ �
l=0

i

g�l�u�i + N − l − 1� �
�m�i��N

�29�
From the above-mentioned properties of matrix R, it follows that
a realization algorithm similar to ERA based on the input–output

data matrices R and R̄ can be used to construct the discrete time
state-space matrices in Eq. �1� for the case of arbitrary input u�k�.
This is achieved simply by replacing H by R in Eq. �16�.

The main idea behind GRA is to use the information of the
input signal to create a weighted Hankel matrix R=Y−E=HU,
instead of creating a �unweighted� Hankel matrix H by first esti-
mating a large number of Markov parameters on the basis of a
short-time and/or nonwhite input sequence. In the application of
GRA, the Markov parameter estimates are used to build up the
error matrix E, which in turn is used to create the weighted Han-
kel matrix R on which a realization algorithm is performed to
compute a state-space model. However, by carefully examining
the formula and size of matrix E, it is observed that only a small
number of Markov parameter estimates is needed to create a
“large fat” �very high number of columns compared to the num-
ber of block rows� matrix E and consequently matrix R=Y−E.
Therefore, the use of a large fat unweighted Hankel matrix H for
which a large number of Markov parameters would be required, is
avoided. In other words, as compared to ERA, the proposed GRA
reduces the required length of the Markov parameter sequence to
obtain accurate system identification results.

To show that GRA is a generalization of ERA, it can be seen
that for a unit pulse input u�k�, matrix U becomes the N�N
identity matrix, whereas matrix E becomes a �m� i��N zero
matrix as u�k�=0 for k�0. In another special case where the
input signal u�k� is the unit step, which is typically applied to
flexible mechanical �servo� systems in order to study their tran-
sient dynamic behavior; matrix U�upper triangular matrix and
matrix E�row-wise listing of output signals as

U = �
1 1 ¯ 1

0 1 ¯ 1

] ] ] ]

0 0 ¯ 1
�

N�N

E = �
y�0� y�0� ¯ y�0�
y�1� y�1� ¯ y�1�
] ] ] ¯

y�i − 1� y�i − 1� ¯ y�i − 1�
�

�m�i��N

�30�

as previously shown by De Callafon �2003�. In the latter case,
applying GRA to matrix R, which depends only on step response
data, yields significantly better results in terms of system realiza-
tion than applying ERA based on impulse response data obtained
through differentiating the step response measurements �De Cal-

lafon 2003�.
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Refinement of State-Space Realization through
Least-Squares Optimization

Although Eq. �16� allows to identify the state-space matrices A,
B, and C based on the SVD of a high-dimensional Hankel matrix
both for ERA and GRA, the feed-through matrix D is estimated
from the single, possibly noisy, measurement g�0�. Using the es-
timates of the state matrix A and the input matrix B obtained
through ERA or GRA, the state vector x�k� can be reconstructed
as

x�k + 1� = Ax�k� + Bu�k�, x�0� = 0 �31�

for k=0,1 , . . . ,2N. With the reconstructed state vector x�k�, the
realization algorithm �ERA or GRA� that is used to compute ma-
trices A and B can be followed by a standard least-squares �LS�
optimization problem to improve the estimation of the state-space
matrices. The LS problem can be stated by rewriting Eq. �1� and
adding the zero mean noise vector V�k� as

Y�k� = �U�k� + V�k�, k = 1, . . . ,2N �32�

where

Y�k� = 	x�k + 1�
y�k� 
, � = 	A B

C D

, U�k� = 	x�k�

u�k� 

V�k� = 	w�k�

v�k� 
 �33�

in which w�k� represents the possible noise on the reconstructed
state vector x�k� and v�k� the noise on the measured output y�k�,
which includes measurement noise. Noise vector V�k� could also
include the effects of parameter estimation errors and modeling
error. Including all input-output data for k=1, . . . ,2N in a single
matrix representation, Eq. �32� can be rewritten as

Y = �U + V, Y = �Y�0� Y�1� ¯ Y�2N��

U = �U�0� U�1� ¯ U�2N�� �34�

Then the state-space matrices in � can be updated via a standard
least-squares solution as

�̂LS
N = YUT�UUT�−1 �35�

provided that matrix U has full row rank. The full row rank con-
dition of matrix U is related to the input excitation u�k� and is
trivially satisfied for broadband forcing function �e.g., pulse/
impact load, earthquake ground excitation�. The least-squares im-
provement renders the estimated state-space matrices less
sensitive to noise. If the input u�k� and the reconstructed state
x�k� are uncorrelated with the state noise w�k� and the measure-
ment noise v�k�, i.e., lim

N→�

�1 /N��VUT=0, consistent estimates of

the state-space matrices are obtained. This condition is satisfied

asymptotically as N→� provided that the experiments are con-
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ducted in such a way that the input excitation is uncorrelated with
the measurement noise.

Numerical Validation

Definition of Benchmark Problem

In order to investigate the performance of the proposed GRA, the
eight-story linear elastic shear building model shown in Fig. 1
subjected to seismic base excitation is used as a case study. This
shear building has a constant floor mass of 625 t, a constant story
stiffness of 106 �kN /m�, and damping properties represented
through the nonclassical damping matrix C �Veletsos and Ventura
1986�. The latter was generated from an assumed configuration of
inter-multiple-story viscous dampers installed on the structure
�between Floors 1 and 4, 2 and 6, and 3 and 8� and is given by

C = 400 � �
16 − 6 0 − 4 0 0 0 0

− 6 15 − 5 0 0 − 4 0 0

0 − 5 14 − 5 0 0 0 − 4

− 4 0 − 5 12 − 3 0 0 0

0 0 0 − 3 6 − 3 0 0

0 − 4 0 0 − 3 8 − 1 0

0 0 0 0 0 − 1 2 − 1

0 0 − 4 0 0 0 − 1 5

�
�kN s/m� �36�

Table 1. Modal Parameters of Shear Building Structure

Parameter 1 2

Undamped frequency �Hz� 1.175 3.484 5.6

Pseudoundamped frequency �Hz� 1.176 3.486 5.6

Damped frequency �Hz� 1.175 3.473 5.6

Damping ratio �%� 3.77 8.54 6.5

Fig. 1. Eight-story shear building model
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Viscously damped systems that do not satisfy the Caughey–
O’Kelly condition �Caughey and O’Kelly 1965� generally have
complex-valued natural modes of vibration. Such systems are said
to be nonclassically or nonproportionally damped. The modal pa-
rameters of the shear building model considered here are obtained
through solving a complex eigenvalue problem in state-space.
The computed natural frequencies and damping ratios are re-
ported in Table 1. It is worth noting that the natural frequencies of
a nonclassically damped system extracted through eigenanalysis
of the state matrix, referred to as pseudo-undamped natural fre-
quencies �Veletsos and Ventura 1986�, differ from the correspond-
ing natural frequencies of the associated undamped system. Fig. 2
shows the complex-valued mode shapes of the shear building as
rotating vectors in the complex plane called polar plots. The in-
dices on the vectors in each polar plot indicate the DOF number
�i.e., floor number�. The polar plot representation of a mode shape
displays the degree of nonclassical damping characteristics of that
mode. If the components �or DOFs� of a mode shape are collinear
�i.e., in phase or out of phase� in the complex plane, then this
mode is classically �or proportionally� damped. The more a mode
shape’s components are scattered in the complex plane, the more
this mode is nonclassically damped. As the higher order mode
shapes of the shear building considered here exhibit strong non-
classical characteristics �Fig. 2�, the real parts of these mode
shape components do not remain proportional as the complex
vectors rotate, i.e., these �real-valued� mode shapes change con-
tinuously within one vibration period. In Fig. 3, the real part of all
eight complex mode shapes are plotted at four snapshots with 90°
phase shifts during a vibration period.

Simulation of Measurement Data

The shear building model is subjected to a horizontal base exci-
tation defined as the strong motion part �2–30 s� of the Imperial
Valley, 1940 Earthquake ground motion recorded at the El Centro
station �see Fig. 4�. The shear building output data used in this
study consist of the floor absolute acceleration responses to this

Mode

4 5 6 7 8

7.673 9.409 10.825 11.873 12.516

7.674 9.406 10.871 12.012 12.278

7.662 9.388 10.859 11.977 12.251

5.65 6.12 4.71 7.68 6.65

Fig. 2. Polar plot representation of complex mode shapes
3
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earthquake excitation. The differential equations of motion for-
mulated in state-space are integrated via complex modal analysis
�Peng and Conte 1998�, assuming a piecewise linear forcing func-
tion, and using piecewise linear exact integration of the complex-
valued first-order modal equations of motion. A constant time
increment of �T=0.02 s is used to integrate the equations of mo-
tion. To model measurement noise, zero-mean Gaussian white
noise processes are added to the simulated output signals. The
reason for considering up to high levels of measurement noise
�4% in root-mean-square ratio� is to allow for the higher vibration
modes to become more difficult to extract from the data due to
decreasing signal-to-noise ratio at higher frequencies, a phenom-
enon typically seen in real-life applications. The performance
�e.g., statistical properties of estimated modal parameters� of the

Fig. 3. Exact complex mode shapes of the nonclassically damped
shear building shown at different phases

Fig. 4. Imperial Valley, El Centro 1940 Earthquake ground motion
record
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new system identification procedure presented earlier is investi-
gated under increasing level of noise. For a given floor, the noise
level is defined as the ratio �in percent� of the root mean square
�RMS� of the added noise process to the RMS of the floor abso-
lute acceleration response �computed over the time interval
2–30 s�. The added noise processes at the various floors are
simulated as statistically independent. Fig. 5 compares the added
noise realizations of various amplitudes �1, 2, 3, and 4%� to all
eight modal components of the noise-free roof absolute accelera-
tion response obtained as explained in Moaveni et al. �2007�. It is
clearly observed that depending on the mode and noise level, the
modal absolute acceleration response may be buried in the noise,
which renders the corresponding modal parameters difficult to
identify.

Application of GRA and Discussion of Results

In order to apply GRA to the seismic input and simulated output

data, matrices E and Ē of size �8�40��1,400 are formed based
on the whole length of the simulated data �1,440 data points� as
described in the section entitled “General Realization Algorithm.”
The discrete time state-space matrices are realized and then re-
fined through a LS optimization as described in the previous sec-
tions. Such a refinement step is beneficial especially for the
estimation of C and D matrices and, therefore, for the mode shape
estimates. The identified modal natural frequencies and damping
ratios are obtained through eigenanalysis of the estimated discrete
time state matrix A, whereas the identified mode shapes are ob-
tained as �=C ·A �Moaveni et al. 2007�. The modal parameters
�natural frequencies, damping ratios, and mode shapes� of all
eight modes of the shear building identified from noise-free
input–output data are in perfect agreement with the corresponding
exact values given in Table 1 and Fig. 3. The statistical properties
�bias and variance� of the estimated modal parameters using GRA
are investigated as a function of the noise level. For this purpose,
a set of 100 identifications was performed at each of nine differ-
ent noise levels �0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4%� for the same
noise-free input–output data. The added vector �8-DOF� noise
processes for the 100 identification trials are simulated as statis-
tically independent. Statistics �mean and mean � one standard
deviation� of the identified-to-exact natural frequency and damp-
ing ratios are shown in Figs. 6 and 7, respectively, as a function of
the noise level and for the first six vibration modes. Due to the
low contribution of the seventh and eighth modes to the total
building response �see Fig. 5� and therefore the very weak signal-
to-noise ratio, the modal parameters of these modes cannot be
identified at and above the minimum level of added noise consid-
ered here �0.5%� as the modal responses are buried in the noise.
From Figs. 6 and 7, it is observed that �1� the identified modal
frequencies and damping ratios are in very good agreement with
their exact counterparts, and �2� in general both bias and variance
of the modal frequency and damping ratio estimators based on
GRA increase as a function of the noise level. However, in the
particular application, the estimated natural frequencies of the
first four modes appear to be quasi unbiased at the noise levels
considered, which may be due to the significant contribution of
these modes to the total response �see Fig. 5�. Comparison of
Figs. 6 and 7 shows that both bias and standard deviation of the
modal damping ratio estimates are significantly larger than those
of the natural frequency estimates, as expected from the system
identification literature. To complement Figs. 6 and 7, the cumu-
lative distribution functions of the identified-to-exact natural fre-

quencies and damping ratios are plotted in Figs. 8 and 9,
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Fig. 5. Modal contributions of total acceleration response at roof level and different levels of added noise
Fig. 6. Statistics of identified-to-exact modal frequency ratios as a
function of measurement noise level
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Fig. 7. Statistics of identified-to-exact modal damping ratios as a
function of measurement noise level
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respectively, for 1, 2, and 3% noise levels and for the first six
vibration modes �Modes 1, 2, and 3 in the left-hand column and
Modes 4, 5, and 6 in the right-hand column�. Figs. 6–9 show that
�1� the variance of the estimated modal frequencies and damping
ratios is significantly larger for higher modes and �2� the esti-
mated modal frequencies and damping ratios are generally more
sensitive to the noise level for the higher modes. These two ob-
served trends may be due to the fact that the higher modes con-
tribute less to the total response as shown in Fig. 5. Table 2
provides the statistics �mean, coefficient-of-variation �COV�
minimum, and maximum� of the estimated modal frequencies and
damping ratios based on 100 identification trials in the presence
of 1% output noise.

The modal assurance criterion �MAC� is used to compare the
estimated mode shapes with their exact counterparts at different
levels of noise. The MAC value is bounded between 0 and 1,
measures the degree of correlation between an estimated mode
shape, �estimated, and its exact counterpart, �exact, �MAC value of
1 for exactly estimated mode shape�, and is defined as

MAC��estimated,�exact� =
��

estimated
* · �exact�2

��estimated�2 · ��exact�2
�37�

where superscript asterisk denotes the complex conjugate trans-
pose. The mean and COV of the MAC values between estimated
and exact mode shapes based on 100 identification trials are re-
ported in Table 3 for all noise levels considered herein and for the
first six modes. From these results, it is observed that �1� the first
four mode shapes are identified very accurately even in the pres-
ence of high amplitude output noise �4%� and �2� estimates of the
higher mode shapes become less accurate with increasing level of

Fig. 8. Cumulative histogram of identified-to-exact modal frequency
ratios based on 100 identification trials at noise levels of 1, 2, and 3%
noise.
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Conclusions

This paper presents the general realization algorithm, a new sys-
tem realization algorithm to identify modal parameters of linear
dynamic systems based on general input-output data. This algo-
rithm is a generalization of the eigensystem realization algorithm,
which is based on singular value decomposition of a Hankel ma-
trix constructed from impulse response or free vibration response
data. This generalization is obtained through SVD of a weighted
Hankel matrix of input–output data, where the weighting is deter-
mined by the loading. Using GRA, the state-space matrices are
estimated in a two-step process that includes a state reconstruc-
tion followed by a least-squares optimization yielding a minimum
prediction error for the response. An application example consist-
ing of an eight-story shear building model subjected to earthquake
base excitation is used for the multiple purposes of validating the
new algorithm, evaluating its performance, and investigating the
statistical properties �i.e., bias/unbias, variance, and robustness to
added output noise introduced to model measurement noise and
modeling errors� of the GRA modal parameter estimates. Based
on the extensive simulation study performed, it is found that the
proposed new algorithm yields very accurate estimates of the
modal parameters �natural frequencies, damping ratios, and mode
shapes� in the case of noise-free input–output data or low output
noise. The bias and variance of the modal parameter estimates
increase with the level of output noise and with vibration mode
order �due to the lower participation of higher modes to the total
response and weak signal-to-noise ratio in the application ex-
ample considered�. Both bias and variance of the modal damping
ratio estimates are significantly larger that those of the corre-
sponding modal frequency estimates as expected from the system

Fig. 9. Cumulative histogram of identified-to-exact modal damping
ratios based on 100 identification trials at noise levels of 1, 2, and 3%
identification literature. In summary, application of GRA is rec-
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ommended for realization of linear dynamic systems subjected to
short-duration and/or nonbroadband excitations such as earth-
quake and shake table excitations when information about the
input is available.
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