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ABSTRACT: A neural network based approach to model the seismic response of multi-story frame
buildings is presented. The seismic response of frames is emulated using multi-layer feedforward
neural networks with a backpropagation learning algorithm. Actual earthquake accelerograms and
corresponding structural response obtained from analytical models of buildings are used in training
the neural networks. The application of the neural network model is demonstrated by studying one
to six story high building frames subjected to seismic base excitation. Furthermore, the learning
ability of the network is examined for the case of multiple inputs where lateral forces at floor levels
are included simultaneously with the base excitation. The effects of the network parameters on learn-
ing and accuracy of predictions are discussed. Based on this study, it is found that appropriately con-
figured neural network models can successfully learn and simulate the linear elastic dynamic be-
havior of multi-story buildings.

INTRODUCTION

uR~NG their lifetime building structures 
can experiencesevere external hazards such as hurricane winds and

earthquakes; therefore, they need to be designed to safely
resist such dynamic loads. The design procedure for

dynamic loads typically requires calculation of the dynamic
response of the structure, which has been traditionally per-
formed using two- and three-dimensional finite element

analysis (Clough and Penzien, 1993). The finite element
models are based on a number of simplifying assumptions
which result in significant discrepancies between analyti-
cally predicted and actual measured responses. This may
not be a serious matter as far as design and safety are con-
cerned, but it may have far reaching consequences when
dealing with inverse dynamics problems such as in active
control of structures (Soong, 1990), monitoring of structural
integrity, and signature analysis as a non-destructive evalua-
tion technique for assessing the damage of buildings (Agba-
bian et al., 1991). In the inverse problem, often referred to
as system identification, the parameters of the assumed class
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of structural models are estimated from excitation and ac-
tual structural response measurements. Most of the existing
system identification techniques as applied to civil engineer-
ing structures are based on linear time-invariant structural
models whose parameters are estimated using various deter-
ministic or stochastic methods such as least squares, maxi-
mum likelihood, and Kalman filtering (Kozin and Natke,
1986). These techniques typically utilize the modal decom-
position concept (Beck and Jennings, 1980). Research in
non-linear system identification of civil engineering struc-
tures has been rather limited due to the difficulties in analyt-
ically modeling the types of non-linearity present in these
structures (Hoshiya and Saito, 1984).

Artificial neural networks (ANNs) provide a fundamen-
tally different approach to system identification. They have
been successfully applied for identification and control of
dynamic systems in various fields of engineering (Biala-
siewicz and Ho, 1991; Bozich and Mackay, 1991; Nikolaou
and Hanagandi, 1991; Singh et al., 1991). Applications of
ANNs to civil engineering problems in structural dynamics
are only a recent phenomenon (Rehak et al., 1989; Wen et
al., 1992; Elkordy et al., 1993). Despite the fact that neural
networks do not provide direct physical insight into struc-
tural response, their ability to learn efficiently the system
dynamics from input-output data renders them particularly
attractive for adaptive real-time identification and control
applications.
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THE NEURAL NETWORK CONCEPT

In work spanning at least fifty years, researchers from
many disciplines have attempted to understand the informa-
tion processing capabilities of biological nervous systems.
This work has resulted in a rudimentary understanding of a
few principles that appear common to most organic infor-
mation processing. The key concept that has been distilled
from the biological systems is the artificial neuron. Real
neurons are cells that are sensitive to electrical stimulation.
When sufficient stimulation is present, the neuron fires, i.e.,
produces electrical pulses which can in turn stimulate other
neurons. The exact internal dynamics of nerve cells is com-
plex and not considered at all in most artificial neural

systems. Artificial neurons are modeled as nodes in a

directed graph, each arc in the graph representing, by its

direction, the flow of electrical impulses in a biological
system. The electrical pulses of the organic system are
represented as scalar activations which are passed along
each arc in the graph, and which are modified in transit by
multiplication by a weighting value associated with the arc
which represents the strength of the connection. The output
of the artificial neuron is calculated by accumulating the
weighted sum of all its inputs, and evaluating the transfer
function that is associated with each artificial neuron. The
transfer function is used to supply a non-linearity; the re-
mainder of the artificial neural system is comprised of linear
multiplications and sums well-known mathematically as dot
products.

In spite of the biological motivation, the concepts that will
be applied in this context are easily recognizable as general-
izations of familiar mathematical techniques for function
approximation. These neural models are said to learn asso-
ciations from exposure to data, but in reality the process is
no more or less learning than is the use of linear regression
to obtain parameter estimates in classical system identifica-
tion. To be specific, the task at hand is to construct a model
of a dynamic system. The target system has a vector input
X(t) and a vector output Y(t). As is customary for the nu-
merical treatment of such systems, the time variable is made
discrete. The resulting system maps its input and current
state (Xn+l; Yn ) into its next output Y~+i. As a matter of im-
plementation, the components of (Xn+1; Yn) may span one
or more time steps. This so-called windowing technique,
as applied to identification of multi-degree-of-freedom
(MDOF) dynamic systems, provides to the estimation

algorithm a truncated time history of system inputs and
outputs from which the subsequent system output is to be
predicted. Although the windowing concept is a well-

known method for treatment of dynamic systems, the

problem-dependent details of implementation are described
here.

Suppose that the system in question has a c-dimensional
vector input X(t) or forcing function and a d-dimensional
vector output Y(t) or response vector. Let At denote the
time sampling interval. If Ko output vector values and

Kr + 1 input vector values are to be used in the prediction
process, then

Note that the neural network model of the system only needs
to supply an estimate, denoted by the &dquo;hat&dquo; symbol, of the
d-dimensional system output at time t,,+, = (n + i)At,ir,,+,.
During the learning phase of neural network modeling, an
ensemble of input- (exact) output pairs [(Xn+1 ’Yn):T~+1],
called the training set, is presented to the network. On the
other hand, when the neural network model of the system is
recalled (network generalization) for different system input
data, the input vector to the network at time

tn+1 = (n + 1)Ot, (Xn+1, Y n), is constructed from the

known real system inputs X,,+, and the neural network pre-
dicted system output Y in place of the unknown actual
system output Yn -

If the system in question is linear, then there are matrices
A and B such that

where the superscript ( )T indicates the transpose opera-
tion and the (d x 1) column vector is the estimate for
the system state at time tn., = (n + I)At. If input-output
data from the system is available, then the matrices A and B

may be found by means of linear regression methods. These
techniques, as normally applied, require a table of pairs of
the type [(Xn+l ’Yn):T~+1]’ Given such a table, it is easy to

find the matrices A and B that most closely duplicate the
target system in the least squares sense.

If the system at hand is believed to be a non-linear pertur-
bation of a linear system, then the model [Equation (2)] can
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be augmented in a very simple way. Specifically, a non-
linearity F is added so that Equation (2) becomes

where l’ n+1 is the estimated value for T n+1 , the actual system
state at time ~+1, and

Each term of the sum in Equation (4) would, to a connec-
tionist, represent the output of a neuron connected to the in-

puts W n+1 and Y&dquo; with synaptic weights V, and W,, respec-
tively, as represented in Figure 4 (page 397) in anticipation
of the structural application presented hereafter. The values
0,, i = 1, ... , NH , are called offsets or biases, and the vec-
tor coeflicients 6,(N,, x 1) contain the strengths of the out-
put connections linking the hidden and the output layers. In
Equation (4), NH stands for the number of hidden nodes in
the three layer network representation of Equation (3).
From Figure 4, it is noted that only the hidden nodes are
non-linear, i.e., contain the non-linear activation function

f( ); both input and output nodes are linear. It is also noted
that the linear input-output relationship described in Equa-
tion (2) is represented by the &dquo;linear connections&dquo; linking in-
put and output nodes directly (see Figure 4). The hyperbolic
tangent function, or its close relative the sigmoid logistic
map, is a frequent choice for the function f( ) because the
flat asymptotes of both functions form an approximation of
the phenomena of neuronal saturation. The present applica-
tion uses the hyperbolic tangent function, i.e.,

No claim of optimality is made for either the hyperbolic tan-
gent or the logistic map, but these functions do possess sev-
eral desirable properties. In particular, such functions are
bounded, monotonic, have derivative = 1, 0.25, respec-

tively, at the origin, and decay rapidly to zero for large
values of the argument. The effect of these conditions on the
function implemented in Equation (3) is for the mapping to
act like a collection of several linear functions smoothly
patched together. In this way, something resembling a linear
spline fit is produced. However, the corners normally asso-
ciated with the knots are rounded and the locations of these
transition regions are evolved adaptively from a simple up-
date equation for the model parameters.

In the linear case [Equation (2)], there are well-known
efficient methods for finding optimal matrices A and
B (Ljung, 1987). These methods have non-linear extensions
that can be applied to the problem of optimal parameter esti-
mation in Equation (3), but the present application will be
confined to the simple gradient update scheme. Although
such steepest descent methods are mathematically trivial,
there are several reasons why they may be the technique of

choice for many situations of interest. In particular, second
order methods will normally require second order storage,
i.e., if the number of variables in the problem is n, then the
space (and time per step) needed will be proportional to n 2.
Another difficulty with second order optimization for esti-
mating parameters describing a time-varying system is that
most implementations require a fixed set of input-output
pairs of the form [(Xn+1, Y n): T ~+1]’ As noted before, such
information is available from system observations, but it

may not make sense to collect the large amount of data
needed to drive a sophisticated second order optimization
method, and run the optimization, only to discover that the
plant has drifted to such an extent that the parameter esti-
mates so obtained are no longer useful.

In contrast, the gradient scheme is cheap, local, i.e., it
can easily process data from the system as it is measured,
and thus may be ideal for adaptively following a time-
varying system. The equations for all estimation methods
are derived by first constructing an objective function. The
general structure of such a function is a &dquo;sum of squares&dquo; of
residuals (prediction errors) of the form T&dquo;,1 - l’ n+l. For
the gradient method, we take the sum at a single point in
time. The objective function so constructed is given by

where I ... symbolizes the Euclidean or L2 norm. The
parameters of the model [Equations (3) and (4)] are grouped
notationally into six arrays, five of which (A, B, V, W and
fl) are matrices. The offsets 0 form a vector of dimension
(NH x 1). If the row vectors containing the past and current
(at time t,,) input excitation, Xn+1, and past responses, Y&dquo; ,
are of dimensions (1 x p) and (1 x q), respectively, and
the system output vector is of dimension (d x 1), then A
and B are of sizes (d x q) and (d x p), respectively.
Define the matrices W and V of dimension (NH X p) and
(NH X q), respectively, so that the weight row vectors W,
and V, in Equation (4) comprise respectively the i th row of
each matrix. Finally, the matrix @ is constructed so that the
vector coefficients fl, in Equation (4) form its columns, and
thus,6 is of dimension (d X Nx). The coefficients compris-
ing A, B, W, V, ~3, and 0 are then evolving over time, so
their dependence on the time tn ( = nA t) is indicated (where
necessary) by A(n), B(n), W(n), V(n), ~(n) and 6(n). A
popular form of the gradient update rule for the model pa-
rameters is described by the equations (Rumelhart and
McClelland, 1988)
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where

In the above formulas, the gradient of the scalar function
en+1 with respect to a vector v is denoted by VV(en+1) and is
defined as [(ae&dquo;+, ~av, ), ... , (aen+, ~avn )~ T, whereas the gra-
dient of the scalar function e,, with respect to a matrix M
is denoted by VM(en+1) and is defined such that

[V~(e~+ i )] ,~ = ae,,., lam,. The parameters aA(n), XA(n),
aB(n), XB(n), «W(n) ~ Xw(n), cev(n), Xv(n), ap(n), ~a(n) ~
o’e(~), Xo(n), may be fixed values or may be selected adap-
tively, e.g., back-tracking line search, in order to remove as
much error as possible with each update. In the neural net-
work literature (Wasserman, 1989), the parameters «~.
are called the training or learning rate coefficients, whereas
the parameters X( ) are called the momentum coefficients
in that they produce an exponentially decaying average of
previous local updates. The partial derivatives in Equations
(13) to (18) are given by:

and

where Tn+1 is the state estimate from Equation (3), Xn+1 is
the current (at time t&dquo;+, ) and truncated past system input and
Y~ is the truncated past measured (actual) system output (up
to time t&dquo; ) .

where f( ) is the non-linear function appearing in Equation
(4). The gradient vector ~s,~&dquo;~ (e&dquo;+,) of dimension (d x 1)
in Equation (21) represents the i th column of the gradient
matrix Vj9(,,)(~n) of dimension (d X NH).

The single partial derivative in Equation (22) represents the
i th component of the gradient vector VS(n) (e~+1 ) .

The transpose of the gradient vector VV,(n) (e&dquo;~1 ) in Equa-
tion (23) is the ith row of the gradient matrix ~~~&dquo;~(e&dquo;+1).

Similarly, the transpose of the gradient vector Vw,~~> (e&dquo;+1 )
in Equation (24) is the i th row of the gradient matrix
V’W(n) (e,,. 1 ). The preceding algorithm for updating parame-
ters by gradient descent, together with the equations for the
partial derivatives, comprise the so-called back-propagation
method for neural networks. Since the hyperbolic tangent
function is used for the non-linearity f, its derivative f’ is

calculated from the relation

STRUCTURAL MODEL

Multi-story buildings can be represented conveniently by
shear-beam type models as shown in Figure 1. This

simplified structural model assumes that (1) the floor di-
aphragms are infinitely rigid in their plane, (2) the beams
are infinitely stiff (rigid) in flexure compared to the col-
umns, and (3) all the masses are lumped at the floor levels.

Figure 1. Shear beam structural model.
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Table 1. Structural properties of building models.

The earthquake response of a N-story building is governed
by the following equation of motion:

In the above equation, MNxN , C,.,, and KNxN represent the
mass, damping, and stiffness matrices of the system, respec-
tively ; the vector YNXl (t) = [yi(t)y2(t) ... y,,(t)]’ con-
tains the displacement response of the various floors relative
to the ground; the &dquo;dot&dquo; symbol indicates a time derivative;
lnxi represents a column vector of ones; and X8(t) is the in-
put ground acceleration time history.

Several multi-story building models were studied to in-
vestigate the ability of neural networks to learn the

dynamics of MDOF structures. These included one-story,
two-story, and six-story buildings. The structural properties
and dynamic characteristics of these building models are
given in Table 1 and Table 2, respectively.
The dynamic response of the building models was studied

for the El Centro record from the 1940 Imperial Valley
earthquake in California, shown in Figure 2, and the Orion
Blvd. record from the 1971 San Fernando earthquake in
California, shown in Figure 3. These records were chosen
because of their historical importance and their distinctly
different frequency characteristics. In each case, the actual
(exact) earthquake response of the building model is deter-
mined by integrating the equation of motion [Equation (26)]
using modal superposition and an exact piecewise linear in-
tegration scheme which assumes a linear interpolation be-
tween the digitized values of the earthquake ground accel-
eration.

NEURAL NETWORK MODEL

For an N-story shear-building model subjected to a single
component of earthquake ground acceleration, the input-

output pairs [(X,,,Y,,):T’,,.,] needed in training and re-
calling the neural network represented in Figure 4 take the
following form:

Although this particular neural network implementation
does not require any scaling, to maintain consistency with
previous work, the system input (X) and output (Y and T)
values were scaled between 0.1 and 0.9 before training and
recalling (input only) the network and correspondingly
unscaled after recalling the network. In the situation where
the network is recalled for a forcing function different than
the one used in training and when no actual initial response

Table 2. Dynamic properties of building models.
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Figure 2. £1 Centro ground acceleration record from the 1940 Im-
perial Valley earthquake.

data is available, the initial input sample (Xn+, ,it~ ) cannot
be formed. To overcome this difficulty, all input and output
records are padded with K, and Ko zeros, respectively, at the
beginning of the record prior to learning and recall. The
learning rates are determined dynamically for each input-
output pair presented to the network at each iteration by
back-tracking line search which consists of minimizing the
local error function e~+i, which is interpolated qua-
dratically. For this study, the gradient update rule was im-
plemented with zero momentum, i.e., the corrections ap-
plied to the model parameters are independent of the
previous updates.

In the case of multiple excitations, the input vector X
needs to be augmented to include all the forcing functions.
For example, if a two-story building is subjected simultane-
ously to an earthquake ground motion 3~,(t), and two lateral
control forces at floor levels, F% (t ) and F’2(t), the input vec-
tor Xn+l takes the following form:

Here, there is a time delay of Ot on Fi(t) and F,2(t) in the

Figure 3. Orion Blvd. ground acceleration record from the 1971
San Fernando earthquake.

Figure 4. ANN configuration for dynamic structural systems with
single forcing function (N dégrees of freedom).

input vector Xn+1 in order to simulate the case of state-
feedback control forces (unavailable at time tn+1 ).

RESULTS

The network training for the one-story structural model
was performed using a 21-1-1 network configuration (21 in-
put nodes, 1 hidden node, and 1 output node). The input
presented to the network consisted of eleven current and
past values of the earthquake input excitation and ten past
values of the actual structural response, whereas the target
output value corresponded to the actual current structural
response. A training set of 150 input-output pairs is taken at
time interval 0 t from the beginning of the El Centro earth-
quake input and structural response records, which corre-
sponds to the first 3.20 seconds of the records. Figure 5
shows the root-mean-square (RMS) error and the Max error
as a function of the number of learning cycles, a cycle being

Figure 5. Convergence of network learning (1 DOF case).
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Figure 6. Exact and predicted SDOF structural response to EI Cen-
tro, 1940 (learning period: 3.20 sec).

defined as a single learning loop over the entire training set.
The RMS error and Max error are respectively defined to be
[1/NpE ncl I T&dquo; - Tn 2]1/2 and Max,,=,,. p 11 ir,, - n II
where p is the number of input-output pairs in the training
set, ... ~ indicates the Euclidean norm (or Ll norm), and
11. indicates the max norm (or L°° norm). Since the
outputs are normalized in the interval [0.1-0.9], both error
measurements are dimensionless quantities. The training of
the neural network was completed in 59 cycles with a maxi-
mum error of less than 0.01. The structural response pre-
dicted by the trained network and the actual structural re-
sponse are compared in Figure 6 for the first 15 seconds of
the El Centro earthquake record. The network trained with
the El Centro record is then recalled to predict the structural
response to the Orion Blvd. record, the results of which are
shown in Figure 7. Near perfect agreement between the pre-
dicted and actual earthquake responses indicate that the
neural network is able to accurately learn the dynamics of
the one-story building model.
The neural network model is next used to learn the

dynamics of the two-story building. In this case, the net-
work model consisted of 31 input nodes, 5 hidden nodes,
and 2 output nodes (31-5-2 configuration). The 31 input
nodes correspond to 11 current and past earthquake input
values and 10 past output values for each floor level. The 2

output nodes represent the current response of the two
floors. The network is trained over the first 10.20 seconds of
the El Centro input and output records which comprise 500
input-output pairs taken at time interval 0 from the begin-
ning of the records. The convergence of network learning is
shown in Figure 8. The network is able to learn the dynamic
behavior of the system within 30 training cycles with a Max

Figure 7. Exact and predicted SDOF structural response to Onon
Blvd., 1971 (network recall only).

Figure 8. Convergence of network learning (2 DOF case).

error of 0.012. The floor displacements predicted by the
neural network are compared with the actual displacements
in Figure 9 for the entire duration of the El Centro record.
As in the one-story case, the trained network is then used to

predict the building response to the Orion Blvd. record,
whose characteristics are very different from those of the El

Centro record. The actual and predicted displacements for
the two floors are compared in Figure 10. For both earth-

quake records, the agreement between predicted and actual
response is excellent, indicating that the neural network has
learned accurately the dynamics of the two-story building
model as well.

Figure 9. Exact and predicted 2 DOF structural response to EI Cen-
tro, 1940 (learning period: 10.20 sec).
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Figure ?0. Exact and predicted 2 DOF structural response to Orion
Blvd., 1971 (network recall).

The final network configuration was arrived at after an ex-
tensive experimentation with the number of input and output
nodes. It was observed that as the number of input nodes (KI
and Ko ) decreases (less history dependence of the system
state is considered), more training cycles are required for a
given error tolerance. However, there is a limit for the
number of input nodes below which the network cannot be
trained to satisfy a specified small error tolerance. Further-
more, there appeared to be an optimum number of input
nodes below or above which the network prediction de-
graded. The number of hidden nodes had only a small effect
on the accuracy of the network prediction and a larger
number of hidden nodes did not necessarily improve the ac-
curacy. No clear trend was found between the number of
hidden nodes and the network learning, although for the
two-story model there appeared to be an optimal number of
hidden nodes.
With no hidden node, the neural network used in this

study degenerates into a simple multi-variate linear

regressor. In the case of the one-story model, it was found
that the trained linear regressor is able to predict accurately
the waveforms of the structural response, but with a low fre-

quency departure from the actual response. This shift was
completely eliminated with the addition of a single hidden
neuron. In general, increasing the number of input-output
pairs in the training set implied a reduction of the number of
training cycles. The presence of the direct &dquo;linear connec-
tions&dquo; between the input and output layers improved the
match between the network-predicted and the actual re-

sponses at the peaks and crests as compared to the predic-
tion produced by a network wtihout these linear connections
and with activation functions in the output nodes. In the lat-
ter case, the amplitude of the peaks and crests is system-
atically underestimated. However, the network with &dquo;linear

connections&dquo; and no activation function in the output nodes
can exhibit instability during recall.
The influence of the number of stories on the learning

ability of the neural network model was investigated by con-
sidering a six-story building. The six-story structural model
was selected to determine if the efficiency and accuracy of
the network model obtained for the one- and two-story
buildings could be maintained for a significantly larger
number of stories. After several trials, the most satisfactory
results were obtained with a network configuration of 71 in-
put nodes, 5 hidden nodes, and 6 output nodes. The data

presented to the 71 input nodes included 11 current and past
values of the earthquake input and 10 past values of dis-
placement response for each floor. The network was trained
for the first 4.20 seconds of the El Centro record, which

corresponds to 200 input-output training pairs. The network
learning required approximately 200 cycles to converge to a
Max error of 0.0165, as shown in Figure 11. The network-

predicted and actual response time histories of the first and
sixth floor for the El Centro record are compared in Figure
12. A similar comparison for the Orion Blvd. record for
which the trained network is recalled only is shown in

Figure 13. The agreement between predicted and actual re-
sponses is acceptable, but not as superior as for the one- and
two-story buildings. The reduced accuracy of the network
prediction can be explained from the dynamic behavior of
multi-story systems. By examining the equation of motion of
a multi-degree-of-freedom system, such as the one under
consideration, it can be readily seen that the dynamic re-
sponse of a given floor depends only on the state of the two
adjacent floors and the earthquake ground acceleration. The
inclusion of redundant information, such as past response of
non-adjacent floors, in training the network only degrades

Figure 11. Convergence of network learning (6 DOF case).
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Figure 12. Exact and predicted 6 DOF structural response to EI
Centro, 1940 (learning period: 4.20 sec).

its learning ability. Based on this observation, a network
modeling approach that involves learning the dynamics of a
substructure at a time is devised. Following this approach,
the number of input nodes were reduced to 41, which in-
clude the current and 10 past values of the earthquake
ground excitation, 10 past response values for the floor
under consideration, and 10 past values for each of the two
adjacent floors. This approach gives the response of one
floor at a time (one output node) and requires the availabil-
ity of the past response of the adjacent floors. A generaliza-
tion of this approach can provide the response at all floor
levels by cascading neural network models of all substruc-
tures, thereby eliminating the need for past actual floor re-
sponses. As an illustration, the dynamics of the substructure
consisting of the first, second, and third floors of the six-
story building were learned using a 41-5-1 network con-

Figure 13. Exact and predicted 6 DOF structural response to Orion
Blvd., 1971 (network recall).

Figure 14. Convergence of network learning (second floor of 6 DOF
case).

figuration. The network learning convergence is shown in
Figure 14, and the predicted and actual second floor re-
sponses are shown in Figures 15 and 16 for El Centro and
Orion Blvd., respectively. These results show a marked im-
provement in the agreement between predicted and actual
responses.
Previous discussion has focused on structural response to

a single-input excitation. Next, the above neural network
model is extended to include multiple-input excitation. The
two-story structural frame discussed previously is subjected
to excitations at each floor level in addition to the ground ac-
celeration. The lateral floor excitations, shown in Figure 17,
which are used here only as an illustration of a multiple-
input case, correspond to the active control forces computed
separately according to the optimal control theory for flexi-
ble structures (Meirovitch, 1990; Soong, 1990). The input
to the neural network consisted of 11 current and past values
of the ground acceleration, 10 past values of each floor exci-
tation and response, whereas the network output comprised
the 2 current floor responses. A network of configuration
51-5-2 was trained with 200 input-output pairs correspond-

Figure 15. Exact and predicted second floor response of 6 DOF
structural model to El Centro, 1940 (learning period: 4.20 sec).
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Figure 16. Exact and predicted second floor response of 6 DOF
structural model to Orion Blvd., 1971 (network recall).

ing to the first 4.20 seconds of the El Centro record. The
learning convergence rate of the network is shown in Figure
18. The training of the network was completed in 80 cycles
with a Max error of 0.0118. The actual and predicted first-
and second-floor displacement responses to the entire El
Centro record are given in Figure 19. The network was then
employed to predict the floor displacement response to the
Orion Blvd. record and the corresponding predetermined
optimal control forces at floor levels. The actual and pre-
dicted response time histories are presented in Figure 20. In
both the El Centro and Orion Blvd. cases, the match be-

tween the network-predicted and the actual floor displace-
ments is excellent. Based on these preliminary results, it is
believed that with further refinement, neural network

models could be equally effectively used in building struc-
tures subjected to multiple excitations.

CONCLUSIONS

The present study has shown that appropriately con-
figured artificial neural networks can be effectively used in
predicting the seismic response of multi-story buildings.

Figure 17. Lateral control forces at floor levels (2 DOF case).

Figure 18. Convergence of network learning (controlled 2 DOF
case).

The linear elastic dynamics of structural systems char-
acterized by a few degrees of freedom and subjected to sin-
gle or multiple excitations can be learned efficiently and ac-
curately by means of simple three-layered neural networks
in which the past response is fed back into the input nodes.
The accuracy of the network prediction at the response
peaks and crests is significantly improved by adding direct
&dquo;linear connections&dquo; between the input and output layers and
suppressing the activation function at the output nodes. For
systems modeled with a large number of degrees of free-
dom, the ability of the basic three-layered network to pre-

Figure 19. Exact and predicted controlled 2 DOF structural re-
sponse to EI Centro, 1940 (learning period: 4.20 sec).

 © 1994 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV CALIFORNIA SAN DIEGO on June 14, 2008 http://jim.sagepub.comDownloaded from 

http://jim.sagepub.com


402

Figure 20. Exact and predicted controlled 2 DOF structural re-
sponse to Orion Blvd., 1971 (network recall).

dict the response at a given degree of freedom is impeded
when the past response of all degrees of freedom is fed back
into the input layer. It is shown that learning efficiency and
prediction accuracy are significantly improved by limiting
the feedback from only the degrees of freedom that are adja-
cent to the one whose response is being predicted. This is
not surprising as the dynamic response at each degree of
freedom is goverened by the dynamic state of the adjacent
degrees of freedom only. The three-layered network can
thus be viewed as a basic building block of the neural net-
work model of the entire structure, which is analogous to
the substructure concept used in traditional structural analy-
sis. The response at all degrees of freedom can then be pre-
dicted simultaneously by cascading the sub-networks

together, which is the subject of continuing investigation.
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