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Discrete time-varying autoregressive - -  moving average (ARMA) models are 
used to describe realistic earthquake ground motion time histories. Both 
amplitude and frequency nonstationarities are incorporated in the model. An 
iterative Kalman filtering scheme is introduced to identify the time-varying 
parameters of an ARMA model from an actual earthquake record. Several model 
verification tests are performed on the identified model. Applications of these 
identification and verification procedures are given and show that the proposed 
models and identification algorithms are able to capture accurately the 
nonstationary features of real earthquake accelerograms, especially the time- 
variation of the frequency content. The well-known Kanai-Tajimi earthquake 
model is covariance equivalent with a subset of the low order ARMA(2,1) model. 
Using the results and methodology of this study, the parameters of a time-varying 
Kanai-Tajimi earthquake model can be estimated from a target earthquake 
record or they can be directly associated with characteristic earthquake features 
such as predominant frequency and frequency bandwidth. 

Key words: earthquake ground motion, nonstationary, time-varying ARMA 
model, identification, verification, Kalman filtering. 

I N T R O D U C T I O N  

When designing earthquake-resistant structures, the 
ultimate goal of  the earthquake engineer is to save 
human lives and reduce the extent of  structural damage. 
However, the challenge consists in providing structural 
safety under economic constraints, which dictates a 
tolerance for some degree of structural damage inflicted 
during severe earthquake motions. I f  one accepts that 
part  of  the seismic input energy in the structure is 
dissipated by means of  ductile inelastic deformations, 
the seismic loads to which the structure is subjected are 
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reduced (from the elastic condition). Presently, most 
seismic design codes rely implicitly or explicitly on 
ductile inelastic structural behavior to withstand severe 
earthquake motions. The task of the earthquake 
engineer is further complicated l~y two important  facts: 
(i) the considerable uncertainty associated with the 
expected seismic excitation, and (ii) the possibility of  
high sensitivity of  inelastic structural behavior with 
respect to t h e  details of  the ground motion time 
history. 3,14 

Considerable uncertainty is attached to each level of  
the ground motion generation mechanism. The precise 
nature of  the fault rupture process, the characteristics of  
the wave propagat ion path and the local site con- 
ditions are all very uncertain. The resulting uncertainty 
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contained in the ground motion at a given site must 
be quantified and used in analysis, design, and risk 
assessment of structures. A probabilistic approach offers 
an attractive way to handle this complicated problem. 
For structural response prediction purposes, earthquake 
ground motions are commonly defined in terms of 
global parameters, (e.g. magnitude, epicentral distance, 
duration, peak ground motions, predominant fre- 
quency), or ground motion time histories consistent 
with the design site conditions. For example, when using 
the response spectrum analysis technique 9 to estimate 
the peak response of linear and nonlinear structures, the 
earthquake excitation is defined in terms of a design 
response spectrum which is obtained empirically from 
peak ground acceleration, velocity and displace- 
ment. 22'23 The uncertainty associated with the global 
ground motion parameters and the uncertainty carried 
by the detailed structure of the ground motion time 
history can be treated separately in a probabilistic 
conditioning setup. The first type of uncertainty can be 
handled using probabilistic seismic hazard analysis 
techniques. 4 To model the second type of uncertainty, 
the paradigm of viewing an actual earthquake ground 
motion as a single realization of an underlying 
stochastic earthquake process is used. Although sto- 
chastic earthquake models have been widely accepted in 
the engineering profession, many of them are not able to 
capture well enough all the features of actual seismic 
records which are important for structural response 
predictions. 

The study reported in this paper deals only with the 
uncertainty contained in the ground motion time history 
and uses time-varying, linear, discrete, stochastic 
processes for realistic modeling of  earthquake ground 
motions. The emphasis is placed on model identifica- 
tion, model verification, relationship with a classical 
continuous model, and investigation of the statistical 
distribution of traditional ground motion parameters 
using the fitted earthquake models. 

ARMA MODELS FOR EARTHQUAKE GROUND 
MOTIONS 

Stationary case 

The general time-invariant ARMA model of order 
(p, q), abbreviated ARMA(p,  q), is represented by the 
following stochastic linear difference equation: 

ak - ~blak_l . . . . .  dppak-p = ek --  O l e k - i  . . . . .  Oqek_q 

(1) 

In this equation, {ak = a(kAt ) ,  k = 0, 1 ,2 , . . .}  repre- 
sents the discrete earthquake ground acceleration 
process, At the sampling time interval, {eg} a zero- 

2 and (hi, mean Gaussian white-noise of  variance o.e, 

i = 1 . . . .  p) and (Oi, i =  1 , . . . ,  q) the autoregressive and 
moving average coefficients, respectively. By using eqn 
(1) recursively, the ARMA(p,  q) model can be expressed 
as a pure MA model of infinite order or ARMA(0, oe) if 
the stability conditions are satisfied. The latter ensure 
that the influence of the driving noise {ek} in the remote 
past on the present value of the process {ak} becomes 
vanishingly small. The stability conditions are expressed 
in terms of the autoregressive parameters only. 
Similarly, by recursive use of eqn (1), the ARMA(p,  q) 
model can be transformed into a pure AR model of 
infinite order or ARMA(ec,  0) provided the invertibility 
conditions are satisfied. The latter warrant that the 
influence of the past values of the process {ak} on the 
present one becomes smaller as we go further in the past. 
The inverse situation is physically meaningless and the 
invertibility conditions are usually imposed when 
modeling physical systems. The invertability conditions 
are expressed in terms of the moving average parameters 
only. If the stability conditions are satisfied, the output 
process {ak} has a finite variance and is a discrete 
stationary Gaussian process completely described by its 
mean function (#a = 0) and autocovariance or auto- 
correlation function in the time domain or its spectrum 
in the frequency domain. 5 The definitions of the time 
and frequency domain second-order statistical proper- 
ties are given next: 

Autocovariance function: 

7n = E [(a k -- # a ) ( a k + n  -- ~a)] (2) 

Autocorrelation function: 

'~n = E [akak+n] (3) 

Variance: 

Var [ak] = 0-2a = 70 (4) 

Autocorrelation coefficient function: 

P, = E [(ak - #a)(ak+, - #a)] = __7" (5) 
aa 2 70 

One-sided spectrum: 

q 2 
1 - Z Oj e -i2~ffAt 

p ( f )  = 20.2 j=l I 
1 P 2 - - Z  ff)je-i27rffA` At, (0 -< f--< fNyq) 

j=l  I 

(6) 

In the above, E[.] represents the expectation operator 
and i = x/Z1. If q - p  < 0, the autocorrelation function 
On consists of a mixture of damped exponentials and/or 
damped sine waves. 5 The spectrum defined in eqn (6) is 
the discrete counterpart of  the power spectral density 
(PSD) function encountered in continuous-time random 
vibration theory. The mean square (or variance since 
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#a = O) of the ARMA process {ak} can be obtained 
from the one-sided spectrum: 

Var [ak] = 2 = p( f )  d f  (7) 

As indicated by eqn (7), the spectrum p( f )  has a 
physical interpretation as the distribution of the average 
energy (or mean square) of the process over the 
continuous range of frequency [0,fNyq] where 
fNyq = 1/(2At) stands for the Nyquist frequency or 
highest frequency which can be observed in the discrete 
time series {ak}. 

Physical interpretation 

Under certain conditions, the ARMA processes can be 
interpreted as continuous-time response processes of 
dynamic systems uniformly sampled at time interval At. 
For example, it can be shown 12A9 that the response 
covariance function of a white-noise excited n-degree-of- 
freedom (n-dof) continuous-time linear dynamic system 
discretely coincides with the covariance function of an 
ARMA(2n, 2 n -  1) discrete process. The parameters of 
the ARMA(2n, 2 n -  1) model depend on the dynamic 
characteristics of the covariance-equivalent n-dof sys- 
tem, (i.e. natural periods and modal damping ratios) 
and the properties (temporal and spatial) of the white- 
noise excitation vector. This property represents an 
important advantage of using discrete ARMA models 
instead of continuous-time models for earthquake 
ground motion modeling, since discrete models are 
easier to identify from real digital seismic data and can 
still be interpreted in terms of continuous-time dynamic 
models. As an important illustration, the covariance 
equivalence existing between the low order ARMA(2, 1) 
model and the well-known continuous Kanai-Tajimi 
model is presented in the next section. 

ARMA(2, 1) model 

The ARMA(2, 1) model is defined by the second order 
difference equation 

a k - -  6 1 a k _ l  - -  6 2 a k _ 2  = e k - -  O l e k _  1 (8 )  

and is completely characterized by four parameters: 61, 
62, 01, and tre 2. The stability region for the autoregressive 
parameters 61 and ~h2 corresponds to the triangular 
region shown in Fig. 15 and the invertibility condition is 
satisfied if 1011 < 1. 

The underlying physical system corresponding to the 
ARMA(2,1) model is the linear viscously damped 
SDOF system represented in Fig. 2 where m = mass of 
the SDOF oscillator, k = linear spring stiffness, 
c = dashpot damping coefficient, X(t) : input displace- 
ment applied separately to the spring and the dashpot in 
proportions Cs and Co, respectively, Z(t) = absolute dis- 
placement of the SDOF system (measured with respect 

~2 

_l] 
Fig. 1. Stability region. 

to a fixed inertial coordinate frame). The equation of 
motion of the SDOF system can be written as: 

- c  [.~(t) - CoX(t)] - k[Z(t) - GX(t)] = mZ(t) (9) 

By defining ,;2 = k /m and 2~g~g -- c/m, the equation of 
motion can be rewritten in the standard form: 

Z(t) + 2~g~g2(t) + ~ Z ( t )  = Cs~X(t)  + 2Cd~g~g.,~'(t ) 

(10) 

It can be shown 8'1° that if the input acceleration process 
~-(t) is a continuous white-noise of constant power 
spectral density 60, then the continuous response 
process a(t) = Z(t) is covariance equivalent (discretely 
coincident) with the discrete ARMA(2, l) process. For 
the continuous, as well as the discrete case, the 
autocovariance and autocorrelation functions (ACF) 
coincide since both input and output have a zero mean. 
The equivalence between the parameters of the discrete 
model (¢1,¢2,01,~e 2) and the parameters of the con- 
tinuous model (~g, ~g, Cs/Cd, 60) is obtained by compar- 
ing and equating, at all discrete times tn =nAt ,  
n = 0, 1 ,2 , . . . ,  the autocorrelation functions of the 
discrete and continuous models. The latter are pre- 
sented in Tables 1 and 2, respectively, where the 
autocorrelation function is expressed as the product of 
the variance (= mean-square value) and the autocorre- 
lation coefficient function (ACCF) Pn or p(T). In the 
case of the discrete ARMA(2, 1) model, the ACF can 

c s x(t) 
b k 

I, C 

z(t) 

m 

C) O 

Fig. 2. Underlying physical system. 
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Table 1. Discrete autocorrelation coefficient function p. 

Zone p, = p(nAt), n = 0, 1,2,... 

Pn = en/2 ln(-¢2)COS (nO - -  #d) 
cos ( - m )  

// 2Pl_Zel .'~ 
m =arctantv/_(¢~+402) ), O=arccos 

01(1 - - 0 1 2 - 0 1 0 1 ) - 0 1 ( 1  - -02  ) 

Pl = (1 -- 02)(1 + 02 -- 0101) -- 0101(l + 02) 

II 

I p~ = e ~" cosh (6n) -¢ e c p l  - -  cosh ( 6 )  [ sinh (6) sinh (6n)] 

01 + q O  2 + 402 
c = ½ In (-.2), 6=½In 

01 - ~/~ + 402 

p~ as for Zone I 

III 

f p ,=e  ~ (-1) ~cosh(6n)+(-l) "+le-cpl +c°sh(6) sinh(6n) [ sinh (6) ] 

c, 6, and Pl as for Zone II 

IV 

Variance: 

{ P n  = eCn cosh (6n) + (-1) n+le-cpl -cosh (6) sinh (6n) 
[ sinh (6) ] 

, ½In( C =  = 01 - - ~ ) ,  and pl as for Zone I 

2 (l -- 02)(1 + 012) 20101 2 (Zones I, II, III, IV) E[a~] = a a = (1 ~- ~ 1  C~)T---~-~ O-e 

Table 2. Continuous autocorrelation coefficient function p(T) 

Underdamped case: ~g < 1 

p(r) = e -~,~,I~I [cos (w# IT] - #o)] 
[ cos(-~,c) J 

- 4 c h ~ )  ~ 
Wgd = Wg~/1 -- ~g 2, #c = arctan [((CI + 4C~(~) 1 ~ _  ~g 2 

Overdamped case: ~g > 1 

p(T) = e -~*lTI cosh (~g ~g2  _ llTb) + 
Cs 2 2 2 -- 4Cd(g  ~g 

C~ + 4 C ~  ~2g2 1 

Variance: E [a(t) 2] = 71"00~3g(c2 2 2 2 (g ' v s  +4Cd(g) 

- 5 < u ~ < 5  

_ _ s i n h ( w g  ~g~l~llz]) 
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Table 3. Discrete/continuous parameter relationships for Zone I 
(Underdamped case: CC < 1) 

Table 4. Discrete/continuous parameter relationships for Zone 
II (Overdamped case: [, > 1) 

Continuous-to-discrete conversion: 

c$, = 2e-CaWgA’ cos (ws 
r 

1 - <iAt) 

42 = _e-2~~w&~ 

0, = solution of: 0: + 2PlWf#+&lB +lcO 

41 -Pi(l -42) ’ 

0 < wg 1. & = Nyquist frequency 

(1 - 42)(1 + 6 - WJlh 2 

(1 + 42)[(1 - d2j2 - dl 
a, = 9 F (Cs’ + 4ci& 

g 

Discrete-to-continuous conversion: (4, , c$~, 0,) 

ug=j&JM 

Eg = Jff$$&g 

41 Ad = arccos ~ 
( ) 2&i&’ 

OIXd<” 

C#q(l+0:-e,~1)-~,(1-4:) 

p1 = (1 - 42)(1 + 0: - wl) - 44+(1 +e2) 

take four different forms depending on which subregion 
of the stability region the autoregressive parameters 
belong to. These four subregions are referred to as 
Zones I, II, III, IV, and are shown in Fig. 1. For the 

continuous model, both underdamped (5s < 1) and 
overdamped (& > 1) cases have been considered. By 
comparing the mathematical expressions in Tables 1 
and 2, it can be observed that coincidence of the 
continuous and discrete ACFs at all discrete times 
(t, = nAt, n = 0, 1,2, . . .) can exist only in Zones I 
and II. The terms (- 1)” and (-l)“+’ prevent that 
discrete coincidence in Zones III and IV. It is also 
noticed that Zones I and Zone II correspond to the 
underdamped and overdamped case, respectively. The 
one-to-one mapping between the continuous and 

Continuous-to-discrete conversion: 

42 = _e-2LGl 

$1 = -cd2 + 5, X = 2e-~s(Es-mAl 

8, as in Table 3 

PI = a cash (6) + 

I 

(1 - 42)(1 + 0:) - wlel 2 

(1 + 42)[U - 42J2 - dl 
a, = +O p (CT; + 4C$$) 

g 

Discrete-to-continuous conversion: ($I, 4b2, 0,) + (%&~) 

rg = 

\ 

b (-42)12 

[ln(-+2)12 -4[arccosh (&)I2 

wg =&i b-42)12 -4[a==h (A)]’ 

p1 as in Table 3 and 6 as above 

discrete parameters is summarized in Tables 3 and 4 
for Zone I (underdamped case) and Zone II (over- 
damped case), respectively. This mapping depends on 
At, the sampling time interval. In the underdamped 
case, unicity of the discrete representation is warranted 
provided that At is sufficient1 small, so that the damped 
natural frequency (ws J--+ 1 - [s) is smaller than the 
highest frequency, 1/2At, known as the Nyquist 
frequency (fNYq). As indicated in Tables 3 and 4, the 
relationship between the variance of the input discrete 
white-noise and the power spectral density 4s of the 
continuous input white-noise is obtained by equating the 
variances of the discrete and continuous output processes. 

The well-known Kanai-Tajimi (K-T) earthquake 
mode117129 corresponds to the absolute acceleration 
response at ground level due to a white-noise accelera- 
tion input at bedrock level, the transfer between bedrock 
and ground levels being modeled as a linear viscously 
damped SDOF system. Therefore, the K-T stochastic 
earthquake model is covariance equivalent with the 
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Continuous 
2o 

o 
5 1 0  15  

Freq (Hertz) 

Kanai-Tajimi 

2b 

2 O 

1 0  

5 

O o 

Equivalent ARMA(2,1) 

5 1 o  1 5  2 0  2 5  

Freq (Hertz) 

Fig. 3. Kanai-Tajimi and equivalent ARMA(2,1) power 
spectra. 

subset of the ARMA(2, 1) model corresponding to a 
unit value of the spring-dashpot input ratio 
(Cs = Cd = 1). For firm ground conditions, at moder- 
ate epicentral distance, Kanai and Tajimi have suggested 
the following parameter values: cog = 57r (or 
Tg =-0.4sec) and ~g = 0-6. From the continuous-to- 
discrete conversion in Table 3, the corresponding 
ARMA(2, 1) parameters are: 

(COg = 571-, ~g : 0.60, C s / C d  = 1.0, q~0 = 1.0) 

(01 = 1.604, 02 = -0.686, 01 = 0"767, a~ = 39'08, 

At = 0.02 sec) 

The Kanai-Tajimi and ARMA(2, 1) power spectra 
corresponding to these numerical values are shown in 
Fig. 3. The K-T spectrum is defined for all frequencies 
(0<f<_  co), whereas the ARMA(2,1) spectrum is 
defined for frequencies in the Nyquist range 
(0 < f_< fNyq)" Therefore, if the value of the K-T power 
spectrum at the Nyquist frequency is small, the K-T and 
ARMA(2, 1) spectra practically coincide throughout the 
whole Nyquist range as in Fig. 3. Otherwise, the ARMA 
model reproduces the spectral density of the SDOF 
system only up to the point where the influence of the 
aliasing phenomenon becomes apparent. 

N o n s t a t i o n a r y  c a s e  

Typical earthquake records exhibit important non- 
stationarities in amplitude (or intensity) and frequency 
content as emphasized by Liu. 2° Their taking into 

consideration for seismic response prediction of struc- 
tures is very important, although the nonstationarity in 
frequency content has often been disregarded in the 
past. In order to represent these two types of 
nonstationarity, a time-varying or dynamic version of 
the ARMA model of eqn (1) is chosen: 

a k - Ol,kak_l . . . . .  Op,kak_p 

= crke k -- Ol,k(Crk_lek_l) . . . . .  Oq,k(O-k_qek_q)  (l 1) 

where now {ek} is a unit-variance discrete Gaussian 
white-noise. The nonstationarity in amplitude is repre- 
sented by the variance envelope {a~,k} of the driving 
noise, whereas the nonstationarity in frequency content 
is modeled by the time-varying ARMA parameters qSi. k 
and Oi,k. This uncoupling of the two types of non- 
stationarity is possible provided that the standard- 
deviation envelope {~rk} is slowly-varying in time 
compared to the periods of the earthquake process 
oscillations. 

Motivated by the theoretical spectrum of a stationary 
ARMA process given in eqn (6), Kitagawa 18 defined the 
following instantaneous spectrum of a time-varying ARMA 
process by simply replacing the time-invariant ARMA 
coefficients with their time-dependent counterparts: 

q 2 
~ ' ~  tl - i2r~i fAt l  1 - / _ . . ,  vj,k~ 

p ( f ,  k) -- 2a~, k j=l At, 
1 P 2 .4. ~ i2~j , fAt  

/__., ~'j,k'~ 
j =  1 

(0 < f < ,)CNyq) (12) 

This instantaneous spectrum can be easily interpreted as 
a non-negative frequency-time decomposition of the 
expected earthquake energy. It is noteworthy that the 
above definition of the instantaneous power spectrum is 
not related to the classical instantaneous power 
spectrum defined by Page; z4 the latter is a partially 
negative frequency-time decomposition of the expected 
energy of a process. 

Previous investigators have used time-varying linear 
time series models to represent and simulate strong 
earthquake ground motions. Determination of univari- 
ate and multivariate stationary ARMA models com- 
patible with a given analytical power spectrum or 
spectral matrix was presented by Spanos z7 and Spanos 
& Mignolet. z8 Polhemus & Cakmak, 26 Chang et  al., 8 

and Cakmak et  al. 7 considered ARMA models 
modulated in amplitude using a variance envelope 
function. Jurkevics & Ulrych, 16 Gersch & Kitagawa, 13 
Deodatis & Shinozuka, 11 and Papadimitriou 25 have 
used time-varying AR models, nonstationary in both 
amplitude and frequency content, estimated either 
directly from real earthquake accelerograms or from 
specified analytical evolutionary power spectra. In the 
present study, time-varying ARMA models are con- 
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sidered. They are more difficult to determine from 
earthquake records than AR models, but they have two 
important advantages compared to AR models: (i) they 
allow the modeling of sharp dips and sharp peaks of the 
ground motion power spectrum with fewer parameters 
since their transfer functions have both poles and zeros, 
unlike the all-pole AR models; and (ii) under certain 
conditions, they can be interpreted exactly as sampled 
output processes from white-noise excited multi-degree- 
of-freedom systems• 

IDENTIFICATION OF TIME-VARYING ARMA 
MODELS 

In this study, two methods were used to estimate the 
time variation of the parameters of a given ARMA 
model from an actual earthquake accelerogram. These 
two methods are described below. 

Moving time-window technique and windowed- 
periodogram spectral estimation 

The conventional method, called moving time-window 
technique, stems from the assumption that the non- 
stationary time series analysed is approximately station- 
ary within a time-window of size nwdAt. Standard 
statistical methods from time series analysis can then be 
used to estimate the ARMA parameters characterizing 
this segment of accelerogram. The parameter estimates 
corresponding to a certain window position are attached 
to the center point of the window. This stationary 
parameter estimation is repeated for successive equi- 
distant window positions. In this study, the subroutine 
FTML from the IMSL library 15 has been used to 
perform the maximum likelihood estimation of the 
ARMA parameters and driving white-noise variance 
given a stationary time series. The time-window should 
be short enough to capture rapid changes in frequency 
content and long enough to provide for stable estimated 
parameters and the ability to capture low frequency com- 
ponents. From the experience gained in this research, it 
seems that a window size of 5"00 sees, corresponding to 
251 ground acceleration values and a sampling time 
interval of 0.02 sec, realizes a good compromise. 

The temporal variation of the frequency content of 
the earthquake record is estimated using the windowed- 
periodogram spectral estimation technique. The 
periodogram estimate of the power spectral density 6 of a 
stationary time series {ak, k = 1 , . . . ,  L)  is defined as: 

At A '~  ,.2 e k = P ( ~ g ) = ~  ( ~)1 (13) 

where A(~k) is the discrete Fourier transform of {a~}: 

L - I  
a e -i27rnk/L A(~k)=z. .a n , k = 0 , . . . , L - 1  (14) 

n=0 

and ~k = kA~o, A~ = 2~-Af, A f =  1/LAt  = frequency 
resolution. From the discrete form of the Parseval's 
theorem which expresses that the total power in a signal 
is the same whether it is computed in the time domain or 
in the frequency domain, it follows that: 

L-1  L - I  L - I  
p(~k)ALv 1 = 27r ~-~ e ( f k ) A f  = -~ ~'~ a 2 (15) 

k=0 k=0 k=0 

For a zero-mean time series {a~}, the right-hand-side of 
eqn (15) represents the sample variance. As in the case 
of a continuous-time stochastic process for which the 
variance equals the area under the process power 
spectral density and as in eqn (7), eqn (15) expresses 
that the area under the periodogram is equal to the 
variance of the time series and reveals how it is 
contributed at the various discrete frequencies 
(fk = k A f ,  k = 0 , . . . , L - 1 ) .  The discrete Fourier 
transform in eqn (14) is computed using a fast Fourier 
transform algorithm. To reduce the spectral leakage 6 
between neighboring discrete frequencies, the Parzen 
taper 6 is applied to the segment of data {ak, 
k = 1 , . . . ,L}  prior to computing their Fourier trans- 
form. In order to reduce the large variance of the 
periodogram estimate defined in eqn (13), spectral 
smoothing using the differential weighting [1/4, 1/2, 
1/4] is applied. The windowed-periodogram spectral 
estimation technique consists in evaluating the 
periodogram over successive overlapping windows of 
the data {ak}. 

Iterative Kalman filtering 

The basic idea of a time-adaptive algorithm is to 
optimally update the system parameters at each time 
step using the observation at this time step. In this 
manner, a continuous description of the time-varying 
properties of the input data is obtained. A technique of 
adaptive estimation based on Kalman filtering theory is 
used for the identification of the time-varying ARMA 
coefficients of the earthquake model represented by eqn 
(1 1). This technique represents an iterative version of a 
previous method developed by Nau et al. 21 

For application of the Kalman filter, the general 
dynamic ARMA(p,q)  model represented by eqn (11) 
must be recast in the following discrete state-space 
f o r m :  

{~+~ = {~ + ~ k  

T 
ak+l = Hk+l~k+] + ek+l 

where 
- ,  • T 

~k = [ t~ l ,k , ' "  O p , k , - - O l , k , ' ' ' , - -  q,k] 
• ~ T 

~k = [61,k , ' "  , p+q,k] 

H k = [ a k _ l , . . . , a k _ p ,  e k _ l , . . . , e k _ q ]  T 

(16) 

(17) 

(18) 

(19) 

(20) 
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In the above equations, the superscript ( ) ~ indicates the 
transpose operation. The earthquake signal model is 
thus completely defined by eqn (16), called the transition 
(or state) equation and which governs the 'motion' in 
time of the state vector (k, and by eqn (17), called the 
observation (or measurement) equation. The state 
vector (k is partitioned in such a way that the first 
terms are the autoregressive parameters and the 
remaining terms the moving average parameters. The 
random vector ~k represents the motion or dynamic 
noise, also called 'plant' noise in the control literature. 
The observation ak represents the observed ground 
acceleration value at time tk = k A t  (k = 0, 1 ,2, . . . ) .  The 
vector Hk, called the 'history' vector, gives the ideal 
(noiseless) connection between the observation ak and 
the state vector (k at time k. Finally, {ee} represents the 
nonstationary Gaussian driving white-noise of the 
ARMA model. The following assumptions are made: 

E[6k] : 0, CoV[6k,6ff] = ~6 (21) 

E [ek] = 0, Var [ek] = azk (22) 

Cov [6k, ek] = 0. (23) 

The random walk model for the parameter vector (k 
adopted in eqn (16) may not appear physically reason- 
able. However, it is the simplest equation of motion that 
can be assumed in the absence of detailed prior 
information about parameter behavior. In this context, 
it is merely a device for ensuring that the Kalman filter 
will remain continually adaptive to any changes in the 
parameters that may occur. The covariance matrix ~6 
governs the average step size of the random walk 
assumed for the parameters and therefore it determines 
the long-run sensitivity of the filter to changes in the 
parameters. In this study, it has been assumed that 
~ = O-~I, where O-6 is a small number compared to 
average values of the parameters, (e.g. O-~ < 0.01). The 
problem of 'tuning' the filter to obtain parameter 
estimates which on one hand respond quickly to 
nonstationarities in the data, but on the other hand 
are not unstable, is difficult and has been tackled by 
trial-and-error in selecting the parameter a6. 

The discrete-time Kalman filter 2'1°'21 provides a set of 
recursive equations to trace the evolution of the 
probability distribution of the state vector ~k in time. 
The expected value of ~k conditional on the observations 
up to time k - 1 and k are called the prior and posterior 
expected value of ~k; they are denoted by ~k Ik-1 and ~k Ik, 
respectively, and are used as estimates of the parameter 
vector ~k. Let Pk Ik-1 and Pk Ik denote the corresponding 
estimation error covariance matrices defined by 
E [((k - ~ k l . . . ) ( ~ k  - -  ~kl...)T]" At first, ~klk-I and eklk-I 
are computed using the predictor Kalman filter 
equations and then ~klk and Pklk are obtained using 
the updating Kalman filter equations. The presence of 
moving-average terms in the selected earthquake model 
introduces some nonlinearity in the filtering problem, 

since products of unknown parameters and noise values 
appear in the observation, eqn (17). Therefore, some 
form of 'linearization' of the basic Kalman filtering 
algorithm is required. Note that, in practice, the true 
measurement noise {ek} is never observed directly. 
Hence, when implementing the Kalman filter, estimates 
of the true noise terms (ek, . . . ,ek_q+l) must be 
substituted in the 'history' vector Hk+l. The residuals 
corresponding to the difference between prediction and 

H T ^ observation, i.e. Ok+l = a k + l -  k+l(k+llk+l, are used 
for this purpose. Furthermore, the variance envelope of 
the true driving noise {o-e2k} is needed as input to the 
Kalman filter. Because {~,k} is a priori unknown, the 
Kalman filter is applied iteratively using a succession of 
improved estimates of the true noise variance envelope. 

O -2 For the first iteration, a rough estimate of { e,k} is 
obtained by using a scaled version of the variance 
envelope estimate of the observed process (earthquake 
record). The variance envelope estimate of the residuals 
generated by the first application of the Kalman filter is 
then used as an estimate of the true noise variance 
envelope during the second application of the Kalman 
filter. The Kalman filter is applied iteratively until the 
difference between the assumed noise variance envelope 
and the variance envelope estimate of the residuals 
generated by the Kalman filter satisfies a given error 
tolerance. The non-parametric variance-envelope esti- 
mation technique developed by Nau e t  a l . ,  21 called the 
'two-stage weighted moving average estimate', has been 
used in this study. The p initial digital ground 
acceleration values of the earthquake record analysed 
are used to build the initial 'history' vector lip = 
Iap_l, . . . ,ao, O,...,O] r in which the estimates of the 
initial true noise terms are taken to be zero. Initial 
conditions for the state v e c t o r ,  ~p-llp-1, and the error 
covariance matrix, Pk-~lk-l, are also required. An initial 
estimate for the state vector is obtained by performing a 
maximum likelihood estimation within a time window 
positioned at the beginning of the earthquake record. 
An initial error covariance matrix equal to the 
covariance matrix ~:6 of the random walk of the 
ARMA parameters is chosen. The first observed data 
used by the Kalman filter is ap. From these initial 
conditions, the Kalman filter is run recursively until the 
last data element aN_ 1. 

MODEL VERIFICATION 

If an ARMA model were to fit perfectly a real 
earthquake accelerogram, it would map the highly 
correlated time series corresponding to the actual 
accelerogram into a realization of a perfectly uncorre- 
lated stationary Gaussian white-noise. Therefore, the 
first type of  model diagnostic checking is applied to the 
final (converged) sequence of normalized residuals 
{ek/6e,k} given by the model estimation procedure. 
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These residuals are checked for 'whiteness' or uncorrela- 
tion and normality. However, a model is never perfect 
and in the present case, the imperfection can be attri- 
buted to the following reasons: 

• The model estimation procedure generates inaccurate 
or incorrect results. 

• The selected model order (p, q) is not adequate for 
the nature of the particular earthquake process 
considered. 

• The assumption of a linear earthquake model is too 
restrictive given the various non-linearities associated 
with the actual physical earthquake process. 

The next question to be addressed is whether the 
imperfect estimated earthquake model is sufficient for 
representation of the ground motion variability and the 
corresponding structural response variability associated 
with a given real earthquake process. To answer this 
question, the estimated earthquake model is used further 
for ground motion and structural response simulation. 

The second type of model diagnostic checking is 
applied to individual or an ensemble of simulated 
accelerograms to verify the extent to which they 
resemble the actual 'target' accelerogram. For this pur- 
pose, the following checking operations are performed: 

• Analyse ARMA-model-simulated accelerograms, uti- 
lizing the analysis and estimation techniques used on 
the 'target' accelerogram. The objective of this 
analysis is to verify the accuracy with which the esti- 
mation techniques can recover the 'true' parameters 
of the earthquake process when they are known. 

• Compare ground velocity and displacement from 
simulated and 'target' motions. This test is used to 
insure that not only the simulated ground accel- 
eration, but also the corresponding ground velocity 
and displacement time histories are realistic, since the 
latter two can control the earthquake response of 
certain structures. 

• Compare the Fourier amplitude spectra of the 
simulated and 'target' ground motions (acceleration, 
velocity, and displacement). The Fourier amplitude 
spectra give an indication of the global frequency 
content over the whole duration of the earthquake. 

• Compare the instantaneous spectrum of the fitted 
ARMA model to the windowed-periodogram esti- 
mate of the time-varying power spectral density 
characterizing the 'target' accelerogram. 

• Compare the traditional ground motion parameter 
values of the 'target' earthquake to the statistics of 
these parameters computed from an ensemble of simu- 
lated earthquakes. The ground motion parameters 
considered include: peak ground acceleration (PGA), 
velocity (PGV) and displacement (PGD), root- 
mean-square acceleration (RMSA), velocity (RMSV) 
and displacement (RMSD), and Housner's spectral 
intensity (SI). 

Residual checks 

Checking of the normalized residuals (Wk = ek /Oe ,k ,  
k = 0 , . . . ,  N -  1) for uncorrelation ('whiteness') can be 
performed either in the time domain, based on the 
sample autocorrelation coefficient function, or in the 
frequency domain, based on the periodogram. The 
sample autocorrelation coefficient function (ACCF) at 
lag (kAt), f~k, is defined as: 

~k = k k l k o  (24) 

where 

1 N-k-I 
k k = ~[ ~ (Wi-- ~;)(Wi+ k -- ~;) 

and ~ = (1/N)EN-lwk. If {Wk} is a purely random 
(uncorrelated) process, it can be shown 19 that: 

,,~ 1 for a l l k ¢ 0  (25) E [tSk] = 0 and Var [t~k] = ~ ,  

Hence, on the basis of the asymptotic normal distribu- 
tion of tSk, an approximate 95% confidence interval for 
Pk is ( -2xflxf~,  2x/lxf~). Another time domain test for 
goodness of fit is provided by the so-called 'Portman- 
teau' statistic: 5 

n 

O = N Z FSk (26) 
k = l  

where N is the number of data points, and n -~ N/5. 
Under the hypothesis that the residuals are completely 
uncorrelated, Q is approximately chi-square distributed 
with the number of degrees-of-freedom equal to n minus 
the number of estimated parameters, (p + q). Therefore, 
an approximate 'Portmanteau' test of the hypothesis of 
model adequacy may be made by referring an observed 
value of Q to a table of the percentage points of X 2. 
However, as a general rule, a value of Q not much larger 
than the number of DOFs is considered to indicate a 
good fit. In the frequency domain, visual inspection of 
the periodogram computed from the normalized 
residuals is used to check their whiteness. A non- 
uniform shape of the periodogram reveals the presence 
of correlation among the residuals. 

The normality test of the normalized residuals is 
performed by visual inspection of their plot on normal 
probability paper. For this purpose, the ruth value 
among N residuals (pre-sorted in increasing order) is 
plotted versus the standard normal value corresponding 
to the cumulative probability m / ( N +  1). A lack of 
linearity in the resulting graph of data points suggests 
that the underlying population is not Gaussian. 

Simulation of artificial ground motions 

To simulate artificial ground motions, the estimation or 
analysis procedure is simply reversed. The sequence of 
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operations performed is: (1) computer generation of a 
stationary, Gaussian, discrete white-noise; (2) time- 
modulation using ~e(t); (3) ARMA filtering using 
(~i(t), i =  1 , . . . , p )  and (Oi(t), i =  1 , . . . , q ) ;  and (4) 
baseline correction using a high-pass Butterworth filter 
with cut-off frequency at about 0"1 Hz to eliminate part 
of the low frequency error introduced by the ARMA 
model. The discrete Gaussian white-noise is generated 
using the subroutine G G N M L  of the IMSL library. 15 
Lack of cross-correlation between the members of  an 
ensemble of artificial earthquake records simulated from 
the same estimated earthquake model is achieved by 
using a different seed number for each white-noise 
sequence generation. 

Alternatively, artificial ground motions can be 
simulated based on specified time-varying physical 
properties of an underlying dynamic system such as 
the parameters COg(t), ~g(t), and (Cs/Cd)(t) for the 
ARMA(2, 1) model. The time-varying physical 
parameters are then converted into the corresponding 
time-varying ARMA parameters using the continuous- 
to-discrete parameter conversions. This approach can be 
generalized to multi-modal higher order ARMA 
( 2 n , 2 n - 1 )  models which are exactly covariance- 
equivalent with the sampled output of white-noise excited 
n-degree-of-freedom dynamic systems. This simulation 
procedure allows us to generate artificial ground 
motions com-patible with given evolutionary spectral 
properties described in terms of time-varying modal 
properties which are very meaningful to the dynamist. 

APPLICATIONS 

Applications of the stochastic model identification pro- 
cedures described above are presented for two real 
earthquake accelerograms having very different char- 
acteristics. The first one corresponds to the north-south 
component of the moderate magnitude earthquake 
(ML = 6'5), referred to as Event 39, recorded at the 
station E-02, classified as a rock site, of the SMART I 
accelerograph array in Taiwan. 1 The ground accelera- 
tion, velocity and displacement time histories of this 
seismic event are shown in Fig. 4. The ground 
acceleration record has been digitally recorded with a 
time sampling interval of 0.01 second. Hereafter, this 
record will be referred to as E02NS. The second target 
accelerogram corresponds to the north-south com- 
ponent of the 1940 Imperial Valley earthquake 
recorded at El Centro, California, on a deep firm 
alluvion deposit. The ground acceleration, velocity and 
displacement records are represented in Fig. 5. Only the 
first 35 seconds of the original record, digitized with a 
time sampling interval of 0"02 second, are considered in 
this study. 

The parameters of  the time-varying ARMA(2,1)  
model identified from the E02NS record represented in 
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Fig. 4. (a) Ground acceleration, (b) velocity, and (c) 
displacement time histories of the E02NS record. 

Fig. 4(a) using both the iterative Kalman filtering 
scheme and the moving window technique are dis- 
played in Fig. 6. The results obtained using these two 
different methods agree overall. To evaluate the variance 
envelope by 'two-stage weighted moving average', a 
window size of n = 30 data points was used. For the 
Kalman filter, a trade-off value of ~r~ = 0"008 was 
selected by trial-and-error. A value of ~r~ which is too 
small produces a stable but too slow learning rate of the 
Kaiman filter, which is unable to capture sharp changes 
in the structure of the earthquake signal. On the other 
hand, a value of ~r~ which is too large yields a fast 
learning rate, which results in very irregular and 
unrealistic time variations of model parameters. In 
applying the moving window technique, the following 
parameters were used: nwdAt = 1.0sec, time interval 
between successive window positions = 0.25see. The 
convergence of the iterative Kalman filtering scheme is 
illustrated in Fig. 7 via the convergence of the standard 
deviation envelope estimate ~,~ of  the driving noise. In 
all cases considered in this study, a few iterations 
sufficed to obtain convergence. By using the discrete-to- 
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Fig. 5. (a) Ground acceleration, (b) velocity, and (c) 
displacement time histories of the El Centro 1940 record 
(N-S comp.). 
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Fig. 6. ARMA(2, 1) model parameter estimates for the E02NS 
record. 

continuous conversion relationships summarized in 
Tables 3 and 4, the time histories of the physical 
parameters corresponding to the ARMA(2, 1) model 
parameters of Fig. 6 have been computed and are 
depicted in Fig. 8. From Fig. 8(a), it can be seen that 
the predominant frequency Fg of the ground accelera- 
tion drops from 14 Hz to 7 Hz during the first 4 seconds 
of ground shaking, oscillates with an average value 
between 6 and 8 Hz in the middle portion of the ground 
motion, and finally drops to an average of 4 Hz at the 
end of the earthquake. In Fig. 8(b), the time history of 
the damping ratio parameter ~g indicates that the fre- 
quency bandwidth of the ground acceleration decreases 
during the first 3 seconds and then increases almost mono- 
tonically until the end of the record. The underlying 
SDOF model becomes overdamped ((g > 1) only in the 
last few seconds of the record. The evolution in time of 
the input ratio parameter 'sign ( (Cs /Cd)2 )V~[Cs~d)2[  ' is 
displayed in Fig. 8(c). It is observed that the input of the 
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Fig. 7. Convergence of the iterative Kalman filtering scheme. 

"", Kafman filter 
15 " . . . . . . .  Mov ing  w i n d o w  

F g  I H z ]  10 " ' ,  

5 " " -  

0 

3 

40 

±~(c/%)~ I ~o 
o I 

0 2 4 6 8 10 12 14 18 18 

Fig. 8. Time histories of physical parameters for the E02NS 
record. 

underlying SDOF model is imaginary ((Cs/Cd)2< O) 
during the first 8 seconds and then becomes real-valued 
with the ratio Cs/Cd taking a large value (>> 1), which 
means physically that the dashpot support of the SDOF 
model shown in Fig. 2 is almost fixed. 

The time history of the normalized (amplitude- 
demodulated) residuals produced by the fitting of the 
ARMA(2, 1) model is shown in Fig. 9(a). The residuals 
sample ACCF Pk calculated up to a lag-time equal to 
one-fifth of the duration of the E02NS record is plotted 
in Fig. 9(b). The periodogram of the residuals obtained 
using a Parzen taper and without smoothing is displayed 
in Fig. 9(c). Figure 10 is similar to Fig. 9, but 
corresponds to an ARMA(4,2) model fitted to the 
E02NS record. The two parallel dashed lines present in 
Figs 9 and 10 define the approximate 95% confidence 
interval for the sample ACCF F3k under the hypothesis 
that the residual process is purely random as indicated 
in eqn (25). It is observed from Fig. 9(b) that the 
residuals generated by the ARMA(2, 1) model fitted to 
the E02NS record possess some correlation structure at 
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Fig. 9. Normalized residuals from the ARMA(2, 1) model 
fitted to the E02NS record: (a) time history, (b) sample 

autocorrelation function, and (c) periodogram. 
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Fig. 10. Normalized residuals from the ARMA(4,2) model 
fitted to the E02NS record: (a) time history, (b) sample 

autocorrelation function, and (c) periodogram. 

small time-lags (~- < 0.20 sec). Figure 9(c) reveals a non- 
uniformity of  the power spectral density of the under- 
lying residual process characterized by a partial spectral 
gap between 25 Hz and 40 Hz. By comparing Figs 9 and 
10, it appears that the ARMA(4, 2) model is better than 
the ARMA(2, 1) model since its residuals are more 
uncorrelated. The results of the Portmanteau and '95% 
confidence interval' statistical tests are summarized in 
Table 5 for the residuals of the ARMA(2,1)  and 
ARMA(4,2)  models as well as for three computer- 
generated discrete Gaussian white-noises of the same 
duration (length). These results confirm the superiority 
of the ARMA(4, 2) model over the ARMA(2, 1) model 
since the former model has a smaller Portmanteau 
statistic value and a smaller percentage of t5 k outside the 
95% confidence interval. To quantify the uncorrelation 

or whitening effect of the ARMA filters, the statistical 
test values are also reported in Table 4 for the 
amplitude-demodulated E02NS record obtained by 
scaling the original E02NS record by the inverse of its 
estimated standard-deviation envelope. The same statis- 
tical tests have been performed on the residuals 
generated from fitting an ARMA(2, 1) model to the El 
Centro ground acceleration record (see Fig. 5(a)), and 
are reported in Table 6. From these results, it is 
observed that the representation of the El Centro 
record by an ARMA(2, 1) model is superior to the 
representation of  the E02NS record by either an 
ARMA(2, 1) or an ARMA(4, 2) model. The normality 
tests performed on the normalized residuals generated 
from fitting an ARMA(2, 1) model to the E02NS record 
and to the E1 Centro record are also represented in Figs 
l l(a) and (b). In the case of the E02NS record, the 
linearity of the cumulative distribution of the residuals 
indicates that the underlying population of residuals is 
well represented by the Gaussian distribution. The same 
was observed for the ARMA(4, 2) model. However, in 
the case of the E1 Centro record, the underlying 
population of residuals is not Gaussian as shown in 
Fig. 1 l(b). 

The normalized ARMA time-varying power spectral 
densities derived from the Kalman filter results are 
compared to the normalized moving periodogram 
estimate of the time-varying frequency content of the 
E02NS record. This comparison is shown in Fig. 12. It is 
observed that when a single predominant peak is present 
in the periodogram estimate, it is captured accurately by 
both the ARMA(2, 1) and ARMA(4, 2) models, see Figs 
12(a), (b), and (c). On the other hand, when several 
spectral peaks of the same magnitude are present in the 
periodogram estimate, both the ARMA(2,1)  and 

Table 5. Statistical tests for the A R M A  models fitted to the E02NS record 

Model Q # DOFs Percentage of Pk 
outside 95% 

conf. interval (%) 

ARMA(2, 1) 883 375 16 1 
ARMA(4, 2) 567 372 93 
Discrete white-noise #1 293 378 3.2 
Discrete white-noise #2 334 378 1.9 
Discrete white-noise #3 358 378 4.5 
Ampl.-demod. E02NS 4774 370 

Table 6. Statistical tests for the A R M A  model fitted to the El Centro 1940 record 

Model Q # DOFs Percentage of Pk 
outside 95% 

conf. interval (%) 

ARMA(2, 1) 447 347 68 
Discrete white-noise #1 273 350 2.6 
Discrete white-noise #2 311 350 2.9 
Discrete white-noise #3 322 350 4.6 
Ampl.-demod. E1 Centro 4961 350 
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Fig. 11. Normality test of the normalized residuals correspond- 
ing to the ARMA(2, 1) models fitted to (a) the E02NS record 
and (b) the E1 Centro 1940 record. 
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Fig. 12. Comparison between normalized time-varying ARMA 
power spectral estimate and normalized moving periodogram 

for the E02NS earthquake process. 

ARMA(4,2) time-varying power spectral densities 
exhibit a single peak whose position and shape can be 
interpreted as some weighted average of the positions 
and shapes of the spectral peaks indicated by the 
periodogram (see Figs 12(d), (e), and (f)). Even though 

the ARMA(4,2) model is bi-modal (can develop two 
spectral peaks), its Kalman filter estimate, in this 
particular example, was unimodal at all times. The 
graphic representation in frequency-time of the 
normalized ARMA(2, 1) power spectral density esti- 
mates for both the E02NS and the E1 Centro records are 
displayed in Fig. 13. These 3-D plots indicate the 
temporal variation of the frequency content of the 
ground shaking, commonly called frequency non- 
stationarity. 

Artificial ground acceleration, velocity, and displace- 
ment corresponding to a single realization of the 
ARMA(2, I) model fitted to the E02NS and E1 Centro 
records are shown in Figs 14 and 15, respectively. It is 
observed that the nonstationary amplitude and fre- 
quency characteristics of the target records are well 
captured by the ARMA(2, 1) models. However, from 
the artificial ground velocity and displacement it is 
observed that the very low frequency content of the 
artificial ground motions remains too high in spite of the 
high-pass Butterworth filtering applied with a cut-off 
frequency at about 0-10Hz. This can be further 
corrected by increasing slightly the value of the cut-off 
frequency. The ARMA-simulated accelerogram repre- 
sented in Fig. 14(a) has been analysed, utilizing the same 
iterative Kalman filtering scheme which was used to 
estimate the ARMA model from the target record. The 
results are presented in Fig. 16 and show that the 'true' 
model parameters shown in Fig. 6 can be recovered 
relatively well from an artificial realization. 

Stat i s t ics  o f  ground m o t i o n  parameters  

Using a sample of 100 artificial earthquake ground 
motions, the second order statistics (mean and coef- 
ficient-of-variation, c.o.v. = standard deviation/mean) 
of traditional ground motion parameters have been 
computed. These ground motion parameters include: 
peak ground acceleration (PGA), velocity (PGV), and 
displacement (PGD), root-mean-square acceleration 
(RMSA), velocity (RMSV), and displacement (RMSD), 

(a) 

O 

(b) 

Fig. 13. Normalized ARMA(2, 1) time-varying PSD estimate for (a) the E02NS record, and (b) the El Centro record. 
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Fig. 14. ARMA(2, 1) artificial earthquake ground (a) accel- 
eration, (b) velocity, and (c) displacement corresponding to 

the E02NS record. 
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Fig. 15. ARMA(2, l) artificial earthquake ground (a) accel- 
eration, (b) velocity, and (c) displacement corresponding to 

the E1 Centro 1940 record. 
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Fig. 16. ARMA(2,1) model parameter estimates for an 
ARMA(2, 1) artificial realization of the E02NS earthquake 

process. 

and Housner spectral intensity* (SI). These statistical 
results are summarized in Table 7 for the ARMA(2,  1) 
models fitted to the E02NS and E1 Centro records. In 
the same table, they are compared with the deterministic 
ground motion parameter  values corresponding to the 
target records, and it can be checked that the statistical 
interval 'mean + standard deviation' does not contain 
the parameter  value of the target record in the case of  
PGV, PGD,  RMSV, and RMSD due to the low 
frequency error of the A R M A  model already men- 
tioned. The statistics of  PGA, RMSA, and SI agree 
with the corresponding deterministic ground motion 
parameter  values of  the target records. From Table 7, it 
is observed that for a given earthquake process, the 
RMSA parameter  is the least variable among the set of 
ground motion parameters considered. In particular, 
RMSA is found much less variable than PGA, which 
has been used extensively in the past and is still used as 
an indicator of  damage potential for earthquakes. The 
choice of  a ground motion parameter  characterized by a 
large variability and obtained from a single earthquake 
realization is not reliable. Statistical analyses of  the 
simulated ground motion parameters showed that their 
statistical distribution is well approximated by log- 
normal distributions. 

C O N C L U S I O N  

A stochastic system identification procedure based on 
iterative Kalman filtering is presented to estimate 
nonstationary A R M A  models from actual earth-, 
quake accelerograms. Special attention is given to the 
ARMA(2,  1) model, a subset of which is covariance 
equivalent with the well-known continuous-time Kanai-  
Tajimi stochastic earthquake model. The complete 
set of  parameter  relationships between the discrete 
ARMA(2,1)  and the continuous K-T models is 
presented. Therefore, the discrete-to-continuous con- 
versions allow the use of  the proposed identification 
scheme to estimate the time-varying physical parameters 
of a K-T model non-stationary in both amplitude and 
frequency content. The irregular time histories of  the 
resulting K-T model parameters can then be smooth- 
ened by least square fit of  analytical functions before the 
nonstationary estimated K-T model can be used in 
analytical random vibration studies. Alternatively, the 
time histories of  the physical parameters of  the K-T 
model can be specified from engineering judgement and 
used as such in analytical random vibration studies or 
they can be converted into the time-varying parameters 

= r2-50 PSV((, T) dT, where PSV(~, T) represents the * SI jo.lo 
pseudo-spectral velocity of the earthquake record for an 
SDOF oscillator of damping ratio ( =  0.05 and undamped 
natural period T. 
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Table 7. Statistics of ground motion parameters from ARMA(2, 1) earthquake models 
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Parameter E02NS E1 Centro 1940 

Target Mean c.o.v. Target Mean c.o.v. 

PGA (in/sec 2) 78-26 
PGV (in/sec) 4-50 
PGD (in) 0.42 
RMSA (in/sec 2) 11"90 
RMSV (in/sec) 0.49 
RMSD (in) 0.10 
SI (in) 8'27 

70-76 0.19 134.52 136.32 0-16 
4.35 0.25 13.17 21.45 0-25 
2.34 0.48 4.28 14.02 0-36 
9.61 0.12 21.80 20-76 0.07 
0.95 0.32 3.01 5-03 0.22 
0-85 0.46 2.09 4-63 0.34 

10-95 0.24 53.43 58.68 0.20 

of the equivalent ARMA(2,  1) model using the continu- 
ous-to-discrete parameter  conversions if Monte Carlo 
simulation studies are preferred. 

Results of  the application of  the proposed identifi- 
cation procedure for two actual earthquake records are 
presented. The model validation tests performed are 
based on examination of the residuals, simulated ground 
motions (acceleration, velocity, and displacement), tem- 
poral variation of the ground motion frequency content, 
and statistics of  traditional ground motion parameters. 

It appears that time-varying A R M A  models can be 
estimated very efficiently using iterative Kalman filtering 
and that they are able to capture well the nonstationary 
features of  actual earthquake ground motions, especially 
the nonstationarity in frequency content. The latter, 
often neglected in past modeling of earthquake ground 
motions, can have very important  effects on the seismic 
response of structures exhibiting inelastic degrading 
behavior. 

These realistic A R M A  ground motion models have 
been used to simulate the response of  linear and 
nonlinear structures in order to test the validation of  
the earthquake model at the structural response level 
and to investigate how the structural response is 
influenced by ground motion and structural parameters 
when the inherent uncertainty contained in the earth- 
quake ground motion is accounted fo r )  ° 
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