FULLY NONSTATIONARY ANALYTICAL EARTHQUAKE
GROUND-MOTION MODEL
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ABSTRACT: A versatile, nonstationary stochastic ground-motion model accounting for the time variation of
both intensity and frequency content typical of real earthquake ground motions is formulated and validated. An
extension of the Thomson’s spectrum estimation method is used to adaptively estimate the evolutionary power
spectral density (PSD) function of the target ground acceleration record. The parameters of this continuous-time,
analytical, stochastic earthquake model are determined by least-square fitting the analytical evolutionary PSD
function of the model to the target evolutionary PSD function estimated. As application examples, the proposed
model is applied to two actual earthquake records. In each case, model validation is obtained by comparing the
second-order statistics of several traditional ground-motion parameters and the probabilistic linear-elastic re-
sponse spectra simulated using the earthquake model with their deterministic counterparts characterizing the

target record.

INTRODUCTION

A proper definition of the design ground-motion time his-
tory is a very important concern in structural earthquake en-
gineering. To account for the uncertainties characterizing
earthquake ground-motion time histories, several kinds of sto-
chastic ground-motion models, stationary or nonstationary,
have been developed and applied over the years. About every
10 years from 1970, comprehensive review papers (Liu 1970;
Ahmadi 1979; Shinozuka and Deodatis 1988; Kozin 1988)
examine and compare the stochastic earthquake ground-mo-
tion models available.

First, stationary white-noise ground-motion models were
proposed (Housner 1947; Bycroft 1960). Accounting for local
site properties and a dominant frequency in the ground motion,
stationary nonwhite process models were suggested by Kanai
(1957), Tajimi (1960), Housner and Jennings (1964), and Liu
and Jhaveri (1969). Faravelli (1988) formulated a stationary
ground-motion model with multimodal spectral density. How-
ever, stationary models fail to reproduce the time-varying
intensity (or amplitude nonstationarity) typical of real earth-
quake ground-motion accelerograms. Therefore, a variety of
time-modulating functions were introduced to produce various
nonstationary ground-motion models. These models include
the time-modulated harmonics (Bogdanoff et al. 1961), the
filtered modulated white noise, the modulated filtered white
noise, the modulated filtered Poisson process (Shinozuka and
Sato 1967; Amin and Ang 1968), the modulated stationary
process (Iyengar and Iyengar 1969), and the filtered modulated
stationary process (Levy et al. 1971).

Furthermore, a time-varying frequency content is observed
in actual earthquake records. This frequency nonstationarity
depends on the epicentral distance, since it is due to the dif-
ferent arrival times of the P (primary or ‘‘push’’), S (secondary
or shear), and surface (Rayleigh and Love) waves that prop-
agate at different velocities through the earth crust. These three
types of waves vary significantly in frequency content. Thus,
more complicated nonstationary ground-motion models were
developed to represent both the amplitude and the frequency
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nonstationarity simultaneously. Saragoni and Hart (1972) pro-
posed a fully nonstationary (with both amplitude and fre-
quency nonstationarities) model by juxtaposing time segments
of gamma-function-modulated filtered Gaussian white noise.
Kubo and Penzien (1979) developed a nonstationary earth-
quake simulation model as the product of a constant intensity
process having time-varying frequency content and a deter-
ministic intensity function. Lin and Yong (1987) formulated
evolutionary Kanai-Tajimi earthquake models as nonstationary
random pulse trains and used Green’s functions from one-di-
mensional wave propagation. Other researchers used both
time- and frequency-modulating functions to construct a fully
nonstationary earthquake model (Grigoriu et al. 1988; Yeh and
Wen 1990). Der Kiureghian and Crempien (1989) defined an
evolutionary earthquake model composed of individually mod-
ulated component stationary (band-limited white noise) pro-
cesses. Fan and Ahmadi (1990) extended the original site-de-
pendent, stationary, Kanai-Tajimi earthquake model to account
for time-varying amplitude and frequency content. Papadimi-
triou (1990) produced a parsimonious nonstationary earth-
quake model by applying a second-order filter with slowly
varying parameters to a time-modulated white noise. Conte et
al. (1992) developed a time-varying autoregressive moving av-
erage (ARMA) model estimated from actual earthquake ac-
celerograms using an iterative Kalman filtering scheme. Re-
cently, several authors have developed fully nonstationary
earthquake models using principles of geophysics and sto-
chastic wave propagation (Deodatis et al. 1990; Zhang et al.
1991).

Most earthquake models have neglected the frequency non-
stationarity for mathematical convenience in random vibration
analysis and because it was believed that the temporal varia-
tion of the frequency content had no substantial effect on struc-
tural response. Several studies have shown that this nonsta-
tionarity in frequency content can have a significant effect on
the response of both linear and nonlinear structures (Saragoni
and Hart 1972; Yeh and Wen 1990; Papadimitriou 1990; Conte
1992). '

In this paper, a new, versatile, fully nonstationary, stochastic
earthquake model is proposed from the family of sigma-oscil-
latory processes. The model parameters are determined by
adaptively least-square fitting the analytical time-varying (or
evolutionary) power spectral density (PSD) function of the
proposed model to the evolutionary PSD function estimated
from the target actual earthquake accelerogram. This model-
fitting procedure ensures that the earthquake model captures
the time variation of both the intensity and the frequency con-
tent of the target earthquake record. A new approach, an ex-
tension of the Thomson’s (1982) multiple window spectrum
estimation method, is used to estimate the evolutionary PSD
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function of actual earthquake accelerograms. Thomson'’s
method consists of an approximate solution to the fundamental
equation of spectrum estimation, which is a linear Fredholm’s
integral equation of the first kind (Thomson 1982; Drosopou-
lous and Haykin 1992). Other methods exist to estimate the
evolutionary PSD function from a single realization (time se-
ries) of a nonstationary process (Kameda 1975; Scherer et al.
1982; Spanos et al. 1987). Some attractive statistical properties
of Thomson’s (1982) spectral estimate are that: it is consistent,
it has high resolution, its estimation capacity is high, and it is
not hampered by the usual trade-off between bias (leakage)
and variance. The proposed stochastic earthquake model is ap-
plied to two actual earthquake accelerograms. Artificial ground
acceleration, velocity, and displacement time histories gener-
ated using the earthquake model are compared with the target
time histories. The statistics of various traditional ground-mo-
tion parameters and the probabilistic linear response spectra
(obtained from an ensemble of 100 artificial accelerograms
simulated using the earthquake model) are compared to the
target ground-motion parameters and linear-elastic response
spectra, respectively. These comparisons serve to evaluate the
ability of the proposed earthquake model to faithfully repro-
duce the multifold characteristics of actual earthquake ground
motions.

FORMULATION OF STOCHASTIC EARTHQUAKE
GROUND-MOTION MODEL

The evolutionary spectral analysis has been introduced by
Priestley (1987). Priestley considers a class of nonstationary
processes, the oscillatory processes, and defines the evolution-
ary (or time-varying) spectrum. Although this approach has
proved to be widely applicable, it has some limitations. For
example, the class of oscillatory processes is not closed with
respect to the sum of independent elements, and the coherency
of a bivariate oscillatory process turns out to be independent
of time (Battaglia 1979). An attempt to get free of these lim-
itations is presented by Battaglia, who introduces the concept
of sigma-oscillatory processes and defines an evolutionary
spectral analysis (time-frequency distribution analysis with a
physical frequency parameter) for this kind of processes. A
stochastic process is termed sigma-oscillatory if it is defined
as the sum of a finite number of pairwise (statistically) inde-
pendent oscillatory processes. It can be shown that the family
of sigma-oscillatory processes is closed with respect to the
sum of independent elements and the coherency function of a
bivariate sigma-oscillatory process is time-dependent. Here, a
nonstationary, stochastic earthquake ground-motion model
based on the theory of sigma-oscillatory processes is proposed.

Consider a sigma-oscillatory process, Y(#), defined as

Y®) = D, Xu() ¢)
k=1

in which the component processes [X(f), k= 1,2, ..., p] are
oscillatory processes admitting the spectral representation

X = f At w)e*'dZ () €))

In (2), j = V—1; AJt, w) = frequency-time (deterministic)
modulating function; and quantities [dZ(w)] = zero-mean,
mutually independent, orthogonal increment processes having
the properties

EldZ(w)]=0,k=1,2,...,p 3)
E[dZ}(0)dZ{(w,)] = 8() — k)d(w, — w)Pzz (@) dw; dw,  (4)
in whichj, k=1,2, ...
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, Py E[ 1 = ensemble-average or ex-

pectation operator; 8( ) = Dirac delta function; and * = com-
plex conjugate. The spectral representation in (2) can be phys-
ically interpreted as the limit of a ‘‘sum’’ of sine waves with
increasing frequencies and time-varying random amplitudes
[A(t, w)dZ,(w)]. Each component process X,(f) of the sigma-
oscillatory process Y(¢r) has the following evolutionary spec-
trum:

Dy x, (1, w) = |A, w)lzq)z,z,(w) 5)

with respect to the oscillatory family of functions, %, = [A.(¢,
w)e’], which should be viewed as functions of  indexed by
t. For simplicity, it is assumed that each spectrum is absolutely
continuous with respect to w. According to Priestley’s (1987)
definition of oscillatory processes, the modulating function
At, w) (viewed as a function of ¢ for each ®w) must be such
that the modulus of its Fourier transform H,(0, w) has an ab-
solute maximum at the origin (i.e., 6 = 0) and

A, w) = f eH(0, w) db ©)

The mean-square function of the sigma-oscillatory process Y(?)
defined in (1) is

4 P
EY®I =D ENX0I = | D (A 0)*@gz(w)] do
hm —o0 k=l
)

which gives a decomposition over frequency of the ‘‘total en-
ergy’’ of Y(¢) at time ¢ measured by the variance. Therefore,
the evolutionary (time-varying) power spectrum of Y(f) can be
meaningfully defined with respect to the oscillatory family of
functions &, = UL, &, by

Dlt, @) = D |4t ©)|*@yz(w) ®)
homl

The sum of two independent sigma-oscillatory processes re-
mains a sigma-oscillatory process whose evolutionary spec-
trum is the sum of the evolutionary spectra of the two indi-
vidual processes. Moreover, the characteristic width of the
family %y, and the characteristic width of the process Y(¢) are
defined as

Bg, = min Bs,; By= min By, 9a,b)

Y
1=<k=p Isk=p

where

Bg, = 1/sup U [8]| Hy(®, )| de/ f IH.(e,w)lde]

is the characteristic width of &,; and B, = characteristic width
of the component process X,(¢) defined by By, = sups,cq, Bs,
in which %, = class of families %, with respect to which X,(r)
admits the spectral representation in (2). If the process X,(¢) is
stationary, By, is infinite. If By, is finite, the nonstationary pro-
cess X,(¢) is termed semi-stationary. The characteristic width
is a measure of the nonstationarity of a process; roughly speak-
ing, 2mwBy, or 2wBy may be interpreted as the maximum time
interval over which X(f) or Y(¢) can be treated as approxi-
mately stationary.

In this paper, a fully nonstationary, stochastic earthquake
ground acceleration model, U,(¢), is defined as a sum of zero-
mean, independent, uniformly modulated Gaussian processes.
Each uniformly modulated process consists of the product of
a deterministic time-modulating function, A,(?), and a station-
ary Gaussian process, S,(f). Thus, the proposed stochastic
earthquake model is a particular sigma-oscillatory Gaussian
process defined as



U0 = D Xt = D, AdDSKr) (10)

Furthermore, the modified gamma function is used as a time-
modulating function, i.e.

AD) = ot — LPe ™ TRH(E — L) an

where a, and vy, = positive constants; 3, = a positive integer;
{. = the ‘‘arrival time’’ of the kth subprocess, X\(1); and H(f)
= unit step function. The kth zero-mean stationary Gaussian
process, Si(?), is characterized by its autocorrelation function

Ry,s(m) = €| cos(mym) (12)
and its power spectral density function
Vi 1 1
. + 13
Ps,s@) 27 I:v,f +(w+ M) Vit (0 — m){l a3

in which v, and n, = two free parameters representing the
frequency bandwidth and predominant (or central) frequency
of the process S,(1), respectively. The stationary Gaussian pro-
cess S,(f) possesses a physical interpretation. It can be viewed
as the linear combination of the displacement and velocity
responses of a second-order single-degree-of-freedom (SDOF)
oscillator subjected to two statistically independent Gaussian
white noise processes. A set of linear combination coefficients
can be found such that the autocorrelation function of the com-
bined process coincides with (12). The stationary processes,
[S:®, k=1,2, ..., p], are normalized in order to have a unit
variance. Since the ground acceleration is modeled as a sigma-
oscillatory process, according to (7), the mean-square ground
acceleration is given by

E[| 00| = j 2 |A)|*®ss,(w) doo = E lAa@* a4

—o k=l k=1

where

o

J D 5,(w) do = Rs,s,('f)lqso = E[|S|l1=1 (15)

From (8), the evolutionary PSD function of U,(t) is

Do,0,(t, ©) = D, AL [ Dss(w) (16)

The ground acceleration process, U,(f), is not separable al-
though its component processes are individually separable
(i.e., uniformly modulated). Each uniformly modulated com-
ponent process, X,(t), is characterized by a unimodal PSD
function in the frequency domain and a unimodal mean-square
function in the time domain. Therefore, each component pro-
cess captures the complex time-frequency distribution of the
earthquake ground acceleration in a local time-frequency re-
gion. In other words, the proposed earthquake model views
the earthquake ground motion process as the superposition of
component processes described by their own arrival time, fre-
quency content, and time-intensity function. Each of these
component processes can represent a specific group of seismic
waves. As a particular case, the subprocesses of a three-com-
ponent model could represent the P, S, and surface wave
groups present in earthquake accelerograms. However, the pro-
posed model allows for an arbitrary number of subprocesses,
which is determined by the level of detail desired in capturing
the time-frequency distribution of the target accelerograms.
The aforementioned stochastic earthquake ground-motion is
useful to simulate potential, future earthquake records at a site
for which previous earthquake accelerograms are available.
However, this model can also be used when no accelerograms

are available. In this case, either (1) a target accelerogram is
selected from another site that is similar in terms of earthquake
source mechanism, wave propagation, and local soil condi-
tions; or (2) the evolutionary PSD of the underlying earth-
quake process is generated numerically using newly available
geophysical, stochastic earthquake models (Deodatis et al.
1990; Zhang et al. 1991). Even in the case where a geophys-
ical, stochastic earthquake model is needed to provide the ev-
olutionary PSD, the proposed model is useful to perform
analytical random vibration studies. The earthquake model is
identified such that it captures, in an optimum sense, the es-
timated or a priori generated evolutionary PSD of the ground
acceleration. This paper focuses on the case for which an
earthquake record is available.

ESTIMATION OF MODEL PARAMETERS

The parameters of the earthquake ground acceleration
model, Ug(t), are estimated such that the analytical evolution-
ary PSD function, (I)U‘UE(I, ), given in (16) best fits, in the
least-square sense, the evolutionary PSD function of the target
earthquake accelerogram estimated using the short-time Thom-
son’s multiple-window method, @y p (¢, »), which will be ex-
plained later. The estimated evolutionary PSD function con-
sists of the discrete set of data [(I’U,U,(tn w),i=12...,N;
ji=12, ..., NJ By (11), (13), and (16), the analytical
evolutionary power spectrum is a function of the parameter
vector ® = [0,, 0,, ..., 0,]” whose components are (e, By
Yo &0 Vo M k=1, 2, ..., p). The error or objective function
is defined by

N No
J©) = % DD [@o,0,ts @y ©) — Dy gt WP (AT
=1 jmi
The objective function is minimized with respect to the param-
eter vector @, which is subjected to simple bound constraints,
i.e., all the parameters should be positive except for {,. The
existence of explicit closed-form solutions for the time-varying
PSD functions and auto/cross-correlation functions of the re-
sponse of linear-elastic structures excited by the present earth-
quake model requires the B, parameters to be integers (Conte
and Peng 1996). It can be shown that, under the foregoing
simple bound constraints, the objective function and its partial
derivatives with respect to the parameter vector ® are contin-
uous functions of @, which is a desirable property for nu-
merical minimization of the objective function.

The first step in the model identification procedure consists
of choosing the number, p, of independent component pro-
cesses to be included in the earthquake model. As p and the
number of free parameters (=6p) increase, the model can po-
tentially fit better the estimated data and further reduce the
value of the objective function. However, a model with too
many degrees of freedom can lead to singular convergence.
This can be overcome by using more estimated data, thus in-
creasing the cost of computation. Therefore, there is a trade-
off between accuracy and efficiency of the model. The prin-
ciple of model parsimony must be applied, namely that the
simplest model which is accurate enough must be sought. The
experience gained by applying the model to several actual
earthquake records indicates that an accurate description of the
time-frequency distribution of the ground acceleration usually
requires a value of p between 10 and 20. This range of values
of p leads to a rather large number of model parameters (=6p).
The main objective of the research project that contains this
study is to investigate the influence of the frequency nonsta-
tionarity of earthquake ground motions on structural response.
Therefore, initially it is essential to capture accurately the
time-frequency distribution of the ground motion. Further
studies will indicate the level of detail of the evolutionary PSD
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to which structural response is significantly sensitive. Then,
based on these results, model parsimony will be sought and
correlation studies will be performed between the earthquake
model parameters and geophysical parameters such as earth-
quake magnitude, epicentral distance, local soil conditions, etc.
These relationships will be useful to simulate artificial earth-
quake records at sites where no accelerograms are available.

The next step consists of selecting initial parameter values
to start the search algorithm. Different sets of initial parameter
values may lead to different converged results. Therefore, a
smart choice of the initial parameter vector is very important
to reach the desired minimum of the objective function. Here,
a procedure is outlined, which determines appropriate initial
parameter values. In the contour plot of the estimated time-
varying PSD function, many local maxima appear over the
time-frequency domain considered. This whole domain is di-
vided into several subdomains each of which surrounds one
to three local maxima. Since each independent component pro-
cess is able to capture a single local maximum only, the esti-
mated data in each time-frequency subdomain can be best fit-
ted using, at most, three component processes. The optimum
parameter values for the component processes attached to each
subdomain are determined by solving a local optimization
problem of reduced size. After all the local optimization prob-
lems are solved, the real-valued (B,) parameters are perma-
nently reset to their nearest integer. Numerical experience has
shown that the locally optimized, integer-valued B, parameters
are usually not affected by the subsequent global parameter
optimization. Therefore, they are not included in the global
parameter vector. All the other subdomain optimum parame-
ters are grouped to form the initial global parameter vector.
This procedure to initialize the global parameter vector has
proven successful in the application examples. Finally, the
global constrained minimization problem is solved by apply-
ing the adaptive nonlinear least-squares algorithm named
“NL2SOL’’ (Dennis et al. 1981).

SHORT-TIME THOMSON’S MULTIPLE-WINDOW
SPECTRUM ESTIMATION

The usual assumption made in estimating the characteristics
of nonstationary processes is that of local stationarity. The
classical nonparametric spectrum estimation method, called
short-time Fourier transform (STFT), is a moving time-win-
dow technique. Estimates of the evolutionary power spectrum
of a sigma-oscillatory process can be obtained in exactly the
same form as in the oscillatory case, i.e., by means of a linear
transformation. This implies that the STFT is an admissible
method provided the ‘‘width’’ of the moving time window is
smaller than the characteristic width, 27By,, of the underlying
target nonstationary process, U(#). Therefore, the moving-win-
dow spectrum estimation method can be applied to estimate
the evolutionary power spectrum of a nonstationary process.

Thomson (1982) introduced the multiple-window spectral
estimation method for stationary data. Thomson’s method has
the advantages of being consistent, having high resolution and
high estimation capacity, and of not being hampered by the
usual trade-off between leakage and variance. Here, this mul-
tiple-window method is extended to estimate the time-varying
power spectrum of a nonstationary time series (i.e., earthquake
ground acceleration). This extended method is called the short-
time Thomson’s multiple-window spectrum estimation method
and is briefly outlined as follows.

First, a time-moving window of size N-At, [w(n), n = 0,
I, ..., N — 1], where At denotes the sampling time interval,
is used to extract the local time series centered at time ¢, from
the target earthquake ground acceleration record, [Ug(ti), t =
i*At,i=0,1,...,M — 1]. Thus, the local time series centered
at time ¢, is
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{8 m) = Ultisn-qw-vylWw(m), n =0, 1, ..., N — 1} (for N odd)
(18a)

(St n) = Ugtisn-n2dw(m), n =0, 1, ..., N — 1] (for N even)
(18b)

in which the time-moving window is normalized such that
o W(n) = 1.

Then, the local time series [S(#;, n)] is projected onto several
(K) leakage-resistant orthogonal windows that are the discrete
prolate spheroidal sequences (DPSSs) denoted by [u(n), k =
01,...,K-1;n=0,1,..., N — 1]. It can be shown
(Drosopoulos and Haykin 1992) that these DPSSs are the ei-
genvectors of the Toeplitz matrix T, i.e.

TV, = ANV, 19

in which the components of the T matrix are given by T}, =
{sin2wW(i — PIV[w(GE — NI Vi = [v(0), vl), ..., uN —
1)]” = kth eigenvector of T; A, = kth eigenvalue; and W =
(K)/(2N) = bandwidth of the discrete-time Fourier transforms
of the first K DPSSs. The centered discrete-time Fourier trans-
form of the kth DPSS is also known as the kth discrete prolate
spheroidal wave function (DPSWF) defined as

N-1

Gf) = & D, ulnle v (20)

n=0

where €, = 1, for k even; and j, for k odd is introduced so that
@(f) is a real-valued function. The DPSWFs appear in the
solution of a particular form of the Sturm-Liouville problem
called the prolate spheroidal differential equation of zero order
(Flammer 1957). It can be shown that they satisfy the follow-
ing two homogeneous integral equations:

w
f sin Nm(f — v)

L sin = ) e(v) dv = Mol f) 2n

Jm sin Nw(f — v)

v SInw(f —v)

in which [sin Nw(f — v))/[sin w(f — v)] is referred to as the
Dirichlet kernel denoted by Dy(f — v).

The DPSSs and DPSWFs are normalized and the DPSWFs
satisfy the following orthogonal properties in both the [—W,
W1 and [—(1/2), (1/2)] domains:

Puv) dv = @u(f) (22)

f QAo f) df = NB(j — k) (23)
f e elf) df =8(j — k) (24)
By (23) and (24), the kth eigenvalue can be expressed as
f e )P S) df
e = @5)

f e e f) df

-2

and therefore represents the fractional energy concentrated in
the domain (—W, W) for the kth DPSWF. The eigenvalues are
positive (T is symmetric, positive-definite), less than one, and
ordered such that 1 > Ao > Ay > *++ > Ay—; > 0. The first K
(=2NW) eigenvalues are close to unity and thus the corre-
sponding DPSS windows are useful for minimizing spectral
leakage. However, spectral leakage resistance becomes pro-
gressively poorer as the order of the DPSS increases. For this
reason, only the first X DPSS windows are used, since they



are both frequency band-limited and time-limited. These last
two properties are very useful in spectrum estimation (Slepian
1978). Therefore, corresponding to each centered time ¢, there
are K projected local time series, which are [S(t,, n)u(n), n =
0,1,...,N—- 11, k=0,1,..., K — 1. The statistical infor-
mation of [S(z, n)] discarded by the first DPSS window is
partially recovered by the second DPSS window, the infor-
mation discarded by the first two DPSS windows is partially
retrieved by the third DPSS window, and so on.

By taking the discrete Fourier transform (DFT) of these pro-
jected local-time series, several (K) ‘‘prolate local-time eigen-
spectra’’ estimates are produced as

N-1 2
St 0l = | ) SGy myume VU k20,1, K- 1
n=0
(26)
in which o, = Qm)/N-AD, j=0,1,...,N — 1, i =0,

1,..., M — 1. These local-time eigenspectra are combined to
form a local-time spectrum estimate, L§(t,-, w;), by introducing
time-frequency-dependent weighting functions, [d{t, )], to
reduce bias from spectral leakage. These weighting functions
are determined adaptively. Then, the adaptive short-time
Thomson’s spectrum estimation reduces to the following two
equations, which must be solved iteratively:

z |dk(t,', (l)j)lzgk(ti’ wj)
S(t,-, ) = =0 — 27

E ’dk(ti, wj)lz
\/A_*S(ti! wj)

)\kS(t;, mj) + (1 - xk)o-i

dt, w) = (28)
where o} = 25 S’(#,, n) = mean-square estimate for U,(z).

Similar to Priestley’s method for estimating the evolutionary
power spectrum, a time average window [wr(n), n = 1, 2,
..., Ny — 1] is introduced to reduce the sampling fluctuation
along the time axis and produce a power spectrum estimate
varying slowly in time. Thus, the short-time Thomson’s mul-
tiple-window spectrum estimate, @, 0,(t» w;), of the target un-
derlying earthquake process U,(?) is

N1

&)Ug(]!(tiv w) = 2 S[ti+n—(lv,—1)/2, o lwr(n) 29)

n=0

Finally, the foregoing estimate (i)()g[/g(t,-, w);) is scaled to satisfy
the local variance of U,(?), i.e.

N-1
>, ®o,0te w)-Aay = o? (30)
=0

APPLICATION EXAMPLES AND MODEL. VALIDATION

The stochastic earthquake model proposed here is applied
to two real earthquake records having different nonstationarity
characteristics. The first record corresponds to the SOOE (N-
S) component of the Imperial Valley earthquake of May 18,
1940, recorded at the El Centro site. The second record is the
NOOW (N-S) component of the San Fernando earthquake of
February 9, 1971, recorded at the Orion Boulevard site.

El Centro 1940, North-South Component

. Fig. 1 represents the estimated time-varying PSD function,
@U,gx(t, w), for the El Centro 1940 earthquake ground accel-
eration record, based on the short-time Thomson’s multiple-
window spectrum estimation method. A Hanning window of
size 4 s (N = 200, At = 0.02 s) is chosen as time-moving

window to extract the local time series. The first two DPSSs
(K = 2) are selected as the projecting windows and, therefore,
for each local time series, two eigenspectra are estimated,
namely S,(¢, w) and S,(¢, w). From (27)—(30) and using a time-
average Hanning window of size Ny = 200, the time-varying
PSD function is estimated adaptively.

By the adaptive nonlinear least-squares algorithm, the pa-
rameters of the sigma-oscillatory process model composed of
21 independent component modulated oscillatory processes
are estimated and reported in Table 1. Note that 2mBg, is a
dependent parameter representing the characteristic width of
the kth component process and the parameter B, is pre-esti-
mated during the parameter initialization procedure described
earlier. Therefore, the final number of free parameters to be
estimated is 105 (=21 X 5). Fig. 2 portrays the analytical time-
varying PSD function, q)ug()g(t, w), of the identified nonsta-
tionary stochastic model.

Fig. 3(a) shows both the analytical mean-square ground ac-
celeration function from the identified earthquake model and
the one directly estimated from the target earthquake record
using a running average. Fig. 3(b) represents both the modeled
and the estimated global PSD function, S7(w), defined as

Sr(w) = f ®o,0,(7, ) dr G1)
0

in which ¢, = duration of the target ground acceleration record
considered, e.g., for the El Centro 1940 record, ¢, = 35 s. Figs.

t[sec] 20

40 ¢ [rad/sec]

FIG. 1. Estimated Time-Varying Power Spectral Density Func-
tion for El Centro 1940 Earthquake Ground Acceleration

TABLE 1. Estimated Parameters of Ground Acceleration
Model for El Centro 1940 Earthquake Record

Oty B Yk Lk Vi N« 2‘11'53,(

k () () () (s) ) (rad/s) (s)

U] @ (3) 4) (5) (6) ) (8)
1 37.2434 8 2.7283 —0.5918 1.4553 6.7603 7.36%6
2 | 104.0241 8 2.9549 —0.9857| 2.4877 11.0857 6.8043
3 31.9989 8 2.6272 1.7543] 3.3024 7.3688 7.6531
4 43.8375 9 3.1961 1.6860} 2.1968 13.5917 6.7551
5 33.1958 9 3.1763 —0.0781] 3.1241 14.3825 6.7972
6 41.3111 9 3.1214 ~0.7096| 6.7335 25.1532 6.9168
7 4.22341 10 2.9904 —0.9464( 2.6905 48.0612 7.6840
8 19.9802 6 1.8950 1.4020| 7.2086 37.6163 8.8420
9 24884 | 10 2.6766 5.3123| 6.1101 19.4612 8.5851
10 24.1474) 10 3.3493 8.8564| 1.9862 9.040 6.8608
11 2.5916 2 0.2240 3.2558| 2.4201 9.3381 28.0509
12 2.2733 3 0.5285 16.2065| 1.5244 14.1067 18.6763
13 24.2732 3 1.0361 17.5331( 1.7141 24.0444 9.5254
14 41.0734 2 0.7511 22.3717| 5.9541 27.7953 8.3648
15 1.3697 | 10 2.5936 21.6830( 1.9362 12,9198 8.8597
16 15.4646 2 0.7044 27.2979( 1.7897 12.0205 8.9205
17 0.0174| 10 1.8451 —2.4168| 4.9373 98.6280 12.4538
18 2.9646( 10 3.1137 1.5751| 1.9726 61.8316 7.3798
19 0.0007| 10 1.3686 2.5173| 3.2479 43.9075 16.7901
20 0.8092 4 0.5969 6.4396] 3.6749 26.3365 21.0531
21 16.7115 2 0.7294 12.4930| 1.7075 37.1139 8.6137
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1-3 indicate that the identified analytical earthquake model
captures very well the time-frequency distribution of the El
Centro 1940 ground acceleration record.

It is worth recalling that the short-time Thomson’s multiple-
window spectrum estimation method assumes local stationarity
of the target process. This assumption is satisfied if the effec-
tive width, 2mB,,, of the time-moving window, w(u), is smaller
than the characteristic bandwidth, 2wBy , of the target nonsta-
tionary process. The effective width Zwéw is defined as (Priest-
ley 1987)

2mB, = 2w f |u| Wity du 32)

For the Hanning window of size 4 s used in the present ex-

ample, this effective width is
0
S [5 (u + 2)]} du=2434s

T
= — 1
27B, v J;Z lul {
(33)

From (9) and Table 1, the characteristic bandwidth of the an-
alytical ground acceleration model is 2wBy, = mini<e=n
27Bg, = 6.7551 s where

f lA®)| do (B, — DT (ﬁ)\/«?

2

By =T - 8 1 (34)
L 10][A®)| 0 2v,T <7 + 5)

t [sec] 20

40 o [rad/sec ]

FIG. 2. Analytical Time-Varying Power Spectral Density Func-
tion of Sigma-Oscillatory Process Model for El Centro 1940
Earthquake Ground Acceleration

x 10* i
- 2 model T
= § ------- estimate
k=) (\E 1 ~
m o
2 - (@
% 5 10 15 20 25 30 35
t [sec]
T T T 4
model
....... estimate
®)
0 ' ' = ”
0 20 40 60 80 100

o [rad/sec]

FIG. 3. (a) Mean-Square Function; (b) Global Power Spectral
Density Function of El Centro 1940 Earthquake Ground Accel-
eration
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oy B!

G0 + vor (33)

A(0) = f Adne™ dt =

in which I'( ) = gamma function. Therefore, the assumption
of local stationarity is satisfied for this example.

The first level of model validation is performed by simu-
lating a sample of 100 artificial accelerograms from the iden-
tified earthquake model and computing the second-order sta-
tistics (i.e., mean and standard deviation) of 10 ground-motion
parameters traditionally used to characterize earthquake inten-
sity. These ground motion parameters are:

* Peak ground acceleration (PGA), PG velocity (PGV), and
PG displacement (PGD).

» Ratios of peak ground velocity and displacement to peak
ground acceleration: PGV/PGA and PGD/PGA.

* Root-mean-square acceleration (RMSA), RMS velocity
(RMSYV), and RMS displacement (RMSD).

* Arias intensity (AI) defined as Al = w/(2g) [ Ui(¢) dt in
which g is the acceleration of gravity.

» Housner spectral intensity (SI;) defined as SL = [}
PSV(&, T) dT where PSV(§, T) denotes the pseudo-spec-
tral velocity for a given real or artificial earthquake record
and for a SDOF oscillator of damping ratio § and un-
damped natural period 7.

In simulating the analytical ground-motion model, the com-
ponent processes are generated independently using the spec-
tral representation method (Shinozuka and Jan 1972) and com-
bined together to form one realization of the ground
acceleration process. The artificial ground motions simulated
are baseline-corrected in the frequency domain by using a sim-
ple rectangular high-pass filter with a cutoff frequency of 0.10

TABLE 2. Ground Motion Parameters for El Centro 1940
Earthquake Record and Statistics from Estimated Ground Mo-
tion Model

Standard
Parameter | Target | Mean [ deviation | COV | Maximum | Minimum

(1) (2) (3) (4) (5) 6 @)

PGA (cm/s®) 341.695 | 331.163 | 52.805 0.159 | 520.128 232.988
PGV (cm/s) 33.449 | 40.152 8.952 0.223 66.370 21.695
PGD (cm) 10.867 | 19.723 6.741 0.342 48.358 8.796
PGV/PGA (s) 0.098 0.123 0.027 0.219 0.185 0.070
PGD/PGA (5°) 0.032 0.060 0.020 | 0.329 0.112 0.024
RMSA (cm/s’) | 55.372| 55.553 3475 0.063 62.996 47.510
RMSYV (cm/s) 7.645 8.631 1.455 0.169 15.648 6.020
RMSD (cm) 5.309 6.460 2.121 0.328 14.937 2.838
Al (cm/s) 171.882 | 173.723 { 21.751 0.125 | 222.529 126.573

Slpos (cm) 135712 | 130.362 { 22.940 0.176 | 190.716 73.360

1000 oY AR | T
Damping ratio 5%

100F

Period [sec]

FIG. 4. Probabilistic Linear-Elastic True Relative Displace-
ment Response Spectra for El Centro 1940 Earthquake



Hz and by applying a least-square straight line fitting to both
the integrated ground velocity and the displacement records.

Table 2 presents the values of the foregoing ground-motion
parameters for the El Centro 1940 target earthquake record
and the corresponding second-order statistics generated from
the identified earthquake model. The statistical interval defined
by ‘‘mean * one standard deviation’’ contains the target pa-
rameters, except for PGD and PGD/PGA. Actually, all the
target parameters are contained within the interval bounded by
the sample maximum and minimum.

1000 f——r—rmrrrrre——r—rrrrr .
t Damping ratio 5% ]
100}
3
€ lf
& E
4 |
I
i
01 : 1
.01 1 1 10 100

Period [sec]

FIG. 5. Probabilistic Linear-Elastic True Relative Velocity Re-
sponse Spectra for El Centro 1940 Earthquake
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FIG. 6. Probabilistic Linear-Elastic True Absolute Accelera-
tion Response Spectra for El Centro 1940 Earthquake
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FIG. 7. (a) Actual Ground Acceleration U,(t); (b) Velocity
U,(t); (c) Displacement U,(t) Time Histories of El Centro 1940
Earthquake Record

The second level of model validation consists of comparing
target linear-elastic response spectra with their probabilistic
counterparts generated from the identified earthquake model.
Figs. 4-6 show the probabilistic linear-elastic response spectra
[for the true relative displacement (S,), true relative velocity
(S.), and true absolute acceleration (S,) responses] for a prob-
ability of exceedence of 95, 70, 50, 30, and 5%. These prob-
abilistic response spectra are obtained from the fractile method
of order statistics applied to the sample of 100 response spectra
computed from the corresponding artificial ground motions
and using the quick numerical algorithm developed by Beck
and Dowling (1988). It is observed that in each case the de-
terministic target spectrum falls within the (5—-95%) statistical
range of the probabilistic spectrum in the undamped natural

(b) 1
0 5 10 15 20 25 30 35 t[sec]

— 20 T T T T ¥ T
S =
- E ok J
20 I 1 | L 1 ] (C)
) 5 10 15 20 25 30 35 t[sec]
FIG. 8. (a) Artificial Ground Acceleration U,(t); (b) Velocity

U,(t); (c) Displacement U,(t) Time Histories from El Centro 1940
Earthquake Ground-Motion Model

800 &)UgUg t, ®) [cmzlsec3]

600

400

O\t

" ‘f—“//
'//\e‘//

10
t[sec] 20

60  [rad/sec
30

FIG. 9. Estimated Time-Varying Power Spectral Density Func-
tion for Orion Boulevard 1971 Earthquake Ground Acceleration

800 &’UgUg tt, ®) [cm%/sec?)
600
400

200

60 ) [rad/sec]

30

FIG. 10. Analytical Time-Varying Power Spectral Density
Function of Sigma-Oscillatory Process Model for Orion Boule-
vard 1971 Earthquake Ground Acceleration
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period interval of practical interest from 0.1 to 2.5 s, which is
used to compute the SI; parameter. In fact, the target spectra
fall between the sample maximum and minimum for the whole
period interval from 0.02 to 50 s.

Figs. 7 and 8 show the ground acceleration, velocity, and
displacement time histories from the actual El Centro 1940
record and from a typical artificial ground motion simulated
using the identified earthquake model, respectively. It is ob-
served that the artificial ground motions are substantially sim-
ilar to the actual ones. Based on the results presented, it is

(a)
30
®
G 1 do 1
0 20 40 60 80 100
o [rad/sec]

FIG. 11. (a) Mean-Square Function; (b) Global Power Spectral
Density Function of Orion Boulevard 1971 Earthquake Ground
Acceleration

e m—— ey

t Damping ratio 5%
100}

Ol

001l
01

Period [sec]

FIG. 12. Probabilistic Linear-Elastic True Relative Displace-
ment Response Spectra for Orion Boulevard 1971 Earthquake
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=
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o
3

concluded that the identified earthquake model captures very
well the nonstationary characteristics of the actual El Centro
1940 earthquake record.

Orion Boulevard 1971, North-South Component

The estimation and validation of the proposed model for the
Orion Boulevard 1971 earthquake ground acceleration record
are shown in Figs. 9-14 and Tables 3 and 4. Figs. 9 and 10
show that as time elapses, the frequency content of the ground
acceleration shifts towards the lower range. This phenomenon
is typical of many real earthquake records since the surface
waves arriving last have a lower frequency content than the
compressive and shear waves arriving earlier.

The results of this second application example demonstrate

T T T T T

—~ & 200} p
=%
D B
2~200 i 1 L ! ! (a)‘
0 5 10 15 20 25 30 t[sec]
T T T T )
~ Q' 20F -
= -
8201 ®)7
_40 1 1 1 ] 1
0 5 10 15 20 25 30 t[sec]
2G L 1 ] T 1
;eo E O-’_\/\/WU
-20 L 1 L i 1 ©
0 5 10 15 20 25 30 t[sec]

FIG. 14. (a) Artificial Ground Acceleration U,(t); (b) Velocity
U,(1); (c) Displacement U,(t) Time Historles from Orion Boule-
vard 1971 Ground-Motion Model

TABLE 3. Estimated Parameters of Ground Acceleration

Model for Orlon Boulevard 1971 Earthquake Record

Qe B Y [ Vi Mk 27Bs,

k () () () (s) () (rad/s) (s)

1 (2 3 4 5 (6) @ 8
1 0.2358 7 1.3375 0.8672| 1.2618 3.1022 13.8356
2 0.1394 8 1.4116 5.5717) 1.5856 4.8962 14.2436
3 | 130.9862 10 4.2028 12.4408| 19182 4.1720 5.4675
4 3.3724 9 2.5692 15.1802] 1.9097 2.7679 8.4034
5 1.0659 2 0.1612 [ —1.5150] 1.2000 3.4588 38.9851
6 71.7647 2 0.8956 9.8679| 1.2000 | 11.0855 7.0158
7 0.0044 11 1.7482 | —1.0149| 2.0905 14.1349 13.8938
8 0.2012 11 24117 3.8821| 2.9589 16.4059 10.0712
9 3.7529 11 3.0778 87310 1.3580 9.4110 7.8916
10 0.4901 11 2.6406 1.4716| 2.4796 | 19.2596 9.1981
11 12.6339 3 0.7620 6.1032| 1.2927 | 20.2079 12.9527
12 4,1843 5 1.1922 | —0.1155] 2.7419 | 31.4748 12.4175
13 5.8917 5 1.3786 5.4048{ 1.3335 | 28.7928 10.7389
14 2.1934 5 1.2384 | —0.1895| 1.8083 | 43.0850 11.9543
15 20.3968 5 1.7774 5.4490] 4.3403 | 37.5139 8.3293

30 t[sec]

TABLE 4. Ground Motion Parameters for Orion Boulevard
1971 Earthquake Record and Statistics from Estimated Ground
Motion Model

i 1 1 i 1 1 (b)-
5 10 15 20 25 30 t[sec]

0 5 10 15 20 25

FIG. 13. (a) Actual Ground Acceleration l'],(t); (b) Velocity
U,(t); (c) Displacement U, (t) Time Historles of Orion Boulevard
1971 Earthquake Record

30 t[sec]
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Standard
Parameter | Target | Mean | deviation | COV | Maximum | Minimum
(1) 2 (3) 4 (5) (6) )

PGA (cm/s?) 249.955 | 246.556 36.485 0.148 | 333.623 170.521
PGV (cm/s) 29.998 | 39.431 8.466 0.215 65.534 24.318
PGD (cm) 14.898 18.859 5.196 0.276 38.136 9.206
PGV/PGA (s) 0.120 0.162 0.035 0.217 0.307 0.087
PGD/PGA (s%) 0.060 0.078 0.025 0.317 0.179 0.039
RMSA (cm/s®) | 50.927 | 49.753 3.801 0.076 59.969 42.821
RMSYV (cm/s) 9.677 | 10.160 1.225 0.121 13.487 7.609
RMSD (cm) 5.588 6.766 1.630 0.241 11.226 3.708
Al (cm/s) 124.638 | 119.663 18.502 0.155 172.854 88.134
Slyos (cm) 154.457 | 143.606 22.393 0.156 | 217.000 97.354




that the nonstationary sigma-oscillatory stochastic model iden-
tified faithfully reproduces the intensity and frequency nonsta-
tionarity characteristics of the real Orion Boulevard 1971
earthquake record.

CONCLUSIONS

A versatile, fully nonstationary, analytical stochastic earth-
quake ground-motion model based on the theory of sigma-
oscillatory processes was formulated and validated in this pa-
per. First, the time-varying power PSD function of the target
real earthquake ground acceleration record was estimated, and
denoted as @, 4 (¢, ), using the short-time Thomson's mul-
tiple-window spectrum estimation method that is consistent,
has high resolution, and is not hampered by the usual trade-
off between bias (leakage) and variance, which affects the
classical nonparametric spectral estimation methods. Then, the
stochastic earthquake model corresponding to the target
ground motion was built by identifying the ‘‘order’” of the
model (=number of independent component processes) based
on the shape of @, ()'(t, ) and estimating the model param-
eters through an aéaptive nonlinear least-squares algorithm.
The parameter estimation procedure consists of minimizing the
L, norm of the error between the analytical time-varying PSD
function of the earthquake model, Sbo,o,(t, ), and the esti-
mated time-varying PSD function, @g’g’(t, ), the model pa-
rameters being subjected to simple inequality constraints.

The proposed earthquake model is physically realizable and
can be simulated either by using the nonstationary spectral
representation method or by the summation of time-modulated
linear combinations of numerically integrated SDOF oscillator
responses to independent white-noise processes.

Based on the application examples considered, it is found
that the proposed earthquake model is able to capture very
well the temporal variation of both the intensity and the fre-
quency content of real earthquake ground motions.

Due to its analytical formulation, the proposed nonstation-
ary earthquake model can be used for analytical linear and
nonlinear random vibration studies. This realistic earthquake
model is currently used to gain better insight into the effects
of the frequency nonstationarity of earthquake ground motions
on linear and nonlinear structural response. Validation of the
proposed earthquake model has also been demonstrated by
comparing target and probabilistic inelastic response spectra.
These results will be presented in an upcoming paper.
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APPENDIX1l. NOTATION

The following symbols are used in this paper:

A () = time modulating function of the kth component
process;

Aft, w) = frequency-time modulating function of kth com-
ponent process;
Dy(f — v) = Dirichlet kernel;
dZ(w) = kth orthogonal increment process;
E[ ] = ensemble-average or expectation operator;
H(0, w) = Fourier transform of A,(¢, w);
J(@) = error or objective function;
Rs,5,(7) = autocorrelation function of §y(?);
., = linear-elastic true absolute acceleration response
spectrum,;
Ss; = linear-elastic true relative displacement response
spectrum;
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S¢)
S[th "] =
Silt, ] =
Sr(w) =
S, =

SI, =
U =
Un =
U,(r) =
u(n) =
w(n) =
wr(n) =
X (1) =

Y@ =
re)
3()

o =

£ =

ol =
(Ds,sk(w) =
q)l’l’(ty (.0) =
Dy, (1, w) =
Dy,o,t, @) =

‘i)v,v,(t, w) =

el f) =

kth component stationary Gaussian process;
local-time series centered at time #;;

kth local-time eigenspectrum centered at time #,;
global power spectral density function for U,(#);
linear-elastic true relative velocity response spec-
trum;

Housner spectral intensity with damping ratio §;
earthquake ground acceleration;

earthquake ground velocity;

earthquake ground displacement;

kth discrete prolate spheroidal sequence (DPSS);
time-moving window;

time-average window;

kth oscillatory component process;
sigma-oscillatory process;

gamma function;

Dirac delta function;

length-6p parameter vector of the ground-motion
model;

damping ratio of a single-degree-of-freedom
(SDOF) oscillator;

estimated mean square (variance) of U,(1);

power spectral density function of S.(7);
evolutionary power spectral density function of
Y@);

evolutionary power spectral density function of
Xu(0);

evolutionary power spectral density function of
Ux(t);

estimated evolutionary power spectral density
function of U,(#); and

kth discrete prolate spheroidal wave function
(DPSWF).



