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SUMMARY

This paper focuses on the development of a linear analytical model (even though servo-hydraulic actuation
systems are inherently non-linear, especially for large amplitude simulations * near the performance
capacity of the system* linearized models proved experimentally to be quite e!ective overall in capturing
the salient features of shaking table dynamics) of a uni-axial, servo-hydraulic, stroke controlled shaking table
system by using jointly structural dynamics and linear control theory. This model incorporates the
proportional, integral, derivative, feed-forward, and di!erential pressure gains of the control system.
Furthermore, it accounts for the following physical characteristics of the system: time delay in the servovalve
response, compressibility of the actuator #uid, oil leakage through the actuator seals and the dynamic
properties of both the actuator reaction mass and test structure or payload. The proposed model, in the form
of the total shaking table transfer function (i.e. between commanded and actual table motions), is developed
to account for the speci"c characteristics of the Rice University shaking table. An in-depth sensitivity study
is then performed to determine the e!ects of the table control parameters, payload characteristics, and
servovalve time delay upon the total shaking table transfer function. The sensitivity results reveal: (a)
a potential strong dynamic interaction between the oil column in the actuator and the payload, and (b) the
very important e!ect of the servovalve time delay upon the total shaking table transfer function. Copyright
( 2000 John Wiley & Sons, Ltd.

KEY WORDS: servo-hydraulic shaking table system; stroke control; servovalve time delay; servovalve}
actuator}foundation}specimen interaction; PID, feed-forward and di!erential pressure
control; shaking table transfer function



1. INTRODUCTION

The main objective of a shaking table system is the high-"delity reproduction of displacement or
acceleration time histories such as earthquake accelerograms. However, reproduction of a dy-
namic signal is known to remain imperfect [1}3]. The degree of distortion in signal reproduction
depends on numerous factors such as physical system parameters (e.g. foundation compliance,
compressibility of oil column in the actuator chamber, oil leakage through the actuator seals,
non-linear #ow characteristics in the actuator, servovalve time delay, etc.), con"guration and
characteristics of control loop(s) (e.g. type of control algorithm, feedback signals, dynamics
of sensors measuring the feedback response quantities, signal conditioning, characteristics of
the digital data acquisition and control system * A/D and D/A boards, anti-aliasing
"lters, 2 * control gain setting, etc.), and characteristics of the test structure. To fully
understand and exploit the actual testing capabilities of a shaking table, a mere evaluation of the
accuracy of the table in reproducing base motions is not su$cient. A complete study of the table
sensitivities with respect to all pertinent system and payload parameters is necessary in order to
optimize the physical parameters and the control gain settings for maximum accuracy in motion
reproduction by the table under a range of payload conditions. Furthermore, a thorough
understanding of the table}payload dynamic interaction is essential for thoughtful design and
proper results interpretation of shaking table experiments.

The paper "rst presents the development of a linear analytical dynamic model of a uni-axial,
stroke (displacement) controlled shaking table system in the form of the total shaking table
transfer function (in Laplace domain) between desired (or commanded) and actual table motions.
The present model was arrived at by progressively incorporating physical and control character-
istics until it was capable of predicting well the observed dynamic performance of the Rice
University shaking table for a wide range of operating conditions [4, 5]. The analytical model
developed accounts speci"cally for proportional, integral, derivative, feed-forward, and di!eren-
tial pressure control gains, as well as the e!ects of actuator oil compressibility, oil leakage across
the sealed joints within the actuator, time delay in the response of the servovalve spool to a given
electrical signal, compliance of the actuator reaction mass, and dynamic characteristics of the test
structure (or payload) modeled as linear elastic SDOF and 2-D MDOF systems. As the Rice
University earthquake simulator is controlled by a digitally supervised analog controller, the
present model does not account for phenomena related to signal digitization. Sensor (LVDT and
pressure transducers) dynamics are not considered here since they are insigni"cant in the
operating frequency range (0}80 Hz) of the Rice shaking table. For the same reason, the analog
low-pass "lters applied to the displacement and delta-pressure feedback signals are ignored.
Second, the paper presents selective results of the sensitivity analysis of the total shaking table
transfer function with respect to table control parameters, payload dynamic characteristics, and
servovalve time delay.

2. ANALYTICAL MODELLING OF SHAKING TABLE SYSTEM

This section presents the development, from basic principles, of a linear analytical model able to
capture the salient dynamic characteristics of a servo-hydraulic, stroke-controlled, uni-axial
shaking table system. The objective of this analytical model is to represent mathematically the
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s With respect to an inertial reference frame.
t In this diagram the signal corresponding to the dither motion (used in servovalves in order to prevent any stick}slip

behaviour of the moving components) has been ignored, since the high frequency at which the dither motion operates
(500 Hz) is far out of the operational frequency range (0}80 Hz) of the servovalve and actuator.

A Actuator chamber on the pressure side of the piston, see Figure 3.
B Conditioned by the outer control loop, but unconditioned by the inner control loop.

input}output relationship between desired (or commanded) and actual absolutes table motions.
For openness of the model to possible further extensions and facilitation of its physical under-
standing, the model is developed following the modular approach depicted in Figure 1 and
described below. This approach breaks down the shaking table system into several subsystems.

(1) First, a linearized analytical model for the &Three-Stage Servovalve Transfer Function', H
5
(s),

is developed. It is then used in conjunction with the #ow continuity equation in the actuator
to yield the &Servovalve}Actuator Transfer Function', S (s).

(2) Second, the servovalve}actuator model is incorporated into the analytical model for the
controller (outer table control loop) giving rise to the so-called &Servo-Hydraulic System
Transfer Function', H (s).

(3) Third, the e!ects of the #exibility (or compliance) of the actuator reaction mass are accounted
for through the so-called &Base Transfer Function' B(s), leading to an expression for the
&Shaking Table Transfer Function', ¹(s), between desired and actual table motions.

(4) Lastly, the e!ects of the test structure (both SDOF and MDOF) dynamic characteristics,
modeled through the so-called &Payload Transfer Function', H

1
(s), are taken into considera-

tion. The presence of a test structure on the shaking table modi"es the expression for S (s),
H(s), and B(s), thus giving a modi"ed expression for the shaking table transfer function ¹ (s).

2.1. Three-stage servovalve transfer function, H
5
(s)

The functioning of a three-stage servovalve characterized by an &inner feedback control loop' is
represented schematically in Figure 2.t In this paper, the three-stage servovalve transfer function,
H

5
(s), is de"ned as the ratio between the oil #ow rate, q

4
(s), provided by the third-stage of the

servovalve to the actuator pressure chamberA and the electrical command signalB to the ser-
vovalve, x

#
(s):

H
5
(s)"

q
4
(s)

x
#
(s)

(1)

The Laplace notation is used throughout the paper. Referring to Figure 2, the functioning of the
three-stage servovalve can be summarized as follows. The servovalve command signal, x

#
(s),

before being sent to the electric coil which moves the #apper (i.e. the "rst stage of the servovalve),
is processed by the controller through the so-called &inner control loop' in order to yield the inner
loop conditioned servovalve command signal, x

#*
(s). The electric signal, x

#*
(s), controls the

rotation of the pilot #apper which generates a di!erential pressure in the pilot stage (or second
stage), *P

P
(s). The di!erential pressure *P

P
(s) thus created controls the position of the second-

stage spool (or pilot spool) which in turn controls the #ow of hydraulic #uid into the third stage
and the position of the third-stage spool, x

34
(s). Finally the position of the third-stage spool,
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Figure 1. Block diagram of shaking table system.

x
34

(s), controls the #ow of high-pressure hydraulic #uid into the actuator pressure chamber, q
4
(s).

As already suggested by previous investigators [1, 3, 6] linear relationships are assumed between:
(a) the inner loop conditioned servovalve command, x

#*
(s), and the pilot stage di!erential

pressure, *P
P
(s), (b) the pressure drop induced across the pilot stage spool, *P

P
(s), and the

displacement of the main stage spool, x
34

(s), and (c) the main stage spool position, x
34

(s), and the
#uid #ow rate into the actuator pressure chamber, q

4
(s). These linear assumptions together with

the proportional-derivative inner control loop lead to the following three-stage servovalve
transfer function:

H
5
(s)"

q
4
(s)

x
#
(s)

"k
xq

k
1
k
2
(Ki

130
#sKi

$%3
)

1#A
i
(s)k

1
k
2
(Ki

130
#sKi

$%3
)

(2)

in which k
1

is the #apper gain, *P
1
(s)"k

1
x
#i
(s), k

2
is the second-stage gain factor, x

34
(s)"

k
2
*P

1
(s), k

xq
is the #ow-gain coe$cient, q

4
(s)"k

xq
x
34

(s), Ki
130

is the inner loop proportional gain
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Figure 2. Three-stage servovalve functioning.

constant, Ki
$%3

is the inner loop derivative gain constant, and A
i
(s) is the so-called &inner loop'

feedback transfer function (or feedback conditioner) which, in most cases, is set to unity.
As the servovalve can be driven much more accurately than the remainder of the shaking table

system (actuator, outer control loop, reaction mass), the e!ect of the inner control loop is usually
neglected in shaking table modeling [1, 3]. This can be achieved by setting Ki

130
"1 v/v,

Ki
$%3

"A
i
(s)"0, thus leading to the following simpli"ed expression for the three-stage servovalve

transfer function:

H
5
(s)"

q
4
(s)

x
#
(s)

"k
2
k
1
k
xq
"k

5
(3)

in which k
5
"k

xq
k
1
k
2

is termed the table gain factor. It is worth mentioning that the servovalve
models in Equations (2) and (3), although widely used, may in certain cases not be su$cient to
predict accurately the shaking table behaviour. An e!ective improvement of these servovalve
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Figure 3. Oil #ow to compensate for oil compressibility.

s The existence of a time delay in the servovalve response can be anticipated from basic dynamic considerations (inertia
e!ects) and it was observed experimentally by the authors during tuning of the Rice University shaking table.

models can be obtained by introducing a time delay q between the instant at which the electrical
signal x

#i
(t) reaches the "rst stage of the servovalve and the instant at which the third-stage spool

has responded correspondinglys. This time delay can be physically interpreted as the time
necessary to overcome the mechanical and hydraulic inertia of the servovalve. Thus,

x
34

(t)"k
1
k
2
x
#i
(t!q) (4)

or, in Laplace notation

x
34

(s)"k
1
k
2
x
#i
(s)e~qs

This improvement modi"es the servovalve transfer functions in Equations (2) and (3) as, respec-
tively,

H
5
(s)"

q
4
(s)

x
#
(s)

"k
xq

k
1
k
2
(Ki

130
#sKi

$%3
)

1#A
i
(s)k

1
k
2
(Ki

130
#sKi

$%3
)e~qs

e~qs (5)

H
5
(s)"

q
4
(s)

x
#
(s)

"k
5
e~qs (6)

2.2. Servovalve}actuator transfer function, S(s)

The high-pressure hydraulic #uid #ow rate delivered through the servovalve, q
4
(t), ports into the

actuator pressure chamber. This #uid #ow rate must compensate for (a) the change in volume (per
unit time) of the actuator pressure chamber, q

1.
(s), due to the actuator piston motion, (b) the #ow

rate of #uid leaking through the actuator seals, q
-%
(s), and (c) the compressibility of the oil in the
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actuator pressure chamber, q
#0.1

(s). This leads to the following #ow continuity equation in the
actuator:

q
4
(s)"q

1.
(s)#q

-%
(s)#q

#0.1
(s) (7)

The #uid #ow rate q
1.

(t) which compensates for the change in volume of the actuator pressure
chamber can be expressed as q

1.
(t)"AxR

t
(t) where xR

t
(t) is the velocity of the actuator arm

(relative to the body of the actuator), and A is the e!ective cross-sectional area of the actuator
piston.

Assuming a linear relationship [1, 3, 6] between the #uid leakage through the actuator seals
and the pressure of the #uid in the actuator pressure chamber, the component of #ow rate due to
leakage, q

-%
(t), can be related to the force acting across the actuator, F

!
(t), as

q
-%
(t)"k@

-%

F
!
(t)

A
"k

-%
F
!
(t) (8)

where k@
-%

is the #ow-pressure coe$cient (or &valve leakage' [6]) expressing the linear relationship
between the di!erential pressure across the actuator piston and the #ow rate of leaking #uid, and
k
-%
"k@

-%
/A is the corresponding #ow-force coe$cient.

When the oil in the actuator pressure chamber is subjected to an external pressure, it undergoes
a change in volume *<, due to its "nite bulk modulus. The relationship between pressure change
and change in volumetric strain for a #uid is given by

*P
0*-
"b

*<
<
3%&

(9)

where *P
0*-

is the pressure change in the #uid, b is the bulk modulus of the #uid, and <
3%&

is the
reference volume of the #uid under consideration.

By considering the average piston position shown in Figure 3, the pressure change in the #uid
of the actuator pressure chamber is equal to half the force applied through the actuator arm
divided by the piston e!ective cross-sectional area, i.e., *P

0*-
"F

!
(t)/2A, and the reference volume

of #uid under consideration is equal to half the total volume < of both chambers of the actuator,
i.e., <

3%&
"</2. Substituting the previous expressions for *P

0*-
and <

3%&
into Equation (9), we

obtain the following expression for the total change in volume *< of the oil in the actuator
pressure chamber due to oil compressibility:

*<(t)"
<

4b
F
!
(t)

A
(10)

The #uid #ow rate due to oil compressibility is obtained by taking the time derivative of the above
volume change, i.e.

q
#0.1

(t)"
d

dt
[*<(t)]"

<

4bA
FQ
!
(t) (11)

Substituting the above three components of #uid #ow rate into the #ow continuity equation,
Equation (7), we obtain the following expression for the oil #ow rate from the servovalve into the
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s The position of the actuator arm is the same as the table's position assuming that they are rigidly coupled.
t PID stands for proportional}integral}derivative control [7].
A In this paper, for the sake of clarity, the quantities x

$
, x

5
, *P, F

!
, F

4
are assumed to carry their original physical

dimensions. The conversion factors from these physical dimensions (m (in), Pa (psi), N (lbs)) to the corresponding
electrical signals (<) are assumed to be lumped with the control gain constants. For example, herein K

130
is in units of

V/cm (V/in) while on the actual controller, the proportional gain P
'!*/

is de"ned in (V/V) and is related to K
130

through
the relation K

130
(V/cm)"P

'!*/
(V/V)K

95
(V/cm) where K

95
denotes the transfer function of the actuator arm LVDT

(displacement feedback sensor) here adequately approximated as a constant.

actuator pressure chamber

q
4
(s)"sAx

5
(s)#k

-%
F
!
(s)#s

<

4bA
F
!
(s) (12)

Then, by combining Equations (1) and (12), we obtain the following expression for the ser-
vovalve}actuator transfer function, S (s)

S (s)"
x
5
(s)

x
#
(s)

"

H
5
(s)

sA#k
-%
(F

!
(s))/(x

5
(s))#s (</4bA)(F

!
(s))/(x

5
(s))

(13)

Note that, for the sake of modularity, the above servovalve}actuator transfer function is
expressed in terms of the actuator force, F

!
(s), and actuator arm (relative) displacement, x

5
(s).

Appropriate expressions for F
!
(s) and x

5
(s) are derived in the following sections.

2.3. Servo-hydraulic system transfer function, H(s)

Most controllers determine the servovalve electrical command signal x
#
(t) as a sum of di!erent

components

x
#
(t)"e (t)#x

&&
(t)#x

$1
(t) (14)

where e (t) is an (electrical) component proportional to the table error ("di!erence between the
table desired displacement, x

$
(t), and the actual displacement, x

5
(t), of the actuator arms)

conditioned through the PID control scheme;t the feed-forward (electrical) component x
&&
(t) is

proportional to the derivative of the desired displacement; and xdp(t) is an (electrical) component
proportional to the di!erential pressure across the actuator piston (referred to as the delta
pressure component). In Laplace notation, the PID conditioned table error component is given as

e (s)"CK130
#

1

s
K

*/5
#sK

$%3D[x
$
(s)!x

5
(s)] (15)

in which K
130

is the proportional control gain; K
*/5

is the integral control gain, and K
$%3

is the
derivative control gain.

The feed-forward (electrical) component, x
&&
(s), can be expressed as x

&&
(s)"sK

&&
x
$
(s) where

K
&&

is the feed-forward control gain. The di!erential pressure (electrical) component, x
$1

(s), can be
expressed as x

$1
(s)"K

$1
*P(s) where K

$1
is the delta pressure control gain,A and *P (s), the

di!erential pressure across the actuator piston, can be expressed in terms of the force in the
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s The reaction mass #exibility or foundation compliance a!ects the absolute motion of the slip table, the inertia forces
generated by the slip table mass and, consequently, the force in the actuator F

!
(t).

actuator F
!
(s) as *P(s)"F

!
(s)/A. Substituting all the above expressions into Equation (14) yields

the following expression for the servovalve electrical command signal x
#
(s):

x
#
(s)"CK130

#

1

s
K

*/5
#sK

$%3D[x
$
(s)!x

5
(s)]#sK

&&
x
$
(s)#K

$1

F
!
(s)

A
(16)

Substituting x
#
(s)"x

5
(s)/S(s) from Equation (13) into Equation (16) yields the following useful

general expression for the transfer function between the desired table displacement, x
$
(s), and the

actual displacement (relative to the body of the actuator or top of the reaction mass), x
5
(s), of the

actuator arm

H (s)"
x
5
(s)

x
$
(s)

"

S (s)[(1/s)K
*/5
#K

130
#s(K

&&
#K

$%3
)]

1#S (s)[(1/s)K
*/5
#K

130
)#sK

$%3
!((K

$1
/A)(F

!
(s)/x

5
(s))]

(17)

In this paper, H (s) is referred to as the &servo-hydraulic system transfer function'. It is worth
mentioning that the table control parameters K

130
, K

*/5
, K

$%3
, K

&&
, and K

$1
are user-set gains on

the controller.

2.4. Shaking table transfer function, ¹(s), including foundation compliance ewects

In reality, the actuator reaction mass is not perfectly rigid and "xed with respect to an inertial
reference system, but has some degree of #exibility (or compliance). As shown in Figure 4, the
absolute shaking table displacement, x

5!
(t), with respect to an inertial reference system (lab. #oor)

is obtained simply as the sum of the displacement, x
5
(t), of the actuator arm relative to the

reaction mass and the displacement of the reaction mass, x
"
(t), relative to the inertial reference

system (lab. #oor) as

x
5!
(t)"x

5
(t)#x

"
(t) (18)

The total shaking table transfer function de"ned as the transfer function between the desired
absolute table displacement, x

$
(s), and the actual absolute table displacement response, x

5!
(s),

thus takes the following expression:

¹(s)"
x
5!
(s)

x
$
(s)

"

x
"
(s)#x

5
(s)

x
$
(s)

"

x
5
(s)

x
$
(s)A

x
"
(s)

x
5
(s)

#1B"H@(s)(B (s)#1) (19)

in which H@(s)"x
5
(s)/x

$
(s) is the servo-hydraulic system transfer function as obtained using the

expression for the actuator force, F
!
(s), which takes into account the e!ects of reaction mass

#exibility or foundation compliance;s and B (s)"x
"
(s)/x

5
(s), referred to as the base transfer

function, is de"ned as the transfer function between the relative displacement, x
5
(s), of the

actuator arm and the displacement, x
"
(s), of the reaction mass relative to an inertial reference

system (lab. #oor).
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Figure 4. Coordinate system for shaking table and #exible base.

s Total mass of the system m
T
"m

"
#m

5
where m

"
denotes the reaction mass (including the mass of the "xed parts of the

servovalve}actuator system) and m
5
denotes the mass of the slip table (including the mass of the moving parts of the

servovalve}actuator system, namely the actuator piston and arm).
t The convention adopted throughout the paper is that compression in the actuator arm corresponds to a positive

actuator force F
!
(s).

From the equation of motion of the actuator reaction mass (modeled herein as an SDOF
system) subjected to the inertia force of the slip table accelerated by the actuator arm, it can be
shown that

B (s)"
x
"
(s)

x
5
(s)

"!

m
5

m
T

s2

s2#s2m
"
u

"
#u2

"

(20)

where m
T
"m

"
#m

5
is the total mass of the system;s u

"
"Jk

"
/m

T
and m

"
"c

"
/(2Jk

"
m

T
) are the

natural circular frequency and the damping ratio, respectively, of the reaction mass or #exible
foundation. In the above, k

"
represents the e!ective sti!ness of the reaction mass. If the reaction

mass is #exible internally, then m
"
becomes an e!ective total mass instead of the exact total mass.

Assuming that no friction exists between the slip table and the rails, that the actuator damping
is internal to the servovalve system and that the table is carrying no payload (i.e. bare table
condition), the force in the actuator, F

!
(t), is equal to the slip table mass, m

5
, multiplied by the slip

table absolute acceleration.t Thus

F
!
(s)"s2m

5
x
5!
(s)"s2m

5
x
5
(s)C1#

x
"
(s)

x
5
(s)D"x

5
(s)s2m

5
[1#B (s)] (21)
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s In Figure 5 and hereafter the magnitude and phase transfer functions of the table are plotted against the cyclic frequency
parameter f (in Hertz). The expression for the table transfer function in terms of f is simply obtained by using the
substitution s"i2n f (where i"J!1) in the table transfer function expressed in terms of the Laplace parameter &s'.

t In computing the table transfer function, the following values of the table parameters, corresponding to the Rice
University shaking table, are used [4, 5]: table gain factor: k

5
"5408 cm3/V s (330 in3/V s); leakage coe$cient:

k@
-%
"2.377]10~7 cm3/MPa s (10~10 in3/psi s); e!ective oil bulk modulus: b"675.7MPa (98,000 psi); piston e!ective

cross-sectional area: A"82.13 cm2 (12.73 in2); volume of oil column in the actuator:<"1668.86 cm3 (101.84 in3); mass
of the slip table including actuator piston and arm (moving parts): m

5
"576 kg (3.29 lbs s2/in corresponding to a table

weight of 1270 lbs); reaction mass including servovalve}actuator system ("xed parts): m
"
"40823kg (233 lbs s2/in

corresponding to a weight of 90,000 lbs). The three-stage servovalve transfer function with zero time delay in Equation
(3) is used. The proportional control gain K

130
is set to 0.394 V/cm (1.0 V/in), while all other table control gains are set to

zero.
A The rigid foundation model is obtained by taking a base transfer function B(s) equal to zero.
B An oil column frequency of 69.3 (Hz) is obtained for the parameters of the Rice University shaking table given earlier.

Substituting the above expression for F
!
(s) into Equations (13) and (17) reduces them to

S@ (s)"
x
5
(s)

x
#
(s)

"

H
5
(s)

s3[(<m
5
)/(4bA)][1#B (s)]#s2m

5
k
-%
[1#B (s)]#sA

(22)

H@(s)"
x
5
(s)

x
$
(s)

"

S@ (s)[(1/s)K
*/5
#K

130
#s (K

&&
#K

$%3
)]

1#S@ (s)[(1/s)K
*/5
#K

130
#sK

$%3
!s2 (K

$1
m

5
/A)[1#B (s)]]

(23)

where the ( )@ used for the transfer functions S (s) and H(s) indicates that they incorporate the e!ect
of reaction mass #exibility (or foundation compliance). Substituting the expressions for B (s) and
H@(s) in Equations (20) and (23) into Equation (19) gives a "nal expression for the table transfer
function ¹(s) under bare table condition.

Figure 5 compares the magnitude and phase of the table transfer function-,? for a #exible and
rigid foundation.A The dynamic characteristics of the #exible foundation for the Rice University
shaking table [4, 5] (u

"
"170 rad/s corresponding to 27 Hz, and m

"
"0.042) are used in generat-

ing these transfer functions. Notice the peak and notch sequence and the notch only in the
magnitude and phase, respectively, of the table transfer function in the neighborhood of the
foundation natural frequency. The large peak in the magnitude of the table transfer function at
about 70 Hz in Figure 5 is commonly referred to as the oil column peak. It is due to the resonance
behavior of the SDOF system having for spring the oil column enclosed in the two actuator
chambers and for mass that of the slip table, m

5
, including actuator piston and arm. The oil

column frequency is given by [4, 8]

f
0*-
"

A

pS
b
<m

t

"69.3 (Hz)B (24)

2.5. Ewects of payload on shaking table transfer function

Ideally, the dynamic performance of a shaking table should not be signi"cantly a!ected by the
payloads or the weight/con"guration of the test structure. However, in real situations when a test
structure (or payload) of signi"cant weight (relative to the mass of the table) is mounted on the
table, the transfer function of the shaking table system is a!ected. The e!ect of the payload
depends on its weight and dynamic characteristics. A very sti! payload a!ects the shaking table
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Figure 5. E!ect of base #exibility on the shaking table transfer function for bare table condition:
(a) magnitude of table transfer function with rigid and #exible base; (b) phase of table transfer

function with rigid and #exible base.

s The total shear force F
4
(s) transmitted by the payload to the slip table a!ects the base transfer function B(s) through the

force in the actuator F
!
(s).

system as if the mass of the slip table, m
5
, were increased by the weight of the payload. On the

other hand, a #exible payload a!ects the table transfer function in a much more complex way. In
this second case, the table transfer function ¹(s) in Equation (19) is modi"ed in order to
incorporate the e!ects that the total shear force F

4
(s) transmitted to the slip table by the #exible

payload has upon (a) the servovalve}actuator transfer function S (s), (b) the servo-hydraulic
system transfer function H (s), and (c) the base transfer function B (s).s It is noted that only test
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s The e!ects of test structures undergoing nonlinear inelastic deformations on the dynamic performance of the shaking
table system are out of the scope of this study. Treatment of such e!ects would require a time domain simulation
approach.

t Following the notation de"ned in Figure 6.

structures modeled as linear elastic SDOF and two-dimensional MDOF systems are considered
in this study.s

2.5.1. SDOF payload. First, we consider a payload acting as a single-degree-of-freedom (SDOF)
system. From structural dynamics [9] it is known that the transfer function, hereafter referred to
as payload transfer function, between the absolute displacement at the base of an SDOF system
and its absolute (or total) displacement response has the following expression in Laplace
notationt

H
1
(s)"

x
1!

(s)

x
5!
(s)

"

x
5!
(s)#x

1
(s)

x
5!
(s)

"1#
x
1
(s)

x
5!
(s)

"

s2m
1
u

1
#u2

1
s2#s2m

1
u

1
#u2

1

(25)

in which x
1!

(s) and x
1
(s) are the absolute and relative (to the slip table) displacements of the

SDOF payload; x
5!
(s) is the absolute (or total) displacement of the slip table; u

1
and m

1
are the

undamped natural circular frequency and damping ratio, respectively, of the payload.
With reference to Figure 6(b), the total shear force (spring plus damping forces), F

4
(s),

transmitted to the slip table by the SDOF payload is given by

F
4
(s)"!s2m

1
H

1
(s)[x

5!
(s)] (26)

As shown in Figure 6(b), the total shear force transmitted by the payload to the slip table, F
4
(s),

a!ects the motion of the reaction mass, as expressed by the following equation of dynamic
equilibrium of the reaction mass:

s2m
"
x
"
(s)#sc

"
x
"
(s)#k

"
x
"
(s)"!s2m

5
x
5!
(s)#F

4
(s) (27)

where c
"
and k

"
denote the e!ective damping and sti!ness coe$cients, respectively, of the reaction

or foundation mass.
Substituting the expression for F

4
(s) given in Equation (26) into Equation (27) and dividing

throughout by m
T
"m

"
#m

5
, we obtain the following expression for the base transfer function,

which incorporates the e!ects of an SDOF payload as indicated by the subscript &sdof '.

B
4$0&

(s)"
x
"
(s)

x
5
(s)

"

!s2(m
5
/m

T
)M1#(m

1
/m

5
)H

1
(s)N

s2M1#(m
1
/m

T
)H

1
(s)N#s2m

"
u

"
#u2

"

(28)

Figure 6(b) shows that in the presence of an SDOF payload, the force in the actuator, F
!
(s),

becomes

F
!
(s)"s2m

5
x
5!
(s)!F

4
(s) (29)
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Figure 6. Shaking table with #exible base and SDOF payload: (a) Coordinate
system; (b) Free body diagram.

Substituting the expression for F
4
(s) given in Equation (26) into Equation (29) and rearranging the

terms, we obtain

F
!
(s)"s2[m

5
#m

1
H

1
(s)]x

5!
(s)"s2m

5
x
5
(s)C1#

x
"
(s)

x
5
(s)DC1#

m
1

m
5

H
1
(s)D (30)

Then, recalling the de"nition B
4$0&

(s)"x
"
(s)/x

5
(s), the following compact expression is obtained

for F
!
(s):

F
!
(s)"s2m

5
x
5
(s)[1#B

4$0&
(s)]C1#

m
1

m
5

H
1
(s)D (31)
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s The dynamic characteristics of the 408 kg (900 lbs) payload modeled as an SDOF system with a "xed base natural
frequency of 10 Hz are: u

1
"62.8 rad/s, m

1
"0.02 and m

1
"408 kg (2.33 lbs s2/in).

For notational convenience, Equation (31) is rewritten as

F
!
(s)"s2m

5
x
5
(s)H

F1
(s) (32)

where the operator H
F1

(s) is de"ned as

H
F1

(s)"[1#B
4$0&

(s)]C1#
m

1
m

5

H
1
(s)D (33)

Substituting the expression for F
!
(s) in Equation (32) into Equations (13) and (17) reduces these

two equations to

S@
4$0&

(s)"
x
5
(s)

x
#
(s)

"

H
5
(s)

s3(<m
5
/4bA)H

F1
(s)#s2m

5
k
-%
H

F1
(s)#sA

(34)

H@
4$0&

(s)"
x
5
(s)

x
$
(s)

"

S@
4$0&

(s)[sK
&&
#K

130
#(1/s)K

*/5
#sK

$%3
]

1#S@
4$0&

(s)[K
130

#(1/s)K
*/5
#sK

$%3
!K

$1
(s2m

5
/A)H

F1
(s)]

(35)

In the above equations, the ( )@ and ()
4$0&

indicate that the e!ects of foundation #exibility and
SDOF payload are both accounted for.

The base and servo-hydraulic system transfer functions in Equations (28) and (35), respectively,
are then used to obtain the following total shaking table transfer function, ¹

4$0&
(s), which accounts

for both foundation #exibility and the presence of an SDOF payload on the table:

¹
4$0&

(s)"
x
"
(s)#x

5
(s)

x
$
(s)

"

x
5
(s)

x
$
(t)A

x
"
(s)

x
5
(s)

#1B"H@
4$0&

(s)(B
4$0&

(s)#1) (36)

Figure 7 compares the magnitude and phase of the table transfer function for: (a) bare table
condition, (b) a 408 kg (900 lbs) rigid payload, and (c) a 408 kg (900 lbs) SDOF payload.s It is
observed that the #exible payload introduces a peak and notch distortion in the magnitude and
a notch distortion in the phase of the table transfer function in the neighbourhood of the "xed
base SDOF payload natural frequency. The table transfer functions in Figure 7 are obtained
using the same table parameters as those used for the table transfer functions in Figure 5.

2.5.2. MDOF payload. To capture the dynamic behaviour of a shaking table loaded with
a multi-degree-of-freedom (MDOF) payload, a new expression must be developed for the table
transfer function ¹(s). The present study considers a two-dimensional multi-storey frame-type
test specimen as shown in Figure 8. As in the case of an SDOF payload, the total shear force
transmitted by the payload to the table, F

4
(s), a!ects the force in the actuator arm F

!
(s), which in

turn a!ects (a) the motion of the #exible foundation and thus the base transfer function B (s),
(b) the servovalve}actuator transfer function S (s), and (c) the servo-hydraulic system transfer

UNI-AXIAL SERVO-HYDRAULIC SHAKING TABLE SYSTEM 1389

Copyright ( 2000 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2000; 29:1375}1404



Figure 7. (a) Magnitude and (b) phase of table transfer function (including base #exibility) for (i)
bare table condition, (ii) table loaded with a 408 kg (900 lbs) rigid payload, and (iii) table loaded

with a 408 kg (900 lbs) SDOF payload.

function H(s). Referring to the N-storey building frame model displayed in Figure 8, the equation
of motion of the MDOF payload can be written in the usual matrix form

[m
1
]Mx(

1
(t)N#[c

1
]MxR

1
(t)N#[k

1
]Mx

1
(t)N"![m

1
]M1N(xK

"
(t)#xK

5
(t)) (37)

where

[mp](N]N)
"C

m
1,1 2 0

2 2 2

0 2 m
1,N
D is the lumped mass matrix of the building model
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Figure 8. Table loaded with an MDOF payload: coordinate system.

[cp](N]N)
"C

cp,11 2 cp,1N

2 2 2

cp,N1 2 cp,NN
D is the damping matrix of the building model

[kp](N]N)
"C

kp,11 2 kp,1N

2 2 2

kp,N1 2 kp,NN
D is the (condensed) lateral sti!ness matrix of the building

model

Mxp(t)N(N]1)"C
xp1

F

xpND is the vector of #oor lateral displacements relative to the slip table (or base
of the building model);

M1N(N]1)"C
1

F

1 D is an N-dimensional vector of unit load in#uence coe$cients.
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s Inertia force of nth #oor"!m
n
xK
1!,n

(t) or, in Laplace notation, !s2m
/
x
1!,n

(s).
t Mx

1!
(t)N"x

5!
(t)M1N#Mx

1
(t)N.

Assuming orthogonal (classical) damping and using mode superposition [9], it is possible to
obtain the following expression, in Laplace domain, for the transfer function MH

1.
(s)N between

the absolute displacement at the base of the MDOF payload (which corresponds to the table
absolute displacement x

5!
(s)) and the vector of #oor lateral displacements relative to the table

Mx
1
(s)N

MH
1.

(s)N"
Mx

1
(s)N

x
5!
(s)

"!

N
+
n/1

M/
n
N
M/

n
NT[m

1
]M1N

M
n

s2

s2#s2m
n
u

n
#u2

n

(38)

where

M/
n
N"C

/
n1

/
n2
F

/
nN
D is the nth undamped vibration mode shape of the test structure (under "xed

base condition);

[']"[M/
1
N M/

2
N2M/

n
N] is the modal matrix or matrix of undamped mode shapes;

[M]"[']T[m
1
]['] is the diagonal modal-coordinate generalized mass matrix;

[C]"[']T[c
1
]['] is the diagonal modal-coordinate generalized damping matrix;

[K]"[']T[k
1
]['] is the diagonal modal-coordinate generalized sti!ness matrix;

M
n
, C

n
, and K

n
are the nth diagonal elements of the modal-coordinate generalized mass, damping,

and sti!ness matrices [M], [C], and [K], respectively; u
n
"(K

n
/M

n
)1@2 and m

n
"C

n
/(2M

n
u

n
) are

the undamped natural circular frequency and damping ratio, respectively, of the nth mode of
vibration of the MDOF payload under "xed base condition.

The total base shear force (elastic#damping forces), F
4
(s), transmitted by the #exible MDOF

payload to the table can be obtained as the sum of all #oor inertia forces- as

F
4
(s)"!s2

N
+
n/1

m
n
x
1!/

(s)"!s2M1NT[m
1
]Mx

1!
(s)N"!s2M1NT[m

1
]MMx

1
(s)N#M1Nx

5!
(s)N (39)

in which Mx
1!

(s)N denotes the vector of #oor absolute (or total) lateral displacements of the
MDOF payload.t Substituting the expression for Mx

1
(s)N given in Equation (38), namely

Mx
1
(s)N"MH

1.
(s)Nx

5!
(s), into the last term of Equation (39) yields the following expression for the

total shear force F
4
(s) transmitted to the table by the MDOF payload:

F
4
(s)"!s2M1NT[m

1
](MH

1.
(s)N#M1N)x

5!
(s) (40)
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For convenience of notation, Equation (40) is rewritten in the more compact form

F
4
(s)"!s2H

1.-
(s)x

5!
(s) (41)

where the scalar operator H
1.-

(s) is de"ned as

H
1.-

(s)"M1NT[m
1
](MH

1.
(s)N#M1N) (42)

Substituting the expression for the payload total shear force, F
4
(s), obtained in Equation (41) into

the equation of dynamic equilibrium of the reaction mass, Equation (27), gives the following
expression for the base transfer function B (s) :

B
.$0&

(s)"
x
"
(s)

x
5
(s)

"

!s2 ((m
5
/m

T
)#(H

1.-
(s)/m

T
))

s2(1#(1/m
T
)H

1.-
(s))#s2m

"
u

"
#u2

"

(43)

The subscript &mdof ' attached to the above base transfer function emphasizes that the latter
incorporates the e!ects of an MDOF payload.

The total shear force F
4
(s) transmitted to the slip table by the MDOF payload also a!ects the

value of the force in the actuator F
!
(s), which becomes

F
!
(s)"s2m

5
x
5
(s)H

F2
(s) (44)

where the scalar operator H
F2

(s) is de"ned as

H
F2

(s)"[1#B
.$0&

(s)]C1#
H

1.-
(s)

m
5
D (45)

Substituting the expression for F
!
(s) given in Equation (44) into Equations (13) and (17) reduces

these two equations to

S@
.$0&

(s)"
x
5
(s)

x
#
(s)

"

H
5
(s)

s3(<m
5
/4bA)H

F2
(s)#s2m

5
k
-%
H

F2
(s)#sA

(46)

H@
.$0&

(s)"
x
5
(s)

x
$
(s)

"

S@
.$0&

(s)[sK
&&
#K

130
#1/sK

*/5
#sK

$%3
]

1#S@
.$0&

(s)[K
130

#(1/s)K
*/5
#sK

$%3
!(K

$1
(s2m

5
/A)H

F2
(s)]

(47)

In the above equations, the ( )@, and ( )
.$0&

indicate that the e!ects of foundation #exibility and
MDOF payload are both accounted for. Finally, the total shaking table transfer function,
¹
.$0&

(s), for the shaking table loaded with an MDOF payload is obtained as

¹
.$0&

(s)"
x
"
(s)#x

5
(s)

x
$
(s)

"H@
.$0&

(s)(B
.$0&

(s)#1) (48)

Figure 9 compares the magnitude and phase of the table transfer function for (a) bare table
condition and (b) a 408 kg (900 lbs) 3-DOF shear building payload. These table transfer functions
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Figure 9. (a) Magnitude and (b) phase of table transfer function (including #exible base) for (i) bare table
condition and (ii) table loaded with a 408 kg (900 lbs) 3-DOF payload.

were obtained using the table parameters de"ned earlier. The dynamic characteristics of the
3-DOF shear building payload are as follows:

Undamped natural circular frequencies:

u
1
"37.52A

rad

s B, u
2
"99.55A

rad

s B, u
3
"145.54A

rad

s B
Undamped vibration mode shapes:

M/
1
N"C

0.2928

0.5731

0.7654D , M/
2
N"C

0.6605

0.4576

!0.5953D , M/
3
N"C

0.6914

!0.6799

0.2446D
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s A forthcoming paper will present (a) a procedure for optimum shaking table tuning based on the analytical shaking
table model developed herein and (b) a correlation study between analytical and experimental shaking table transfer
functions for optimum control parameter settings corresponding to various payload conditions.

t For meaningful shaking table response, the proportional gain must take a non-zero value. Thus, when the individual
e!ects of the other control gain parameters were analyzed, the proportional gain K

130
was always kept equal to

0.394 V/cm (1.0 V/in).

Modal damping ratios: m
1
"m

2
"m

3
"0.02

Floor masses: m
1
"m

2
"m

3
"136 kg (0.7772 lbs s2/in)

Storey lateral sti!nesses (from base to top):

k
1
"1067.7 kN/m,

(6097 lbs/in)

k
2
"915.2 kN/m,

(5226 lbs/in)

and k
3
"762.7 kN/m

(4355 lbs/in)

We observe that: (a) the #exible MDOF payload produces a peak and notch distortion and only
a notch distortion in the magnitude and phase, respectively, of the table transfer function near the
three payload natural frequencies, (b) the present payload, which is realistic, a!ects only insigni-
"cantly both the frequency and amplitude of the oil column peak as compared to the bare table
condition, and (c) the peak in the magnitude of the table transfer function due to foundation
compliance is slightly reduced by the presence of the payload, mainly due to dynamic interaction
with the third mode of vibration of the payload.

3. SENSITIVITY ANALYSIS OF SHAKING TABLE TRANSFER FUNCTION

Based on the shaking table transfer function developed herein from basic principles and well
validated experimentally [4, 5], an in-depth sensitivity analysis was performed to investigate the
e!ects and relative importance of the various parameters (control gain parameters, payload
characteristics, and servovalve time delay) that a!ect the shaking table dynamics. The purpose of
this sensitivity analysis is to identify the general performance trend of the shaking table system
under a wide range of operating and payload conditions. Also in order to better capture (or
enhance) the individual e!ects of the various parameters, this sensitivity analysis was performed
using control gain settings that are di!erent from those used for optimum shaking table
performance.s Thus, the shaking table transfer function sensitivity analysis to control gain
parameters is performed by increasing, starting from zero, the value of one control gain
parameter at a time, while keeping the other control gain parameters at zero, expect for the
proportional gain K

130
.t

3.1. Sensitivity to table control gain parameters

In this section, we analyse the sensitivity of the total shaking table transfer function to the various
control gain parameters (K

130
, K

*/5
, K

$%3
, K

&&
and K

$1
) using the analytical expression for the table

transfer function ¹(s) in Equation (19) for bare table condition, which accounts for the #exibility
of the reaction mass.
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Figure 10. E!ects of the PID control gains upon the shaking table transfer function for bare table condition:
(a), (b): K

130
"0.39, 0.79, 1.18, 1.57, 1.97, 2.36 V/cm (1, 2, 3, 4, 5, 6 V/in); (c), (d): K

*/5
"0, 7.87, 15.75,

23.62 V/cm s (0, 20, 40, 60 V/in s); (e), (f ): K
$%3

"0, 3.94, 7.87, 11.81, 15.75 Vms/cm (0, 10, 20, 30, 40 Vms/in).

3.1.1. Sensitivity to PID control gains. Figure 10 shows the shaking table transfer function
sensitivities to the PID gains. It is observed that the main e!ect of increasing the proportional
gain, K

130
, is to raise the magnitude of the transfer function in the low and intermediate frequency

range (from 0 to 60 Hz). An increase in the proportional gain also improves the phase transfer
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s Frequency at which the phase of the transfer function changes sign.

function by reducing the phase shift in the low and intermediate frequency range. The inversion
frequency,s which occurs at the oil column frequency, is not a!ected by the proportional gain. An
increase in the integral gain, K

*/5
, raises the magnitude of the table transfer function mainly in the

low-frequency range (from 0 to 30 Hz) and improves the phase response of the table in the very
low-frequency range (0}15 Hz). Increasing the derivative gain, K

$%3
, has the main e!ect of

increasing the amplitude of the oil column peak and simultaneously reducing the oil column
frequency. An increase in K

$%3
also raises the magnitude of the table transfer function in the

intermediate frequency range (5}40 Hz). However, an increase in the derivative gain increases
signi"cantly the phase shift between table command and table response in the low and intermedi-
ate frequency range (5}50 Hz).

3.1.2. Sensitivity to feed-forward (FF) and di+erential pressure (*P) control gains. Figure 11 shows
the sensitivities of the shaking table transfer function to the feed-forward, K

&&
, and di!erential

pressure, K
$1

, gains. Observe that increasing K
&&

heightens and widens the oil column peak, but
improves dramatically the phase performance of the table in the low and intermediate frequency
range. An increase in the delta pressure gain, K

$1
, reduces the magnitude of the oil column peak

without a!ecting the oil column frequency, thus explaining the common reference to the dP-gain
as &numerical damping'.

3.2. Sensitivity to payload characteristics

Two separate sensitivity analyses were performed: the "rst one to investigate the e!ects of a rigid
payload of varying mass upon the total shaking table transfer function, and the second to
investigate the e!ects of a #exible SDOF payload (which, for a given mass and damping ratio, is
characterized by its natural vibration frequency). The control gain setting used to perform these
sensitivity analyses (K

130
"0.394 V/cm (1.0 V/in), K

*/5
"K

$%3
"K

&&
"K

$P
"0) was chosen so as

to enhance the payload e!ects on the table transfer function.

3.2.1. Sensitivity to rigid payload. Figures 12(a) and 12(b) show that an increase in the mass of the
rigid payload (a) lowers the oil column frequency without a!ecting the amplitude of the oil
column peak, (b) raises slightly the magnitude of the table transfer function in the intermediate
frequency range (20}40 Hz), and (c) increases slightly the peak and the notch distortion (due to
foundation compliance) in the magnitude and phase, respectively, of the table transfer function.
Increasing the weight of the rigid payload also a!ects the phase of the table transfer function by
lowering its inversion frequency which simply follows the lowering of the oil column frequency.

3.2.2. Sensitivity to yexible SDOF payloads. Figures 12(c) and 12(d) display a three-dimensional
plot and corresponding contour plot, respectively, of the transfer function of the shaking table
loaded with a 272 kg (600 lbs) SDOF payload of varying natural frequency and 5 per cent
damping ratio. These plots show clearly the peak arising in the table transfer function in the
vicinity of the payload natural frequency. With varying payload natural frequency, this peak
follows approximately the 453 line between the frequency and payload natural frequency axes. It
is also observed that when this line of resonant peaks intersects the oil column frequency region
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Figure 11. E!ects of the feed-forward and di!erential pressure gains upon the shaking table transfer function
for bare table condition: (a), (b): K

&&
"0, 7.87, 11.81, 15.75 Vms/cm (0, 20, 30, 40 Vms/in); (c), (d): K

$1
"0,

145.0, 290.1, 435.1, 580.1 V/MPa (0, 1, 2, 3, 4 V/psi).

(frequency band between 50 and 70 Hz), a strong dynamic interaction occurs between the payload
and the oil column in the actuator giving rise to two very high peaks: one at a frequency lower
than the oil column frequency for rigid payload condition and the other at a frequency higher
than the oil column frequency for bare table condition.

Figures 12(e)}12(g) give a sequence of detailed cross-sections of the three-dimensional table
transfer function of Figure 12(c). From Figure 12(e), it is observed that as the payload natural
frequency increases starting from the low-frequency end, (a) the payload peak and notch increase
in amplitude with the bottom of the notch located precisely at the payload natural frequency, and
(b) the oil column peak increases and shifts to the right (i.e. apparent oil column frequency
increases). Also note in Figure 12(e) the dynamic interaction between the payload with 30 Hz
natural frequency and the #exible reaction mass which has a natural frequency around 27 Hz. For
#exible payloads, the apparent oil column peak is very close to that for bare table condition as
shown in Figure 12(e) for a payload with a natural frequency of 10 Hz. Although not shown here
due to space limitation, it was found that for a given natural frequency, the payload peak and
notch distortion increases in size for increasing payload weight. As the payload natural frequency
continues to increase, (a) the payload peak increases dramatically as shown in Figure 12(f ) for the
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Figure 12. E!ects of the payload upon the shaking table transfer function: (a), (b): E!ect of rigid payload of
increasing mass; (c), (d): 3D and contour plots of magnitude of table transfer function; (e), (f): E!ect of 272 kg
(600 lbs) SDOF payload of increasing natural frequency. E!ects of payload upon the shaking table transfer
function: (g) E!ect of 272 kg (600 lbs) SDOF payload of increasing natural frequency; (h), (i): Limit cases:

extremely sti! and extremely #exible 272 kg (600 lbs) SDOF payload.

payload natural frequency of 45 Hz, and then decreases back, (b) with some &frequency
delay' relative to the payload peak, the apparent oil column peak also increases dramatically as
shown in Figure 12(e) for the payload natural frequency of 55 Hz and decreases back as shown in
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Figure 12. Continued.

Figure 12(g). Note in Figure 12(f) that the bottom of the now very wide payload notch is still
located precisely at the payload natural frequency.

As the SDOF payload natural frequency keeps increasing beyond the oil column frequency for
bare table condition ("69.3 Hz), both the payload peak and the apparent oil column peak
decrease in size while their respective frequencies increase as shown in Figure 12(g). It is very
interesting to observe from Figures 12(g) and (e) that with the payload natural frequency
continuing to increase, the payload peak tends asymptotically to the apparent oil column peak
for rigid payload condition. Thus, for high and increasing payload natural frequency, the former
payload peak mutates progressively into the apparent oil column peak, while the former apparent
oil column peak takes progressively the role of the payload peak. Note that at low payload
natural frequency, the payload introduces a peak and notch sequence on the table transfer
function, see Figure 12(e), while at high payload natural frequency, the notch precedes the peak,
see Figure 12(g). But for any payload natural frequency, the bottom of the notch is located
precisely at the payload natural frequency. Figures 12(h) and 12(i) show that the table transfer
function developed tends to the correct limits, namely to the table transfer function for rigid
payload as the payload becomes &in"nitely' sti! (here a payload natural frequency of 1000 Hz was
considered), and to the table transfer function for bare table condition as the payload becomes
&in"nitely' #exible (here a payload natural frequency of 0.001 Hz was considered). Very #exible
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s The shear building models considered have well-spaced natural vibration frequencies.
t As de"ned by Chopra [9].
A Experimental}analytical correlation studies performed by the authors have shown that the servovalve time delay q plays

a fundamental role in the understanding of actual shaking table dynamics [4, 5]. In fact, without accounting properly for
the servovalve time delay, only a qualitative interpretation of experimental shaking table results is possible through the
analytical shaking table model developed here. On the other hand, the shaking table model incorporating the servovalve
time delay proved capable to predict very well the observed shaking table dynamics (in terms of total shaking table
transfer function).

payloads &decouple' from the shaking table in the sense that they do not a!ect the table transfer
function (i.e. their presence is not felt by the shaking table).

3.2.3. Sensitivity to yexible MDOF payload. The numerical investigations performed using the
shaking table model developed indicate that the e!ect upon the table transfer function of an
MDOF shear-building-type payloads of realistic mass and sti!ness properties can be approxi-
mated very well by that of an SDOF payload with natural frequency equal to the "rst modal
frequency of the MDOF payload and mass equal to the e!ective modal masst of the "rst mode of
the MDOF payload [4, 5].

3.3. Sensitivity to servovalve time delay

In this section, we analyse the e!ect (upon the shaking table transfer function for bare table
condition) of the servovalve time delay q introduced in the three-stage servovalve transfer
function H

5
(s) in equation (6). This time delay in the response of the main stage servovalve spool

to a given electrical signal was observed experimentally to be on the order of 0.01 s [4, 5] which
motivated its inclusion in the dynamic shaking table model developed.A As shown in Figures
13(a)}13(f), the servovalve time delay q can a!ect signi"cantly both the amplitude and phase of the
shaking table transfer function. As observed from these "gures, the e!ects of the servovalve time
delay do not follow a simple behavioral trend. Note that di!erent values of q can change both
the amplitude and frequency of the oil column peak. Furthermore, large values of q can produce
sharp and high peaks in the very low frequency range, similar to those produced by the integral
gain K

*/5
of the PID table displacement controller as shown in Figure 10(c). Some of these very

low frequency peaks were observed experimentally and could be explained only by the servovalve
time delay [4, 5].

4. CONCLUSIONS

In this paper, a linear dynamic model for uni-axial, stroke-controlled servo-hydraulic shaking
table systems is developed from basic principles and using a versatile modular formulation. The
model consists of an analytical expression for the transfer function, called total shaking table
transfer function, between the desired/commanded absolute table displacement (or acceleration)
and the actual absolute table displacement (or acceleration). Compared to the previous work by
other researchers on shaking table modelling, the present model has the advantage of incorporat-
ing, in closed-form, servovalve time delay, reaction mass or foundation compliance, and MDOF
payload e!ects. The predictive capabilities and robustness of this shaking table model are
substantiated by an in-depth experimental}analytical correlation study [4, 5] performed by the
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Figure 13. E!ects of servovalve time delay &q' upon the shaking table transfer
function for bare table condition.

authors based on the Rice University shaking table. This correlation study will be the object of
a forthcoming paper.

The shaking table model developed, based on the characteristics of the Rice shaking table, is
then used to perform a comprehensive sensitivity analysis of shaking table dynamics with respect
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to (a) the proportional, integral, derivative, feed-forward, and di!erential pressure control gain
parameters (of the displacement feedback table controller), (b) the payload dynamic character-
istics, and (c) the servovalve time delay. The analytical sensitivity analysis with respect to SDOF
payload natural frequency reveals a very interesting and complex dynamic interaction between
the oil column in the actuator and the payload when the payload natural frequency approaches
the oil column frequency. Understanding of this strong dynamic interaction is very important,
especially for small shaking tables which require the use of small-scale test specimens with high
natural frequencies. The sensitivity study also reveals that the servovalve time delay has a signi"-
cant e!ect upon the total shaking table transfer-function.

In summary, the uni-axial, stroke-controlled, servo-hydraulic shaking table model presented in
this paper is extremely useful in: (a) understanding the dynamics of a shaking table system and
how it is in#uenced by control gain parameters, characteristics of the test structure, and base (or
foundation) compliance; (b) guiding the optimal tuning of the table control gain parameters for
a given test specimen and shaking table experiment; (c) designing shaking table experiments (i.e.
pre-test simulation of experiments); (d) interpreting experimental shaking table results; and
(e) formulating an e$cient o!-line control algorithm to control table acceleration with a displace-
ment feedback controller. Furthermore, the model presented here provides a useful tool for
designing new and upgrading existing servo-hydraulic shaking table systems of the type con-
sidered here.

By following the versatile, modular modelling approach used herein, the present uni-axial
servo-hydraulic shaking table model can be further extended to include characteristics of other
types of earthquake simulators [10] (e.g. digital control schemes, velocity/acceleration control
systems, adaptive inverse control schemes, multi-axial tables, etc).
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