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An explicit closed-form solution for linear systems
subjected to nonstationary random excitation

Joel P. Conte & B.-F. Peng
Department of Civil Engineering, Rice University, P.O. Box 1892, Houston, TX 77251, USA

Explicit, closed-form solutions are presented for the correlation matrix and
evolutionary power spectral density matrix of the response of a linear, classically
damped MDOF system subjected to a uniformly modulated random process with
the gamma envelope function. The effects of the statistical cross-modal
correlations on the evolutionary mean square responses are investigated. A
simple MDOF system subjected to ground motion is used as an illustrative
example. Through this study, additional insight is gained into the nonstationary

behavior of linear dynamic systems.

INTRODUCTION

The nonstationary stochastic response of linear systems
to nonstationary random excitations is of great interest
in engineering fields, such as structural earthquake
engineering and aerospace engineering. However,
closed-form solutions for the statistical moments of
the nonstationary response to a generally defined
nonstationary input exist only in integral form. Only a
few explicit closed-form solutions (in terms of elemen-
tary functions) exist for particular cases of nonstation-
ary inputs. Therefore, a number of approximate closed-
form solutions for certain types of nonstationary
excitation and numerical integration schemes have
been developed by various researchers. The most
common type of nonstationary input for which
analytical solutions (exact or approximate) have been
proposed is the uniformly (amplitude) modulated or
separable random process which is defined as the
product of a stationary process and a deterministic
envelope function, also called the time modulating
function. In the literature, the square of the envelope
function is referred to as the strength function. The
envelope or strength functions considered in the past
include the step,1 boxcar,2 staircase,3 half sine,4
periodic,” exponential,® gamma,’ beta,® and piecewise
linear functions.” > The mean square response and
mean energy response of a linear SDOF structure
subjected to various evolutionary random processes
was examined by Spanos' using approximate analytical
expressions.

Exact closed-form solutions in terms of elementary
functions exist for the following cases. Caughey and
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Stumpf' first analyzed the transient mean square
response of a linear single-degree-of-freedom (SDOF)
oscillator to unit step modulated white noise. Barnoski
and Maurer’ examined the mean square response of a
linear SDOF system excited by both white noise and
noise with an exponentially decaying harmonic correla-
tion function for both the unit step and boxcar time
modulating functions. Corotis and Vanmarcke'* studied
the evolutionary (time-dependent) power spectrum of
the response of a linear SDOF system exposed to a unit-
step modulated stationary process. The evolutionary
power spectrum of the response of a SDOF oscillator
subjected to an exponentially modulated stationary
process was also investigated by Corotis and Mar-
shall.'* The evolutionary response covariance matrices
of a multi-degree-of-freedom (MDOF) system subjected
to a piecewise linear modulated white noise process were
derived by Gasparini and DebChaudhury®'® via the
state-space approach. To'® presented explicit closed-
form expressions for the evolutionary cross-spectral
density matrix of the responses of a MDOF system
subjected to exponentially decaying random excitations.
Iwan and Hou! provided explicit solutions for the
second-moment statistics of the response of SDOF
systems excited by a white noise process modulated with
the unit step, boxcar and gamma envelope functions.
Grigoriu'® developed a new method, based on the
properties of conditional Gaussian variables and the
system transition matrix, to obtain the transient first- and
second-order response statistics of a time-invariant stable
linear system subjected to a stationary Gaussian input.

This paper presents general analytical expressions for
the correlation matrix and evolutionary power spectral
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density matrix of the response of a linear, classically
damped, MDOF system subjected to a general evolu-
tionary vector process defined in terms of time-
frequency modulating functions. Some of this work
has been developed earlier by Priestley in his book on
multivariate time series.'” Here, the solutions are
obtained within the framework of the modal super-
position approach. The explicit closed-form solution for
the evolutionary power spectral density matrix of the
response of a MDOF system subjected to a uniformly
modulated random process with the gamma envelope
function is derived. From this solution, the response
correlation matrix of the MDOF system can be obtained
using numerical integration. However, the explicit
closed-form solution for the response correlation
matrix is derived for the case of gamma modulated
white noise excitation. It is noted that the solution for
the correlation matrix between the responses at two
different times (¢; = ¢ and ¢, = ¢+ 7) is given.

Using the analytical solutions derived in the paper,
the effects of the statistical cross-modal correlations on
the evolutionary mean square responses are investi-
gated. A simple application example considering ground
motion excitation is used to illustrate the findings of the

paper.

FORMULATION
System equations

Consider the matrix equation of motion of a linear
MDOF system

MU(¢) + CU(t) + KU(¢) = PF(¢) (1)

where M, C, and K are the » x n time-invariant mass,
damping and stiffness matrices, respectively; U(z), U(?),
and U(z) are the length-n vectors of nodal displace-
ments, velocities and accelerations, respectively; P is the
n x m load distribution matrix; and F(7) is the length-m
vector of external load functions which, in the case of
random excitations, is a random vector process. It is
noted that equation (1) also applies to a system excited
by the motion of its support points. In this case,
P = —ML, where column j of the nx m influence
coefficient matrix L represents the pseudo-static
response in all degrees of freedom due to a unit support
motion (translational or rotational) in direction j; F(z) is
the base acceleration vector and U(?) represents the
vector of nodal displacements relative to the rigid base
of the structure. Assuming X(z) to be the length-n vector
of absolute nodal displacements, equation (1) can be
rewritten as

MX (1) + CU(7) + KU(z) = 0. (2)

External force vector

In the frequency domain there are several approaches to
describe theoretically nonstationary processes including
the generalized (double-frequency) spectrum,zo the
instantaneous (frequency-time) spectrum,21 the evolu-
tionary spectrum,zz‘23 and the physical spectrum.24 The
present case uses Priestley’s evolutionary process model,
which has a particularly convenient input—output
relationship for linear systems.? Priestley’s definition
and characterization of an evolutionary scalar process
can be readily extended to the case of a vector process.
Thus, an evolutionary, zero-mean vector process F(¢)
can be expressed in Fourier—Stieltjes integral form as

F(t) = j Ap(w, e dZ(w) 3)
in which j = v/ —1, w denotes the circular frequency, F(¢)
is a length-m vector

aFl (w’ t)

ar, (w, [)

Ap(w, 1) = (4)

ag, (W, 1) ] (i)

is a matrix of frequency-time modulating functions of
F(1), ap(w, 1) is a length-k row vector of frequency-
time modulating functions of F(¢), and dZ(w) is a
length-k orthogonal-increment vector process having
the properties:

EdZ(w)] = 0 (5)
and
E[dZ" (0))dZT (w3)] = ®(w1)6(wr —wp)dw; dwy  (6)

in which EJ...] denotes the expectation or ensemble-
average operator. In equation (6), ®(w) is a k x k
Hermitian matrix whose diagonal terms are non-
negative even functions, 6(...) represents the Dirac
delta function and the superposed T and * denote the
transpose and the complex conjugate, respectively, of
the corresponding variable or function. Hammond®®
considers the case in which Ag(w, ) is a diagonal matrix
and, therefore, each component of F(¢) is a so-called
oscillatory process. If the components of dZ(w) are
mutually independent, then each component of F(¢) is
defined by Battaglia?’ as a sigma-oscillatory process.
Notice that if Ag(w, £) = Ay, a constant matrix, F(z) is a
stationary vector process.

The autocorrelation function of F(z) is defined by
Ryp(t,7) = E[F(£)F" (¢ 4 7)]. Substituting equations (3)
and (6) into the previous definition leads to

Ryr(1,7) :[

J—0C

o0

Ab(w, ) W)AF(w, 1 + T)eH dw (7)
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which, for 7 = 0, gives

E[F(1)F (1)] = Rex(1,0)
o~ 8)
= J Aj(w, YD (w)AF (w, 1) dw.
—oQ
This defines the m x m evolutionary (time-dependent)
power spectral density matrix of F(¢) as

Qpp(w, 1) = Af(w, ) D (W)AF(w, ). 9)

A special form of F(¢) is defined as the product of a
stationary vector process, Xs(f) = [% e*'dZ(w), and a
time modulating matrix, Ag(¢), thus reducing equation
3) to

F(r) = Ap(0)Xs(1) (10)
where X(¢) has the power spectral density matrix @ (w).
Therefore, the evolutionary power spectral density

matrix of F(¢) defined in equation (9) takes the
separable form

Drx(w, 1) = Ap(1)D(W)AE(1). (11)
In the scalar case, equation (11) reduces to
Brr(w, 1) = az(1)p(w) (12)

indicating that only the amplitude is changing as a
function of time, while the frequency content remains
fixed.

An important particular case of separable vector
process as defined in equation (10) is obtained when
Xs() is a stationary vector white noise process, W(),
defined by its correlation matrix, Ryw(7) = Ryé(7), or
power spectral density matrix, 1/(27)Ry, where R
denotes a constant matrix.

System response

Assuming orthogonal damping and employing the
modal superposition method, the relative displacement
response vector is expressed as

U(1) = ®Z() (13)

where Z'(t) = [Z,(1), Z5(1),...,Z,(1)] is the length-n
vector of the modal responses and ® = (¢, @3, ..., P,]
is the n x n eigenmatrix or matrix of mode shapes. Using
the orthogonality properties of the mode shapes with
respect to the system mass and stiffness matrices, the
equations of motion, equation (1), are transformed into
the uncoupled form

Z(1) + 26w Zi(1) + W Z,(1) = IF(2), 14
i=12,...,n (1)

where T'; = ¢] P/(¢Mg,) is a length-m row vector of
the conventional modal participation factors; w; and ¢;
denote the undamped modal natural frequencies and

damping ratios, respectively. For convenience purposes,
it 1s useful to introduce the length-m normalized modal

response vector, S;(¢), defined by

Si(1) +26wSi(1) + wiSi(H) =F(1), i=1,2,....n

(15)

in which S;(1) = [Su(1), Siz(1), ..., Sim(t)]" and Si;(#)
can be interpreted as the response of a single-degree-of-
freedom oscillator of unit mass, undamped natural
frequency w; and damping ratio £, to the forcing
function F;(¢). It is noticed that the modal response Z;(¢)
defined in equation (13) is related to the normalized
modal response vector S;(¢) just defined by

Zi(1) = T;8(1). (16)

Similarly, in the case of support excitation, the
absolute displacement response vector can also be
expressed as X(7) = ®Y() where Y'(s) = [Y;(1),
Y5(1),..., Y,(¢)] and Y;(r) is the ith modal absolute
displacement response. From equation (2), it can be
shown that the ith modal absolute displacement
response is related to the ith modal relative displace-
ment response by

Yi(t) = =26w; Zi(1) — w Zi(1) = TS{ (1) (17)
where

Si(1) = =26 wSi(1) — wiS(1) (18)
is the ith normalized modal absolute acceleration

response.

For the general class of linear elastic structures, any
set of structural response quantities, Q(z) (e.g. internal
forces, stress or strain components, interstory drifts,
base shear and overturning moment), can be obtained as
a linear combination of the nodal displacement vector
relative to the base. Thus

Q(r) = BU(z2) = BOZ(r) (19)

where Q(¢) is a length-/ vector of response quantities
and B is a / x n constant response transfer matrix, which
in general is a function of the global or local stiffness
and geometric properties of the structure. For example,
if the response quantity of interest is the relative
displacement of the nth degree of freedom, then B =
[0,...,0,1], a length-n row vector.

From equation (15) and assuming zero initial
conditions, the Duhamel’s integral form of S;(z) is
given by

t
S = J hi(t — 7)F(7)dr (20)
0
where #;(¢r) is the unit-impulse response function for
mode i, which for the systems considered is given by
1 ot
hi(t) = —e S 'sin(wp NH(1) (1)
LUD'
where wp = wiy/(1 — &7) is the damped natural circular
frequency of mode i and H(r) is the unit step or
Heaviside unit function.
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Upon substituting equation (3) into equation (20) and
changing the order of integration, the forced vibration
response S;(¢) becomes

Si(t) = Jio U; hi(t — T)Ap(w, )e ¥ 7 dr [eP dZ(w)
_ f M,(w, ) dZ(w) (22)
where
M;(w, t) = J; hi(t — 7)Ap(w, T)e ¥ dr (23)

is the m x k matrix of frequency-time modulating
functions of S;(r) and plays the same role as matrix
Ap(w, 1) for F(?), see equation (3). Likewise, the pth time
derivative of the ith modal response, if it exists in the
mean square sense, can be expressed as

81’ 61’ !
—S;(1) = (t) =— || h(t —7)F(7)dr
- Oc - U ] (24)
= J_ M P (w, el dZ(w)
in which
Pw, 1) =e M o [M;(w, 1) ] (25)
b atp 1 b .

From equation (22), the quantity M,.(p ) (w, 1) in the above
equation can be physically interpreted as the product of
e ¥ and the pth time derivative of the response of the
ith modal oscillator subjected to the input force
Ap(w,0)e®’. The mxm matrix of cross relation
functions between derivatives of order p and ¢ of the
ith and j th normalized modal responses is given by

Ry s (t,7) = E[S{7 ({89 (1 + )} )

_ Jw M) (@, 1)]* @ (w) (26)

x M9 (w, 1+ 7)]Tek" dw

which, for 7 = 0, becomes

Ry mgo (1,0) = E[S,” (1){S/” (1)}
- f M P (w, )] @ (w) 27)

X [Mj(q) (w, )] dw.

From equation (26), the m x m matrix of evolutionary
cross-power spectral density functions between deriva-
tives of order p and ¢ of the ith and jth normalized
modal responses is

Dgingin(w, 1) = M7 (w, 0] @) M (w0, (28)
From equation (16), it follows that the cross-correlation

and evolutionary power spectral density functions

between derivatives of order p and ¢ of the modal
responses Z;(t) and Z;(7) are

Ry g0 (t,m) = E{ZP(0[Z{2 (1 + )T}
i J
=T'Ryimgw (6T (29)
[

in(p)zqu) (w,1) = r"(psi"’)sj“” (w, DT} (30)
It is worth emphasizing that the summation convention
in which a repeated index implies summation over the
range of the index is not applied in this paper. Similarly,
from equations (13), (29) and (30), it is found that the
cross-correlation and evolutionary cross-power spectral
density functions between derivatives of order p and g of
two nodal response quantities U;(t) and U,(¢) can be
expressed as

R a(t,T) =

ZquﬂrkR s (61T ] (1)

Z Z ¢lk¢ﬂ l-‘k

in which the coefficient ¢, denotes the ith component of
the kth mode shape.

Analogous to equations (31) and (32), the cross-
correlation and evolutionary cross-power spectral
density functions between the nodal absolute accelera-
tion responses X;(f) and X](t) of a ground-excited
system are given by the superposition formulas

Ui(p) U(

2, 7y o ) (w, t) p)slm(w, nry (32)

RXX(t-r

Z Z il iRsass (1, 7)T] (33)

k=11i=1

Z Z i T ®sgss (w, T (34)

k=11=

¢XX (w, 1)

in which, via equation (18), Rgeg¢(7, 7) and @gese (w, 1)
are determined to be

Rggse(1,7) = 4§ §ui wiRg g (1,7) + 264 wi wiRg,g, (1,7)
+ 2§,w1w,3RskSI(t, )+ w;fw,zRSksl(t, T)
(35)
Dso50(w, 1) = 4§ § wi wPg g (w, 1)
+ 28, wy, ‘*"lzq)s,,s, (w, t)
+ 2§1w1w;§'(DSksl (w, ) + w;?wlz(l)sksl (w,1).
(36)

From equation (19), the correlation and evolutionary
power spectral density matrices for the generalized
structural response vector Q(t) are expressed as
Roo(,7) = BRyy(t, 7)BT, @go(w, 1) = BOyy(w, /)BT

Finally, consider a very special case in which a stable
system (implying here that & >0 for i=1,...,n)
initially at rest is subjected to a stationary excitation
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F(r) (i.e. Ap is a constant matrix). In this case, the
system’s response becomes stationary (i.e. S;(¢) becomes
a stationary vector process) as time tends to infinity.
Thus

t
lim M;{w,t) = lim J hi(t — T)Age ¥ dr
t—00 11— Jo ( F (37)

= AFH-(w — M(w)

where H;(w) = [5° h(r)e”¥" dr is the Fourier transform
of the umt-lmpulse response function A;(¢) and is called
the modal complex frequency response function. From
equation (25), it can be shown that

lim M” (w, 1) = (jw)? ApH;(w)
I—oC ) (38)
= (jw)"M;(w) = M” (w)

and the cross-correlation matrix between Si(p )

Sj(q) (1) in equation (27) reduces to

Rs,‘”sj“” (t,7)

(r) and

= RS,,“’)SJ“” (7)

— Joo [M(p)

= | (A () )

()] ®(w)[M,? ()] Te*" dw

-0

x Are®™ dw

= J (Dsi(p)s_(q) (w)ei“” dw (39)

—oc

where the cross power spectral density matrix between
S( )( t) and S ( ) is

By insi0 () = (~50)7 (1) Ak} (&) © () H () AF.

(40)

Equations (39) and (40) are recognized as the well-
known Wiener—Khintchine relationship for stationary
vector processes.

EXPLICIT CLOSED-FORM SOLUTION FOR
CROSS-MODAL CORRELATION AND
FREQUENCY-TIME MODULATING FUNCTIONS
IN THE CASE OF MODULATED WHITE NOISE
EXCITATION

Consider the special case in which the excitation F(r) is a
scalar modulated white noise, i.e.

F(t) = Ap()W (1) (41)

where W (¢) denotes a zero-mean white noise of constant
power spectral density, ®y,, and autocorrelation
function Ry (7) = 27®yy6(7). The present study
considers the three-parameter time modulating function

a>0, BA=0 (42)

proposed by Saragoni and Hart’ in the context of
stochastic earthquake ground motion modeling. It is
worth noting that this general time-modulating function
includes, as particular cases, the exponentially decaying
(8 = 0) and the step (3 = v = 0) modulating functions
which have been used in earlier studies on stochastic
earthquake response analysis.*™ The closed-form
solutions presented below apply only when § is a non-
negative integer in the case of the evolutionary power
spectral density functions and when 2/ is a nonnegative
integer in the case of the cross-correlation functions.

From equations (23) and (25), and after some lengthy
mathematical manipulations making use of the CRC
integral table,? it is found that M;(w,¢) and M, ( )(w f)
are given by

Mi(wv t)

. 8
[0 —

= 2J |F M E En(_Eenl + EenZ) + Ee(Eebl - Et’bZ)
“p n=0

(43)

@ ~)\r JE! i
=— E E 1 +=|E
2 Wp, ) en

i

(1 L 1) en2:| - EeKl +j£;w—i>Eeb1
wp,

(1 K wl) eb2:| } (44)
where

E,(n,8,0) = (=1)"8% "™ /(3 n)!

Epp1 (1,61, p1) = exp[—j(n+ 1)0 ]/l’1n+l

Eora(n,03, p2) = exp[j(n + D)3} /pf" "
E,(&,wi, B, w, 1) = exp|—(jw + )] (—1) B!
Ep1 (& wi, 3,01, p1, 1) = exp{jlwp,t — (6 + 1)01]}/

+

+

pl([i+l
Epp (& wi, 3,62, p2, 1) = exp{—jlwp,t + (8 + 1)6,]}/
p2(,3+1)

P = \/(fiwi - N+ (w—wp,)?

prcost =&w, — X psind) =w—wp,

pr =/ (§w; — )\)2

p2€086y = ¢

It should be noted here that both equations (43) and
(44) can also be used to compute the evolutionary power
spectral density matrix of the response vector for any
gamma-modulated stationary input process using
equations (28), (30), (32), (34) and (36).

+ (w+wp,)?

w,—)\ pzsin92:w+wl)i.
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The analytical forms of the modal cross-correlation
functions can be derived directly from the definition

Ryngio(t,7) = E[S () (14 7) (45)

and by using equation (20). Only the case 7> 0 is
considered below, since for 7 < 0 the following relation
can be used

(t+71)=0.
(46)

Rs}”)s}.(‘”(” T) = st(q)si(m (t+7,-7),

After extensive mathematical derivations, the following
explicit closed-form expressions are obtained:

2

d wwa
RS,-S]- (tv T) =
Wp,Wp,

28
X {Gel Z Gn(Gcnl - Gan) - GeZ(GcBl - GcﬁZ)}(47)
n=0

2

P ww o
RS,.Sj (t T) = w
D;

28
X {Gel Z Gn [Gsnl + Gsn2 - é;—L(Gcnl - Gcn2)jl
n=0 Wp,

i

i Wi
- GeZ ’:_Gsﬂl + GsﬁZ - %D— (Gcﬁl - GC,L’?'Z):' } (48)

) 2
RS.-S'j(ts T) = I—Z;Vi
§w
{Gel Z G snl + GsrzZ e 4 (Gcnl - Gan)
ij
6.l §wi
—Gp |Gp1 + Gygay — E(Gcm = Gep2) (49)

Rs'.s',(t» T) = 7r(1>WWa2

&iw; fjw-
S| Y

Gel(/\»gj,wj, LT)= e(TAAG )
Gor (& wir &y, 1,7) = (—1) B (28) tel -G t7)]
Guln, B,1) = (=1)"(28) 4™ /(28 — n)!

n+1)611/p "V

oslwp,7 + (1 + 1)65]/p3""

Gcnl(n plvelawD T _COS[“JDT_(
= sinfwp, 7~ (n+ 1)6,]/p, "V

+1)8,)/p, "

, —wp )t —wpT

(

)
(1, P2, 00, wp , T) =
Goni (1, p1,01,wp,, T) =
T) =

G

Gona(n, 2,02, wp,, 7) = sinfwp 7+ (n +

Gep (B, pl:ath,-’ij, t,7) = cos[(wp
+(28+ 1)61]/py PV

Gep2( B, p2,02,wDi,ij, t,7) = cos|(wp, + ij)t +wp, T
+ 28+ 18]/ Y

Gsp1( B, p1,61,wp,,wp,, 1,7) = sin[(wp, — wp )1 —wp,T
+ 28+ 1)6:]/p Y

Gyp2( B, p2, 02, wp,,wp , 1,7) = sin[(wp, +wp )t

+wp T+ (28+ 1)8,]/p, @Y

2

(&wi+&w— 2)‘)2 + (wp, — WDj)

preost) =&w+&w; —2X  pysinb; =wp —wp,

= (gzwr +€jw —2’\)
=&w +§uw

Next, it is shown that the above nonstationary
solution reduces to the well-known solution for the
stationary modal response to white noise excitation. For
this purpose, the case (¢ =1, 3=0, A =0, and t — o0)
is considered. By substituting these parameter values in
equations (43) and (44) and after some algebraic
manipulations, it is found that

+ (wp, + wbj)z

P2 COS 92 — 2 2] sin 92 = Wp, + ij.

i [ e e

M(w —— = H(w 51
® M[ — | =HW) O

B B | s\ o if2
M,«m(w) - l:( ]gz ) € + (1 _ngu')l) € :|

2 Wp, P1 Wp, P2
= jwH;(w) (52)
in which
P = \/(fi W)+ (w-wp)  picosh =&

p18ind; = w —wp,

pr =\ (Ew) + (w+wp,)

02 sin 02 = w+le_.

p2€086; = §u;
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Then equation (28) becomes
IILIEO Py, (w, t) = H (W)Pwp Hi(w) = |Hi(w)|2‘I’WW-
(53)

Similarly, in the time domain, equations (47)—(50)
reduce to

TP ywa
S;S; (T) wDWZD GelGn(Gcnl - Gcn2)
T®ype ST & .
cos(wp,T) + ——=sinlwp.7
261 13, ( D; ) \/I-_? ( D; )
(54)
Ry 5,(7)
P 2 ey
= mGelGn [Gsnl + Gop — ﬂ(Gcnl - Gan)]

ij UJD‘,

_ 7P WWe_E" “iTsin (UJDiT)

- (55)
26w /1 - &
Rs,-sl,-(T)
i 2 W
= TLyw 'GelGn |:“‘Gsn1 + Gan — E(Gcnl — GCHQ)]
Wp, Wp,
_ —w@WWCAE'w”T sin(wp, T) (56)
26wi/1 - &
i Wi
RS,»S‘,v(T) = 7r<I>WWa2Ge1G,, [—2 (€ )Gsn2
wD,-
w2 N2
+ (1 + (ﬂ) )Gml + (1 — (ft_“’z) )sz]
Wp; wWp,
7 WWe'§‘ wir §i .
=——""—— |cos{wp,T) — sin(wp 7)
26 w; ' 2 i
1§
(57)
in which
Gel = e_fiwiT Gn =1 Gcnl = COS(UJD!T)/(zﬁ,- wi)

Gonz = |Erc08(eap 1) — /1 — E2sin(u,7)]| /(20)

Gsnl = Sin(wD,-T)/(zgi wi)

Gsn2 = 51’ Sin(wD,»T) + \/ 1 - §i2 COS(WD,-T) /(Zwi)

T 777 P77 7772777777777,
e
X, (6)

Fig. 1. A three-story shear building model.

Equations (53)—(57) are recognized as the well-known
stationary results for a SDOF oscillator excited by white
noise.

APPLICATION TO A SIMPLE MDOF
STRUCTURE

Consider the horizontal translational vibration of a
three-story building structure subjected to earthquake
ground motion as shown in Fig. 1. The earthquake
ground acceleration is modeled as a modulated white
noise with the time modulating function given in
equation (42). The different members of this general
class of modulating functions selected for this study are
portrayed in Fig. 2 and their parameters are given in
Table 1. They are normalized according to the L,-norm
such that [§° 4%(¢)dz = 1. When J and X equal zero, the
modulating function reduces to the step function
represented as Case I in Fig. 2. If only 3 equals zero,
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Fig. 2. Modulating functions.

Table 1. Parameters of the modulating functions

Case 1 11 I v v Vi

o 1/v/60 V02 0-0041 4569 x 107° 1:071 x 1073 1-651 x 10°°
i 0 0 6 6 6 6

v 0 01 1 0-5 0-4 03
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Fig. 3. Cross-correlation function between relative displace-
ment responses U,(f) and U;(z) for case-l modulated white
noise.

the modulating function is of the exponential type or
case Il in Fig. 2.

The building structure under consideration is modeled
as a lumped-mass shear building, see Fig. 1. It is
assumed that the story stiffnesses are all equal
(ky = ky = k3 = k) and that the lumped floor masses
satisfy m; = m; = 2my = m. A ratio of k/m = 14-928 is
selected and leads to three undamped natural circular
frequencies of 2, 5-464 and 7-464 [rad/s]. Rayleigh
damping is assumed with the mass and stiffness
proportionality coefficients taken as ¢, = 0-15 and
¢, = 0-01, respectively, which results in the modal
damping ratios £ =475%, & =410%, and & =
4-74%.

Figure 3 displays the cross-correlation function
between the relative floor displacements U,(z) and
U,(¢) for the case-I modulating function (step func-
tion). It is observed that, in agreement with equations
(54)—(57), the response gradually becomes stationary
and conjunctively the cross-correlation function
becomes a function of the time lag 7 only. Figure 4
represents the plot of the auto-correlation function of
the absolute acceleration X;(f) or roof absolute
acceleration for the case-V modulating function. As
expected, the nonstationary response to this modulated
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Fig. 4. Auto-correlation function of absolute acceleration
response X;(¢) for case-V modulated white noise.
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Fig. 5. Evolutionary auto-spectrum function of relative
displacement response U, (¢) for case-II modulated white noise.

white noise does not reach stationarity. The auto-
correlation function behaves like the corresponding
modulating function along the time axis ¢ and decays
with an oscillatory behavior along the time lag axis 7. At
zero time lag, the auto-correlation function reduces to
the mean square response. A close examination of the
results indicates that the maximum value of the mean
square response is slightly delayed (3-5 s} with respect to
the time at which the modulating function reaches its
maximum. This time lag between the nonstationary
input and response was first noticed by Spanos' and
Solomos and Spanos® for SDOF oscillators. Using
stochastic averaging, they proved that the mean-square
response could be approximated by a simple convolu-
tion integral of the modulation function. Later, by
extending their approximate analytical results to include
time-varying statistics of the response PSD and
considering multi-mode structures, Igusa*®’! and Xu
and Tgusa3? observed the same time lag phenomenon.
Figure 5 shows the evolutionary auto-spectrum of the
first floor relative displacement, U, (¢), when the building
model is subjected to case-II modulated white noise
(exponentially decaying type). Along the circular
frequency axis w, the evolutionary spectrum exhibits
local maxima at the natural circular frequencies of the
system (w,ws,ws). The auto-spectrum of the first floor

X t
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Fig. 6. Evolutionary auto-spectrum function of absolute
acceleration response X;(t) for case-V modulated white noise.
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relative displacement reaches its maximum at the first
natural frequency of the structure due to the predomi-
nant contribution of the first mode in this response
quantity. The effective participation factor of the highest
(third) mode of the system is so small compared to that
of the first two modes that the local maximum of the
auto-spectrum at the third natural frequency is not even
observable. It is worth noting that since the ground
excitation is uniformly modulated (i.e. fixed frequency
content) and the system is time invariant, the locations
of the spectral peaks along the frequency axis do not
change with time. Along the time axis, the shape of the
auto-spectrum resembles that of the excitation time
modulating function, except at the beginning of the
excitation during the response build-up. Figure 6
presents the evolutionary auto-spectrum of the roof
absolute acceleration, X;(7), corresponding to case-V
modulated white noise excitation (gamma type). Note
that similar to equation (8) for the random excitation
process, the following equation holds for the response
process X3(1):

Res,(00) = | 1@, 0P (58)

The above equation expresses the relationship existing
between the mean square of the response process X;(¢)
and its evolutionary auto-spectrum, namely that the
auto-spectrum represents the time-frequency distribu-
tion of the mean square response or response energy. By
comparing Fig. 6 with Figs 4 and 17, one can observe
the similarity between the shape of the mean square of
the response X 3(¢) and the shape of the corresponding
evolutionary auto-spectrum along the time axis at the
natural frequencies of the system around which the
energy of the response is concentrated.

As an illustration of the more general case of
uniformly modulated stationary input process, Figs 7
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Fig. 7. Evolutionary auto-spectrum function of relative

displacement response U, (¢) for case-II modulated stationary

process with an exponentially decaying harmonic correlation
function.
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Fig. 8. Evolutionary auto-spectrum function of absolute

acceleration response X3(f) for case-V modulated stationary

process with an exponentially decaying harmonic correlation
function.

and 8 display the evolutionary auto-spectrum functions
of the relative displacement response U, (t) and absolute
acceleration response X;() for the case-II and case-V
modulating functions, respectively. The stationary
process considered has an exponenuall?' decaying
harmonic correlation function, R(t cos(wp7),
in which wy =5 [rad/s] and v = 0 5 [s™ ] are selected.
The corresponding power spectral density function is

[} (w, t)
02 Rean{%——} [sec*]
A

0.15

(il
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Fig. 9. Evolutionary cross-spectrum function between relative
displacement responses U,(#) and Uj(¢) for case-I modulated
white noise.
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given by

v 1 1
= +
21 (12 + (wHwp)? v+ (w— wp)

®(w) 3
and is shown in Fig. 7.1. In comparison with Fig. 5, Fig.
7 indicates that the second mode contribution to the
mean square response U,(z) is significantly increased
due to the concentration of the input energy around the
frequency wy = 5 rad/s, which is closer to the second
than to the first circular natural frequency of the
building. The same result is observed in Fig. 8 in
which the second mode dominates the mean square of
the absolute acceleration response X3(¢). This phenom-
enon shows the important effects on structural response
of the frequency content of the ground motion in
relation to the structural natural frequencies.

The evolutionary cross-spectrum between the relative
displacement responses U,(¢) and Uj;(f) to the case-I
modulated white noise is plotted in Fig. 9. As in the case
of the cross-correlation function shown in Fig. 3, both
the real and imaginary parts of the cross-spectrum
become progressively functions of the frequency w only,
while the response gradually reaches stationarity. In the
small time range, notice that the imaginary part of the
cross-spectrum is much more irregular than the real part

o (0t
XX
R 1{4—} [-1
€a ‘wa

20 N

tsec] 40 o

4
, o [rad/sec])

o

4
®, O [rad/sec]

Fig. 10. Evolutionary cross-spectrum function between
absolute acceleration responses X;(#) and X3(z) for case-V
modulated white noise.

thereof. However, in this particular case, the amplitude
of the complex-valued cross-spectrum is very close to the
real part which is several orders of magnitude larger
than the imaginary part.

The plot of the evolutionary cross-spectrum between
the absolute acceleration responses X;(¢) and X;(¢) to
the white noise ground acceleration modulated with the
gamma function (case-V) is presented in Fig. 10. Notice
that the imaginary part of the cross-spectrum is much
smoother than in the case displayed in Fig. 9. This is due
to the absence of discontinuity (at ¢=0) in the
modulating function of the excitation, contrary to
cases I (step modulating function) and II (exponen-
tially decaying modulating function) as shown in Fig. 2.
In this case again, the real part of the cross-spectrum
dominates the imaginary part in amplitude. However,
from Fig. 10, it appears that, contrary to the case of the
step modulating function (Fig. 9), the contribution of
the imaginary part of the cross-spectrum to the
amplitude of the cross-spectrum is not negligible in the
case of the gamma modulating function (case-V).

EFFECTS OF STATISTICAL CORRELATION
BETWEEN MODAL RESPONSES
It was demonstrated by Der Kiureghian® that, in
computing the statistics of the stationary response of
MDOF structures subjected to wideband excitations,
cross-correlation terms between modal responses are
only significant in the case of systems with closely spaced
modes. Otherwise, these cross-modal terms can be
neglected and in particular for lightly damped systems.
In this paper, the effects of the cross terms between modal
responses is investigated in the case of the nonstationary
response to modulated white noise with the modulating
functions defined earlier, see equation (42).

The importance of modal correlation is quantified
through the following cross-modal correlation coefficients:

Rs5(1,0)
po,i(t) = - (59)
V/ Rsis,(1,0)Rs;s,(1,0)
R; :(1,0)
pry(t) = = (60)
v/ Rs5,(60) R 6(1,0)
Rs_as_a(t,o)
Pa,i(t) = — (61)
\/Rs,.ﬂs,.ﬂ (2,0)Rsas4(2,0)
R¢ (2,0
5.5,(,0) ()

pri(t) =
VR, (4, 0)Rs;5,(2,0)

The coefficients pg ;(1), p ;(¢), and p, ;(f) can be
physically interpreted as the correlation coefficients
between the normalized modal displacement responses
S;(¢) and S;(t), between the normalized modal velocity
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Fig. 11. Coefficient pg ; for nonstationary response to case-V
modulated white noise.

responses S;(z) and S,—(t), and between the normalized
modal absolute acceleration responses S/(r) and S} (),
respectively, while p; ;(f) is the correlation coefficient
between the normalized modal velocity response S;(t)
and the normalized modal displacement response S;(1).
These correlation coefficients can be readily obtained
using the closed-form solutions derived in equations
(47)—(50) for the cross-modal correlation functions. As
expected, when / = j, the correlation coefficients po.ii (1),
p2,ii(t) and p, ;(1) take the unit value as shown in Figs
11-13. Notice that the correlation coefficient p; ;(7)
plotted in Fig. 14 is not zero as in stationary random
vibrations, and that its absolute value is maximum both
below and above the value w;/w; =1. Plots of these
modal correlation coefficients as a function of the modal
frequency ratio w;/w; for specified modal damping ratios
& and §; (see Figs 11-14) indicate when the effects of
statistical modal correlation are important and when
they are negligible in computing mean square response
quantities as well as cross-correlation between any two
response quantities at the same time.

A comprehensive parametric study was conducted via
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Fig. 12. Coefficient p, ; for nonstationary response to case-V
modulated white noise.

computation of p,, ;(¢), m = 0,1,2, and p, ;(1) for the
various modulating functions shown in Fig. 2. Here,
only the results corresponding to the case-V modulating
function are presented. In Figs 11-14, the correlation
coefficients p,, ;(t) and p, ;(t) are plotted against w;/w;
for specified modal damping ratios (¢ and &), for a
given reference modal frequency w;, and at different
times. In general, the cross-terms pg ;(1), ps ;(f) and
Pa,ii(t) decay rapidly as the two modal frequencies w;
and w; depart from one another and after a sufficiently
long time. Otherwise, for closely-spaced modal frequen-
cies or at small time, the cross-modal contributions to
the system response statistics cannot be neglected. The
width of the region along the w;/w; axis over which the
cross-modal terms are not negligible is usually largest at
the beginning of the response and decreases over time.
The width of this region depends on the reference modal
frequency w;; it decreases for increasing wy. It is also
found that during the early stage of the response to
case-I (step function) and case-II (exponential-type)
modulating functions and for a relatively small refer-
ence frequency w; (e.g. w; =2+ 4rad/s), the modal
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Fig. 13. Coefficient p, ; for nonstationary response to case-V
modulated white noise.

correlation coefficients exhibit a decaying oscillatory
behavior. This oscillatory behavior is probably due to
the discontinuity of the case-I and case-II modulating
functions at time zero. Notice also that the cross-modal
correlation coefficients pg ;;(¢), p; ;(f) and p, ;(t) are
only rarely negative such as in the cases just mentioned
and in the cases shown in Figs 11(a), 12(a) and 13(a) at
the late stage of the response. It is worth noting that
p1,;i(#) does not decay as fast as py ;(¢), py () and
Pa,ii() away from w;/w; = 1. As in the case of stationary
response to wideband stationary input,” Pm,ii(2),
m=0,2, and p, ;(¢) decay faster for smaller damping
values as the ratio w;/w; departs from one. Notice that
the cross-modal correlation coefficients py ;(¢), p2,;(?)
and p, ;(t) corresponding to the stationary case for
white noise excitation (i.e. case-I modulating function
after a sufficiently long time) have been included in Figs
11-13 (solid lines) for comparison with the non-
stationary case considered here. It is observed that in
the early part of the response process, the “nonsta-
tionary” cross-modal correlation coefficients py ;(¢),
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Fig. 14. Coefficient p; ; for nonstationary response to case-V
modulated white noise.

p2,4(1) and p, ;(t) are larger than those for the
stationary case, while the reverse is true during the
later part of the response.

Figure 15 represents the mean square relative
displacement responses for the three stories, both exact
(solid lines) and approximate (dotted lines) by neglecting
the cross-modal terms (i.e. assuming po ;(f) =0 for

T T
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03 (neglecting
Ry .y (t,0) Posj i *)
Ul 02 R
q)WW
fsec’] 0.1} i
L
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Fig. 15. Mean square relative displacement responses U;(f) to
case-V modulated white noise.
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Fig. 16. Mean square relative velocity responses U;(?) to case-V
modulated white noise.

i#j). It is noted that the approximate solution is
excellent. This could be expected from Fig. 11(a) where
the cross-modal correlation coefficient pg 15(7) (wo/wy =
2:73} between the first two modes which dominate the
response is shown to be very small during the strong
portion of the response, namely between 10 and 40s.
Similarly, as shown in Fig. 16, the mean square relative
velocity responses are accurately approximated by
neglecting the cross-modal terms (i.e. assuming
pa,ii(t) =0 for i#j) which are also very small (see
Fig. 12(a)) for the natural frequencies of the structure
considered here. Figure 17(a) indicates that the relative
errors between the exact and approximate (by assuming
Pa,ii(1) = 0 for i # j) mean square absolute acceleration
responses are larger than those for the mean square

10 T T
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8 /N approximate |
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6 L_ Pa, ij? i#] )
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Fig. 17. Mean square absolute acceleration responses X;(¢) to
case-V modulated white noise.

relative displacement and velocity responses. This can be
explained by Fig. 13(a) which shows a cross-modal
correlation coefficient p, ;;(f) slightly larger than py ;(¢)
and p; ;(t) at wy/w; = 2-73. Figure 17(b) shows that the
approximations obtained by neglecting only the correla-
tion terms p, ;(¢) for all i, j are very accurate. This can
be explained by cancellation effects between p; ;(f) and
p1,(t) terms which are of different signs as seen in
Fig. 14.

CONCLUSION AND REMARKS

The analytical expressions for the correlation matrix and
evolutionary power spectral density matrix of the
nonstationary response of linear elastic, classically
damped, MDOF systems subjected to a general
nonstationary random vector process are derived using
the modal superposition approach. The stationary
solution for the same kind of MDOF systems excited
by a stationary random vector process corresponds to a
particular case of the nonstationary solution presented
here. A particular emphasis is placed on the case of
stochastic ground excitation and the corresponding
second-order statistics of the relative displacement,
velocity and absolute acceleration responses.

The main contribution of this paper consists of the
explicit closed-form solutions (in terms of elementary
functions) obtained for the correlation matrix and
evolutionary power spectral density matrix of the
response of a MDOF system excited by a modulated
white noise. The explicit closed-form solution for the
evolutionary power spectral density matrix is also given
for the more general case of a uniformly modulated
stationary process. The modulating function is the three-
parameter gamma function proposed by Saragoni and
Hart.’ Modulating functions used in earlier studies,
including the step and decaying exponential functions,
are considered here as particular cases. Based on these
explicit closed-form solutions, additional physical
insight into the nonstationary behavior of linear
dynamic systems can be gained.

Furthermore, the effects of cross-modal correlations
on the various mean-square responses are investigated
using the closed-form solutions obtained. Unlike in the
stationary case, the statistical cross-modal correlation
coefficients vary with time, and depend on both natural
modal frequencies and not only on the modal frequency
ratio w;/w;. For a fixed modal frequency ratio, they
decrease as the modal frequencies increase. Also, the
cross-modal correlation coefficients between modal
displacement responses and modal velocity responses
are not zero as in the stationary case. However, as in the
stationary case, the cross-modal correlation coefficients
decay fast to zero as the modal frequency ratio w;/w;
(for a given w; or w;) moves away from unity (widely
spaced modes), except in the early part of the excitation
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when the modal responses are small as observed by Xu
and Igusa,® and they decay faster for smaller damping
ratios. In general, as time progresses, they decay faster
to zero as w;/w; moves away from one for a fixed w;.
Physically speaking, when the cross-modal correlation
coefficients are small, it implies that the cross-modal
terms contribute little to the various mean square
responses, and that statistical dependence between
modal responses can be neglected.

A three-story shear building subjected to ground
excitation is used to illustrate the findings of this paper.
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