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Abstract

The spectral characteristics are important quantities in describing random processes. Proper definitions of these quantities are available for real-
valued stationary and non-stationary processes. In this paper, the well-established definitions of spectral characteristics for real-valued stationary
and non-stationary processes are extended to general complex-valued non-stationary random processes. This extension allows to derive the exact
solution in closed-form for the classical problem of computing the time-variant central frequency and bandwidth parameter of the response
processes of single-degree-of-freedom (SDOF) and both classically and non-classically damped multi-degree-of-freedom (MDOF) linear elastic
systems subjected to white noise excitation from at rest initial conditions. These new exact closed-form solutions are also used to gain deeper
insight into the time-variant and stationary behavior of the central frequency and bandwidth parameter of these linear response processes.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The probabilistic study of the dynamic behavior of structural
and mechanical systems requires the characterization of the
random processes describing the input excitation and the
structural response. This characterization is usually very
complex for realistic input processes and structural systems,
when non-stationary and non-Gaussian processes are involved.

A very common and powerful methodology for characteriz-
ing and describing a random process is spectral analysis, which
studies random processes in the frequency domain. In particu-
lar, the use of power spectral density (PSD) functions [1] is cus-
tomary in describing stationary random processes. Definition of
functions describing the spectral properties of non-stationary
random processes is less simple and not unique. In fact, several
non-stationary spectra have been defined in the literature [2,3],
with different application fields. In addition, direct extension
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of the definition of spectral characteristics, such as the spectral
moments, from stationary to non-stationary processes leads to
difficulties in the interpretation and application of these spectral
characteristics [4].

Among existing definitions of non-stationary spectra, the
most widely used is probably Priestley’s evolutionary power
spectral density (EPSD) [1]. Based on this EPSD, the so-
called “non-geometric” spectral characteristics (NGSCs) have
been defined for real-valued non-stationary processes [5,6].
The NGSCs have been proved appropriate for describing non-
stationary processes [7] and can be effectively employed in
structural reliability applications, such as the computation of
the time-variant probability that a random process outcrosses a
given limit-state threshold.

In this paper, the definition of NGSCs is extended to general
complex-valued non-stationary random processes. These newly
defined quantities provide information consistent with that
provided by their counterparts for real-valued stationary and
non-stationary processes. These NGSCs are used in this
study to solve exactly and in closed-form the classical
problem of computing the time-variant central frequency and
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bandwidth parameter of the response processes of single-
degree-of-freedom (SDOF) and both classically and non-
classically damped multi-degree-of-freedom (MDOF) linear
elastic systems subjected to white noise excitation from at rest
initial conditions. In addition, the NGSCs of complex-valued
processes are useful in problems which require the use of
complex modal analysis, such as random vibrations of non-
classically damped MDOF linear structures, and in structural
reliability applications [8], for which the existing definitions of
spectral characteristics were specifically developed.

For the sake of simplicity and without loss of generality,
all random processes considered in this study are zero-mean
processes. An important implication is that the auto- and cross-
covariance functions of these random processes coincide with
their auto- and cross-correlation functions, respectively.

2. Central frequency and bandwidth parameters for real-
valued stochastic processes

A real-valued stationary process X S(t) has the following
spectral decomposition:

X S(t) =

∫
∞

−∞

e jωt dZ(ω) (1)

in which t = time, ω = frequency parameter, j =
√

−1, and
dZ(ω) = zero-mean orthogonal increment process defined so
that E[dZ∗(ω1)dZ(ω2)] = Φ(ω1)δ(ω1 − ω2)dω1dω2 where
E[...] = mathematical expectation, Φ(ω) = PSD function of the
stationary process X S(t), δ(. . .) = Dirac delta function and the
superscript (. . .)∗ denotes the complex-conjugate operator. For
the stationary process considered, X S(t), the geometric spectral
moments λn of order n (n = 0, 1, . . .) are defined as [13]

λn =

∫
∞

−∞

|ω|
nΦ(ω)dω = 2

∫
∞

0
ωnΦ(ω)dω (2)

where | . . . | = absolute value of a real-valued variable (or
modulus of a complex-valued variable). The geometric spectral
moments are utilized in random vibration problems to compute
several meaningful quantities, such as

(1) The variance of the i th time-derivative of the process
X S(t), X (i)

S (t) (provided that this i th time-derivative
process exists in the mean-square sense): σ 2

X (i)
S

= λ2i (i =

0, 1, . . .).

(2) The central frequency parameter ωc of the process X S(t):

ωc =
λ1

λ0
. (3)

(3) The bandwidth parameter q of the process X S(t):

q =

(
1 −

λ2
1

λ0λ2

) 1
2

. (4)

Similarly to the stationary case, a real-valued non-stationary
(RVNS) process X (t) can be expressed in the general form of a
Fourier–Stieltjes integral as [1]

X (t) =

∫
∞

−∞

AX (ω, t)e jωt dZ(ω) (5)

where AX (ω, t) = complex-valued deterministic time-frequency
modulating function defined such that

AX (−ω, t) = A∗

X (ω, t). (6)

An embedded stationary process X S(t), with PSD function
Φ(ω), is associated to the RVNS process X (t). The process
X (t) has the following EPSD function:

ΦX X (ω, t) = A∗

X (ω, t) · Φ(ω) · AX (ω, t). (7)

From Eqs. (6) and (7), it is seen that the EPSD of a RVNS
process is a symmetric function of the frequency parameter ω.

The definition of the geometric spectral moments in Eq. (2)
can be mathematically extended to the non-stationary case as

λn(t) =

∫
∞

−∞

|ω|
nΦX X (ω, t)dω = 2

∫
∞

0
ωnΦX X (ω, t)dω. (8)

Using these spectral moments, Corotis et al. [4] extended
consistently the definitions of the central frequency, ωc(t),
and bandwidth parameter, q(t), to RVNS processes. The
geometric spectral moments defined in Eq. (8) suffer two
severe drawbacks in characterizing non-stationary stochastic
processes [6], namely

(1) The variance of the i th time-derivative of the process X (t)
for i > 0 is not equal to the 2i th spectral moment.

(2) Even when the variance of the i th time-derivative of the
process is finite, the 2i th non-stationary geometric spectral
moment can be divergent, in which case the consistent
definition of central frequency and bandwidth parameter in
terms of geometric spectral moments cannot be computed.

More recently, Di Paola [5] and Michaelov et al. [6,7]
introduced a proper definition of spectral characteristics to
be used in computing the central frequency and bandwidth
parameter for a RVNS process X (t) defined by Eq. (5) through
(7). For such a process, the so-called “non-geometric” spectral
characteristics (NGSCs) cik(t) are defined as

cik(t) = 2(−1)k j i+k
∫

∞

0
ΦX (i) X (k)(ω, t)dω,

i, k = 0, 1, . . . (9)

where ΦX (i) X (k)(ω, t) is the evolutionary cross-PSD function of
the time-derivatives of order i and k of the process X (t), i.e.,

ΦX (i) X (k)(ω, t) = A∗

X (i)(ω, t) · Φ(ω) · AX (k)(ω, t),

i, k = 0, 1, . . . (10)

in which X (m)(t) = dm X (t)/dtm (m = i, k), provided that
X (m)(t) exists in the mean-square sense, and the modulating
function AX (m)(ω, t) is obtained recursively [6]. This definition
of NGSCs is equivalent to the one derived by Di Paola [5] from
the Rice envelope process. These NGSCs can also be derived
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from the auto-correlation function of the complex-valued pre-
envelope process [9,10] of process X (t), as shown by Krenk
et al. [11] and Krenk and Madsen [12].

At this point, it is convenient to define the process Y (t)
as the modulation (with modulating function AX (ω, t)) of the
stationary process YS(t) defined as the Hilbert transform of the
embedded stationary process X S(t) [9,10], i.e.,

Y (t) = − j
∫

∞

−∞

sign(ω)AX (ω, t)e jωt dZ(ω). (11)

Using the NGSCs in Eq. (9) and then Eq. (11), the time-
variant central frequency ωc(t) and bandwidth parameter q(t)
are defined as [6]

ωc(t) =
(Re[c01(t)])

c00(t)
=

σXẎ (t)

σ 2
X (t)

(12)

q(t) =

(
1 −

(Re[c01(t)])2

c00(t)c11(t)

) 1
2

=

(
1 −

σ 2
XẎ

(t)

σ 2
X (t)σ 2

Ẋ
(t)

) 1
2

(13)

where Re[. . .] = real part of the quantity in square brackets and
the NGSC c01(t) is expressed as

c01(t) = c10 ∗ (t) = −2 j
∫

∞

0
ΦX Ẋ (ω, t)dω

= σXẎ (t) − jσX Ẋ (t) (14)

where σXẎ (t) = cross-covariance of X (t) and Ẏ (t), and
σX Ẋ (t) = cross-covariance of X (t) and Ẋ(t). Notice that, in
the case of a stationary process, Eqs. (12) and (13) reduce to
Eqs. (3) and (4), respectively.

The time-variant central frequency and bandwidth parameter
are useful in describing the time-variant spectral properties of
a RVNS process X (t). The central frequency ωc(t) provides
the characteristic/predominant frequency of the process at
each instant of time. The bandwidth parameter q(t) provides
information on the spectral bandwidth of the process at each
instant of time. Notice that a non-stationary process can behave
as a narrowband and a broadband process at different instants
of time. In addition, the bandwidth parameter q(t) plays an
important role in time-variant reliability analysis, since it is an
essential ingredient of analytical approximations [8,13] to the
time-variant failure probability for the first-passage reliability
problem [14–16].

3. Spectral characteristics of complex-valued non-stationary
stochastic processes

The definition in Eq. (5) can be mathematically extended to
complex-valued non-stationary (CVNS) processes with a gen-
eral complex-valued deterministic time-frequency modulating
function AX (ω, t). In this case, Eq. (6) does not hold in general
and the EPSD is not a symmetric function of the frequency pa-
rameter ω. Notice that this extension applies to complex-valued
processes which are more general than the pre-envelope process
introduced by Arens [9] and Dugundji [10].

In this paper, an extension of the definition of NGSCs to
CVNS random processes is proposed and presented. For CVNS
processes, the real and imaginary parts of the evolutionary
cross-PSD function ΦX (i) X (k)(ω, t) are not symmetric and anti-
symmetric functions, respectively, of the frequency parameter
ω. Our interest is limited to CVNS processes with a real-valued
embedded stationary process X S(t) as defined by Eq. (1).

For each CVNS process X (t), two sets of NGSCs are defined
as follows

cik,X X (t) =

∫
∞

−∞

ΦX (i) X (k)(ω, t)dω = σX (i) X (k)(t)

cik,XY (t) =

∫
∞

−∞

ΦX (i)Y (k)(ω, t)dω = σX (i)Y (k)(t)

i, k = 0, 1, . . . (15)

where σX (i) X (K )(t) = cross-covariance of random processes
X (i)(t) and X (k)(t), and σX (i)Y (K )(t) = cross-covariance of
random processes X (i)(t) and Y (k)(t) = dkY (t)/dtk . The
process Y (t) is defined by Eq. (11), and the evolutionary cross-
PSD functions ΦX (i)W (k)(ω, t) (W = X, Y, and i, k = 0, 1, . . .)
are given by

ΦX (i)W (k)(ω, t) = A∗

X (i)(ω, t) · Φ(ω) · AW (k)(ω, t);

W = X, Y ; i = 0, 1, . . . (16)

where [17]

AW (i)(ω, t) = e− jωt ∂ i

∂t i [AW (ω, t) · e jωt
];

W = X, Y ; i = 0, 1, . . . . (17)

Again, it is assumed that the time-derivative processes in
Eq. (15) exist in the mean-square sense. In the particular
case when i = k = n, the cross-covariance in Eq.
(15)1 reduces to the variance of the nth time-derivative
of the process X (t), i.e., σX (n) X (n)(t) = σ 2

X (n)(t). The
four NGSCs c00,X X (t), c11,X X (t), c01,X X (t) and c01,XY (t) are
particularly relevant to random vibration theory and time-
variant reliability applications. In fact, c00,X X (t) and c11,X X (t)
represent the variance of the process and its first time-derivative
(i.e., σ 2

X (t) and σ 2
Ẋ
(t)), respectively, c01,X X (t) denotes the

cross-covariance of the process and its first time-derivative
(i.e., σX Ẋ (t)), and c01,XY (t) represents the cross-covariance of
the process X (t) and the first time-derivative of the process Y (t)
(i.e., σXẎ (t)).

Notice that for RVNS processes, the definitions in Eq. (15)
for c00,X X (t), c11,X X (t), c01,X X (t)and c01,XY (t) are equivalent
to the definitions in Eq. (9) for i, k = 0, 1, since

c00(t) = 2(−1)0 j0
∫

∞

0
ΦX X (ω, t)dω

=

∫
∞

−∞

ΦX X (ω, t)dω = c00,X X (t)

c11(t) = 2(−1)1 j2
∫

∞

0
ΦẊ Ẋ (ω, t)dω

=

∫
∞

−∞

ΦẊ Ẋ (ω, t)dω = c11,X X (t)

c01(t) = 2(−1)1 j1
∫

∞

0
ΦX Ẋ (ω, t)dω

= c01,XY (t) − jc01,X X (t).

(18)
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The NGSCs c00,X X (t), c11,X X (t) and c01,XY (t) are used in
the definition of the time-variant central frequency, ωc(t), and
bandwidth parameter, q(t), of the CVNS process X (t) as

ωc(t) =
c01,XY (t)

c00,X X (t)
=

σXẎ (t)

σ 2
X (t)

(19)

q(t) =

(
1 −

[c01,XY (t)]2

σ 2
X (t)σ 2

Ẋ
(t)

) 1
2

=

(
1 −

σ 2
XẎ

(t)

σ 2
X (t)σ 2

Ẋ
(t)

) 1
2

. (20)

In the case of RVNS processes, the two definitions in Eqs.
(19) and (20) reduce to the ones given in Eqs. (12) and
(13), respectively. However, for CVNS processes, the complex-
valued central frequency and bandwidth parameter defined in
Eqs. (19) and (20) loose the simple physical interpretation
available for RVNS processes.

4. Spectral characteristics of the stochastic response of
SDOF and MDOF linear systems subjected to non-
stationary input excitation

4.1. Complex modal analysis

A state-space formulation of the equations of motion for
a linear MDOF system is useful to describe the response of
both classically and non-classically damped systems [18]. The
general (second-order) equations of motion for an n-degree-of-
freedom linear system are, in matrix form,

MÜ(t) + CU̇(t) + KU(t) = PF(t) (21)

where M, C, and K = n × n time-invariant mass, damping and
stiffness matrices, respectively; U(t), U̇(t), and Ü(t) = length-
n vectors of nodal displacements, velocities and accelerations,
respectively; P = length-n load distribution vector, and F(t) =

scalar function describing the time-history of the external
loading which, in the case of random excitation, is modeled as a
random process. Defining the following length-2n state vector

Z(t) =

[
U(t)
U̇(t)

]
(2n×1)

, (22)

the matrix equation of motion (21) can be recast into the
following first-order matrix equation

Ż(t) = GZ(t) + P̃F(t) (23)

where

G =

[
0(n×n) I(n×n)

(−M−1K) (−M−1C)

]
(2n×2n)

(24)

P̃ =

[
0(n×1)

M−1P

]
(2n×1)

. (25)

The subscripts in Eqs. (22), (24) and (25) indicate the
dimensions of the vectors and matrices to which they are
attached. The complex modal matrix, T, is formed from the
complex eigenmodes of matrix G and can be used as an
appropriate transformation matrix to decouple the first-order
matrix equation (23) and introduce the transformed state vector
V(t) of complex modal coordinates as

Z(t) = TV(t). (26)

Substituting Eq. (26) into Eq. (23), considering that T−1GT =

D [18], where D is a diagonal matrix containing the 2n
complex eigenvalues, λ1, λ2, . . . , λ2n , of the system matrix
G, and T−1P̃ = [Γ1, . . . ,Γ2n]

T where Γi is the i th modal
participation factor (complex-valued), the normalized complex
modal equations are obtained as

Ṡi (t) = λi Si (t) + F(t), i = 1, 2, . . . , 2n (27)

where the normalized complex modal responses Si (t) (i =

1, 2, . . . , 2n) are defined as

Si (t) =
1
Γi

Vi (t), i = 1, 2, . . . , 2n. (28)

The impulse response function for the i th mode, hi (t), defined
as the solution of Eq. (27) when F(t) = δ(t) and for at rest
initial conditions at time t = 0− (i.e., S(i)(0−) = 0), is simply
given by h(i)(t) = eλi t (t > 0). Assuming that the system is
initially at rest, the solution of Eq. (27) can be expressed by the
following Duhamel integral:

Si (t) =

∫ t

0
eλi (t−τ)F(τ )dτ, i = 1, 2, . . . , 2n. (29)

It is worth mentioning that the normalized complex modal
responses Si (t), i = 1, 2, . . . , 2n, are complex conjugate by
pairs and in this study are ordered so that Si (t) = S∗

n+i (t). In the
case of a non-stationary loading process, the loading function
F(t) can be expressed in general as (see Eq. (5)).

F(t) =

∫
∞

−∞

AF (ω, t)e jωt dZ(ω). (30)

It can be shown that the normalized complex modal responses
are given by

Si (t) =

∫
∞

−∞

ASi (ω, t)e jωt dZ(ω), i = 1, 2, . . . , 2n (31)

where

ASi (ω, t) =

∫ t

0
{eλi (t−τ) AF (ω, τ) · e jω(τ−t)

}dτ,

i = 1, 2, . . . , 2n. (32)

Combining Eqs. (26) and (28) yields

Z(t) = TV(t) = T0S(t) = T̃S(t) (33)

in which 0 = diagonal matrix containing the 2n modal
participation factors Γi , T̃ = T0 = effective modal
participation matrix and S = [S1(t), S2(t), . . . , S2n(t)]T

=

normalized complex modal response vector.

4.2. Non-geometric spectral characteristics of response pro-
cesses of linear MDOF systems using complex modal analysis

The state-space formulation of the equations of motion
is also advantageous for the computation of the NGSCs of
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response processes of both classically and non-classically
damped linear MDOF systems. If only Gaussian input
processes are considered, only few spectral characteristics are
needed to fully describe the response processes of linear elastic
MDOF systems, since the response processes are also Gaussian.
In particular, if Ui (t) denotes the i th DOF displacement
response process of a linear elastic MDOF system subjected to
Gaussian excitation, the only spectral characteristics required,
e.g., for reliability applications, are

c00,Ui Ui (t) = σ 2
Ui

(t),
c11,Ui Ui (t) = σ 2

U̇i
(t),

c01,Ui Ui (t) = σUi U̇i
(t),

c01,UiΥi (t) = σUi Υ̇i
(t),

i = 1, 2, . . . , n (34)

where Υ̇i (t) denotes the first time-derivative of the process
Υi (t) defined as

Υi (t) = − j
∫

∞

−∞

sign(ω)AUi (ω, t)e jωt dZ(ω),

i = 1, 2, . . . , n (35)

and AUi (ω, t) denotes the time-frequency modulating function
of process Ui (t). The process Υi (t) is the modulation (with
the same modulating function AUi (ω, t) as process Ui (t)) of
the Hilbert transform of the stationary process embedded in the
process Ui (t) (see Eq. (11) and [9,10]).

Similarly to the response processes (see Eq. (22)), the
following auxiliary state vector process can be defined

Ξ (t) =

[
Υ(t)
Υ̇(t)

]
(2n×1)

. (36)

Using complex modal decomposition, the cross-covariance
matrices of the response processes and the auxiliary processes
can be computed as

E[Z(t)ZT(t)] = E

[
U(t)UT(t) U(t)U̇

T
(t)

U̇(t)UT(t) U̇(t)U̇
T
(t)

]
= T̃

∗
E[S∗(t)ST(t)]T̃

T
(37)

E[Z(t)Ξ T(t)] = E

[
U(t)ΥT(t) U(t)Υ̇

T
(t)

U̇(t)ΥT(t) U̇(t)Υ̇
T
(t)

]
= T̃

∗
E[S∗(t)ΣT(t)]T̃

T
(38)

where the components of the vector process Σ =

[Σ1(t),Σ2(t), . . . ,Σ2n(t)]T are defined as

Σi (t) = − j
∫

∞

−∞

sign(ω)ASi (ω, t)e jωt dZ(ω),

i = 1, 2, . . . , 2n. (39)

Eqs. (37) and (38) show that all quantities in Eq. (34) can
be computed from the following spectral characteristics of
complex-valued non-stationary processes
{
E[S∗

i (t)Sm(t)] = σSi Sm (t)
E[S∗

i (t)Σm(t)] = σSiΣm (t)
i, m = 1, 2, . . . , 2n. (40)

Notice also that knowledge of the spectral characteristics in Eq.
(40) allows computation of the zeroth- to second-order spectral
characteristics of the components of any vector response
quantity Q(t) linearly related to the displacement response
vector U(t), i.e., Q(t) = BU(t), where B = constant matrix.

4.3. Response statistics of MDOF linear systems subjected to
modulated Gaussian white noise

Time-modulated Gaussian white noises constitute an
important class of non-stationary dynamic load processes. The
expression given in Eq. (30) describing a general non-stationary
loading process reduces to

F(t) = AF (t) · W (t) (41)

where the time-modulating function AF (t) is frequency-
independent and the white noise process W (t) has a constant
PSD equal to φ0.

In the following, closed-form solutions are derived for
the case of the modulating function equal to the unit-step
function, i.e., AF (t) = H(t). Notice that even for this very
simple modulating function and for a SDOF linear oscillator,
to date and to the best of the authors’ knowledge, no closed-
form solution is available for the first-order NGSC c01,UΥ (t)
(Re[c01(t)] in the notation adopted by Michaelov et al. [6,
7]) required for computing the time-variant central frequency
and bandwidth parameter of the displacement response process
U (t). In the following, the presented extension of NGSCs
to complex-valued non-stationary stochastic processes is
employed to derive the closed-form solution for c01,UΥ (t).

In the case of the unit-step modulating function, Eq. (32)
becomes

ASi (ω, t) = e(λi − jω)t
∫ t

0
{H(τ ) · e−(λi − jω)τ

}dτ

=
e(λi − jω)t

− 1
λi − jω

, i = 1, 2, . . . , 2n. (42)

The spectral characteristics in Eq. (40)1 can be computed using
Cauchy’s residue theorem as [19]

σSi Sm (t) =
2πφ0

λ∗

i + λm
[e(λ∗

i +λm )t
− 1],

i, m = 1, 2, . . . , 2n. (43)

Krenk and Madsen [12] and Madsen and Krenk [20]
applied the same approach (integration using Cauchy’s residue
theorem) to the real-valued (second-order) modal responses
to derive the closed-form solutions for the auto- and cross-
correlation functions of the response processes of classically
damped MDOF linear systems subjected to white noise
excitations modulated by rational time-modulating functions.
After extensive algebraic manipulations [19], the spectral
characteristics in Eq. (40)2 are obtained as
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σSiΣm (t) =
2φ0

λ∗

i + λm

× [E1(−λ∗

i t) + log(−λ∗

i ) − E1(−λm t) − log(−λm)]

+
2φ0

λ∗

i + λm
e(λ∗

i +λm )t

× [E1(λ
∗

i t) + log(λ∗

i ) − E1(λm t) − log(λm)],

i, m = 1, 2, . . . , 2n (44)

in which E1(x) denotes the integral exponential function
defined as [21]

E1(x) =

∫
∞

x

e−u

u
du, |arg(x)| < π (45)

where arg(. . .) = complex argument function.
The introduction of the spectral characteristics of the

complex modal response processes Si (t) (i = 1, . . . , 2n) has
the following important advantages:

(1) Closed-form integration for variances and cross-covariances
of displacement and velocity response processes for linear
elastic MDOF systems can be performed using Cauchy’s
residue theorem provided that the time-frequency modulat-
ing functions are rational functions, which is not a severe
restriction.

(2) The time-frequency modulating functions of response
processes are obtained by integrating (in closed-form
or numerically) Eq. (32), in which the time-frequency
modulating function of the loading process, AF (ω, t), is
multiplied by the impulse response function of a first-order
differential equation (i.e., h(t) = eλt , t > 0, λ = complex-
valued constant). In general, this integration is much
simpler than its counterpart for real-valued (second-order)
modal response processes, in which the time-modulating
function of the loading process is multiplied by the impulse
response function of a second-order differential equation
(i.e., h(t) =

e−Re[λ]·t

Im[λ]
sin(Im[λ] · t), t > 0, where Im[. . .] =

imaginary part of the quantity in the square brackets).
(3) The use of complex modal decomposition allows computa-

tion of the spectral characteristics of response quantities of
linear MDOF systems that are non-classically damped.

(4) The presented extension of NGSCs to complex-valued
non-stationary stochastic processes enables the derivation
of the exact solution in closed-form for the first-order
NGSC, c01,UiΥi (t) (see Eq. (34)4), of response processes
of linear SDOF and MDOF systems subjected to white
noise excitation modulated by the unit-step function. This
closed-form solution cannot be obtained using real-valued
responses of second-order modes.

5. Application examples

5.1. Linear elastic SDOF systems

The first application example consists of a set of linear
elastic SDOF systems subjected to a Gaussian white noise time-
modulated by the unit-step function (i.e., from at rest initial
conditions). In this case, the complex modal matrix T is given
by

T =

[
1 1
λ1 λ2

]
(46)

in which

λ1,2 = −ξω0 ± jωd (47)

where ξ = viscous damping ratio, ω0 = natural circular
frequency, and ωd = ω0

√
1 − ξ2 = damped circular frequency

of the system. It is assumed that 0 < ξ < 1, which is usually
the case for structural systems.

From Eqs. (33), (43) and (46), the well-known closed-
form solutions for the variances of the displacement and
velocity response processes and the cross-covariance between
the displacement and the velocity response processes [19,22]
are readily obtained. After some algebraic manipulations [19],
the first-order NGSC σUΥ̇ (t) is found as

σUΥ̇ (t) =
jφ0

2ξω0ωd

×

[
E1(−λ1t) − E1(−λ2t) − 2 j · arctg

(√
1 − ξ2

ξ

)]

+
jφ0

2ξω0ωd
e−(2ξω0)t

×

{
E1(λ1t) − E1(λ2t) + 2 j

[
π − arctg

(√
1 − ξ2

ξ

)]}
.

(48)

It is worth noting that Eq. (48) can be directly employed
for computing the corresponding first-order NGSCs of
the response processes of linear MDOF systems that are
classically damped, by using real-valued (second-order) mode
superposition and thus avoiding complex modal analysis, which
is computationally more expensive and less commonly used.
From Eq. (48), the stationary value of the spectral characteristic
σUΥ̇ (t) is readily obtained as

σUΥ̇ ,∞ =
φ0

ξω0ωd
arctg

(√
1 − ξ2

ξ

)
. (49)

The result provided in Eq. (48) is the exact closed-form solution
for the NGSC σUΥ̇ (t). To date and to the best of the authors’
knowledge, σUΥ̇ (t) could only be obtained by

(1) evaluating numerically the following exact expression in
integral form [7]

σUΥ̇ (t) =
φ0

ξω0ωd

[∫ t

0
e−ξω0u sin(ωdu)

u
du

− e−2ξω0t
∫ t

0
eξω0u sin(ωdu)

u
du

]
= Re[c01(t)]. (50)

(2) time-differentiating the time-variant cross-correlation func-
tion of the response process U (t) and its Hilbert transform
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Fig. 1. Comparison of analytical (Eq. (48)) and numerical (Eq. (50)) solutions
for the normalized first-order NGSC, σUΥ̇ (t)/σUΥ̇ ,∞

, of the displacement
responses of linear SDOF systems with damping ratios ξ = 0.01, 0.05 and
0.10.

Fig. 2. Time-variant bandwidth parameter, q(t), of the displacement responses
of linear SDOF systems with damping ratios ξ = 0.01, 0.05 and 0.10.

Υ(t) obtained from the auto-correlation function of the
complex-valued pre-envelope process of process U (t) [11,
12], which also requires the numerical evaluation of an in-
tegral term.

Fig. 1 shows the first-order NGSC c01,UΥ (t) = σUΥ̇ (t) (Eq.
(48)) normalized by its stationary value σUΥ̇ ,∞ (Eq. (49))
for SDOF systems with three different damping ratios (i.e.,
ξ = 0.01, 0.05, 0.10). For comparison purposes, Fig. 1 also
provides the normalized first-order NGSC, σUΥ̇ (t)/σUΥ̇ ,∞,
with the numerator evaluated numerically through Eq. (50). The
normalized first-order NGSC σUΥ̇ (t)/σUΥ̇ ,∞, is a function of
the damping ratio and the time normalized by the natural period
T0 of the SDOF system considered. As expected, stationarity is
reached after a larger number of response cycles (periods) for
decreasing value of the damping ratio ξ .

Fig. 2 plots the bandwidth parameter q(t) of the
displacement responses of SDOF systems with ξ = 0.01, 0.05,

0.10. From the results in Fig. 2, it is observed that:
Fig. 3. Time-variant normalized central frequency of the displacement
responses of linear SDOF systems with damping ratios ξ = 0.01, 0.05 and
0.10.

(1) The value of q(t) at t = 0 s is always equal to 0.961. This
result implies that, at the start of the motion of the system,
the SDOF system response is broadband.

(2) The value of q(t) decreases in time until it reaches a
stationary value, i.e., the SDOF system response changes
from a broadband transient to a narrowband stationary
process.

(3) The bandwidth parameter q(t) is a function of only the
damping ratio and the time normalized by the natural period
T0 of the SDOF system. In particular, the stationary value
of q(t) depends only on the damping ratio of the SDOF
system. In fact, it can be shown from Eqs. (20) and (48)
that

q∞ = lim
t→∞

q(t)

=

1 −

4
[
arctg

(√
1 − ξ2/ξ

)]2

π2(1 − ξ2)


1
2

. (51)

This stationary value decreases with decreasing value of ξ

with limξ→0 q∞ = 0 indicating that the response process
after reaching stationarity approaches a single harmonic
component (with random phase and amplitude) as the
damping ratio approaches zero.

Fig. 3 shows the ratio of the central frequency of
the displacement response process over the natural circular
frequency, referred to as the normalized central frequency, of
SDOF systems with varying damping ratio (ξ = 0.01, 0.05 and
0.10). It is observed that:

(1) The normalized central frequency has a very high value at
small (t/T0), then as (t/T0) increases it reaches a minimum
and finally oscillates until it reaches stationarity. These
oscillations remain always below the stationary value.

(2) The normalized central frequency is a function of only
the damping ratio and the time normalized by the natural
period T0 of the SDOF system. The stationary value of the
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Fig. 4. Dependency on damping ratio of the stationary values of the bandwidth
parameter and normalized central frequency, respectively, of the displacement
response of a linear SDOF system.

normalized central frequency depends on the damping ratio
only. This stationary value is given by [22]

ωc∞/ω0 = lim
t→∞

[ωc(t)/ω0]

=
1√

1 − ξ2

[
1 −

2
π

arctg
(

ξ/

√
1 − ξ2

)]
. (52)

In particular, limξ→0(ωc∞/ω0) = 1, which implies
that the single harmonic component (with random phase
and amplitude) approached by the displacement response
process at large (t/T0) for a lightly damped SDOF system
has a frequency equal to the natural frequency of the
system.

Fig. 4 shows the dependency of the stationary values of
the bandwidth parameter and normalized central frequency,
respectively, on the damping ratio for a linear SDOF system,
summarizing in graphical form some of the above observations.
Fig. 5 provides a single realization of a white noise excitation
with PSD φ0 = 0.01 m2/s3 and the corresponding
displacement response histories of linear SDOF systems with
natural period T0 = 1.0 s and damping ratio ξ = 0.01, 0.05
and 0.10. The displacement time-histories corresponding to
ξ = 0.01, after a few seconds of transient behavior, clearly
approach a single harmonic component with a mean frequency
close to the natural frequency of the system, as indicated
by the results shown in Fig. 2 for the bandwidth parameter
and in Fig. 3 for the normalized central frequency. For the
higher damping ratios of ξ = 0.05 and 0.10, after the initial
transient behavior, a predominant harmonic component can also
be observed in the displacement response histories. However,
for these two higher damping cases and particularly for ξ =

0.10, contributions to the displacement response histories from
other frequency components are non-negligible (broadening the
frequency bandwidth of the response).

5.2. Three-story shear-type building (linear MDOF system)

The three-story one-bay steel shear-frame shown in Fig. 6 is
considered as an application example. This building structure
Fig. 5. Realization of white noise excitation (φ0 = 0.01 m2/s3,∆t = 0.005 s)
and corresponding displacement response histories of linear SDOF systems
with natural period T0 = 1.0 s and damping ratios ξ = 0.01, 0.05 and 0.10.

Fig. 6. Geometric configuration of benchmark three-story one-bay shear-type
steel frame.

has a uniform story height H = 3.20 m and a bay width
L = 6.00 m. The steel columns are made of European HE340A
wide flange beams with moment of inertia along the strong
axis I = 27690.0 cm4. The steel material is modeled as linear
elastic with Young’s modulus E = 200 GPa. The beams are
considered rigid to enforce a typical shear building behavior.
Under this assumptions, the shear-frame is modeled as a 3 DOF
linear system.

The frame described above is assumed to be part of a
building structure with a distance between frames L ′

= 6.00 m.
The tributary mass per story, M , is obtained assuming a
distributed gravity load of q = 8 kN/ m2, accounting for the
structure’s own weight, as well as for permanent and live loads,
and is equal to M = 28 800 kg. The modal periods of the linear
elastic undamped shear-frame are T1 = 0.38 s, T2 = 0.13 s and
T3 = 0.09 s, with corresponding effective modal mass ratios of
91.41%, 7.49% and 1.10%, respectively. Viscous damping in
the form of Rayleigh damping is assumed with a damping ratio
ξ = 0.02 for the first and third modes of vibration. The same
shear-frame is also considered with the addition of a viscous
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Fig. 7. Time-variant bandwidth parameter of each of the three modal
displacement responses of the (classically damped) three-story shear-frame.

Fig. 8. Time-variant central frequency (normalized by first-mode natural
frequency) of each of the three modal displacement responses of the (classically
damped) three-story shear-frame.

damper of coefficient c = 200 kN s/m across the first story
as shown in Fig. 6. The structure with viscous damper is a
non-classically damped system. In both cases (with and without
viscous damper), the shear-frame is subjected to base excitation
modeled as a Gaussian white noise with PSD φ0 = 0.1 m2/s3

time-modulated by the unit-step function (i.e., from at rest
initial conditions).

Figs. 7 and 8 show the bandwidth parameter and normalized
central frequencies (central frequency divided by the natural
circular frequency of the first mode of vibration), respectively,
for each of the three modes of vibration of the shear-frame.
The stationary values of the bandwidth parameters for the first
and third modes are identical, since these two modes have the
same damping ratio, see Eq. (51). The second mode has a lower
damping ratio (ξ2 = 0.017) and therefore a lower stationary
value for the bandwidth parameter.

Figs. 9 through 11 show time histories of the variances
of the floor displacements (relative to the ground), and of
the bandwidth parameters and central frequencies (normalized
by the first-mode natural frequency) of the floor relative
displacement responses for the classically damped case. These
Fig. 9. Time-variant variances of floor relative displacement responses of three-
story shear-frame without damper (i.e., classically damped).

Fig. 10. Time-variant bandwidth parameters of floor relative displacement
responses of three-story shear- frame without damper (i.e., classically damped).

Fig. 11. Time-variant central frequencies (normalized by first-mode natural
frequency) of floor relative displacement responses of three-story shear-frame
without damper (i.e., classically damped).

figures show that the floor relative displacement response
processes are dominated by the first-mode contribution. In
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Fig. 12. Time-variant variances of floor relative displacement responses of
three-story shear-frame with damper (i.e., non-classically damped).

particular, the time-histories of the bandwidth parameters and
normalized central frequencies of the floor (especially the
second and third floors) relative displacement responses are
very similar to their counterparts for the first mode as shown
by comparing Fig. 7 with Fig. 10 and Fig. 8 with Fig. 11,
respectively. This comparison also indicates that the first floor
relative displacement response has some small higher-mode
contributions.

Figs. 12 through 14 provide the same information as
Figs. 9 through 11, but for the shear-frame with viscous
damper (i.e., non-classically damped case). The floor relative
displacement response processes remain dominated by the first-
mode contribution. The higher damping (ξ1 = 0.037, ξ2 =

0.048, ξ3 = 0.034) reduces significantly the variances of floor
relative displacements as shown by comparing Figs. 9 and
12. The higher damping has also the effect of raising slightly
the stationary value of the bandwidth parameters of the floor
relative horizontal displacements.

This second application example illustrates the capability of
the presented extension of non-geometric spectral characteris-
tics to complex-valued stochastic processes to capture the time-
variant spectral properties in terms of the bandwidth parameter
and central frequency of the response of linear MDOF classi-
cally and non-classically damped systems.

6. Conclusions

This paper extends the definition of the non-geometric
spectral characteristics (NGSCs) to general complex-valued
non-stationary random processes. These newly defined NGSCs
are essential for computing the time-variant bandwidth
parameter and central frequency of non-stationary response
processes of linear systems. The bandwidth parameter is also
used in structural reliability applications, e.g., for obtaining
analytical approximations of the probability that a structural
response process outcrosses a specified limit-state threshold.

Using the non-geometric spectral characteristics of complex-
valued non-stationary processes and employing complex modal
Fig. 13. Time-variant bandwidth parameters of floor relative displacement
responses of three-story shear-frame with damper (i.e., non-classically
damped).

Fig. 14. Time-variant central frequencies (normalized by first-mode natural
frequency) of floor relative displacement responses of three-story shear-frame
with damper (i.e., non-classically damped).

analysis, closed-form exact solutions are found for the clas-
sical problem of deriving the time-variant central frequency
and bandwidth parameter of the response of linear SDOF and
MDOF systems, both classically and non-classically damped,
when subjected to white noise excitation from at rest initial
conditions.

The exact closed-form solutions derived for the linear
SDOF oscillator are used to investigate the dependency of the
stationary and time-variant central frequency and bandwidth
parameter on the SDOF system parameters, i.e., natural circular
frequency, ω0, and damping ratio, ξ . A three-story shear-
type steel frame building without and with a viscous damper
(i.e., classically and non-classically damped, respectively) is
used to illustrate the application of the presented closed-
form solutions for linear MDOF systems to the floor response
processes of a base excited building structure.

The exact closed-form solutions developed and presented
in this paper have their own mathematical merit, since to the
best of the authors’ knowledge, they are new. These solutions
have a direct and important application, since the response of
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many structures can be approximated by using linear SDOF
and MDOF models, and provide valuable benchmark solutions
for validating (at the linear structural response level) numerical
methods developed to estimate the probabilistic response of
non-linear systems subjected to non-stationary excitations.

Acknowledgements

Support of this research by the National Science Foundation
under Grant No. CMS0010112 and the Pacific Earthquake
Engineering Research (PEER) Center through the Earthquake
Engineering Research Centers Program of the National
Science Foundation under Award No. EEC-9701568 is
gratefully acknowledged. The second author would also like
to acknowledge partial support of this research by a Senior
Fulbright Research Scholarship at the University of Chieti-
Pescara in Italy. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsors.

The authors would like to thank Prof. Stefan G. Llewellyn
Smith in the Department of Mechanical and Aerospace
Engineering at UCSD for his proficuous help in finding the
closed-form solution for the spectral characteristic c01,XY (t)
of complex-valued processes. Finally, the anonymous reviewers
are gratefully acknowledged for their constructive criticism of
the original version of the paper.

References

[1] Priestley MB. Spectral analysis and time series, volume 1: Univariate
series, volume 2: Multivariate series, prediction and control. London
(UK): Academic Press; 1987. Fifth printing.

[2] Bendat J, Piersol AG. Random data: Analysis and measurement
procedures. New York (NY): Wiley; 1986.

[3] Priestley MB. Non-linear and non-stationary time series analysis. London
(UK): Academic Press; 1988.

[4] Corotis RB, Vanmarcke EH, Cornell CA. First passage of nonstationary
random processes. Journal of Engineering Mechanics Division, ASME
1972;98(EM2):401–14.

[5] Di Paola M. Transient spectral moments of linear systems. SM Archives
1985;10:225–43.
[6] Michaelov G, Sarkani S, Lutes LD. Spectral characteristics of
nonstationary random processes — A critical review. Structural Safety
1999;21:223–44.

[7] Michaelov G, Sarkani S, Lutes LD. Spectral characteristics of
nonstationary random processes — response of a simple oscillator.
Structural Safety 1999;21:245–67.

[8] Crandall SH. First-crossing probabilities of the linear oscillator. Journal
of Sounds and Vibrations 1970;12(3):285–99.

[9] Arens R. Complex processes for envelopes of normal noise. IRE
Transaction on Information Theory 1957;3:204–7.

[10] Dugundji J. Envelope and pre-envelope of real waveforms. IRE
Transaction on Information Theory 1958;4:53–7.

[11] Krenk S, Madsen HO, Madsen PH. Stationary and transient response
envelopes. Journal of Engineering Mechanics, ASCE 1983;109(1):
263–78.

[12] Krenk S, Madsen PH. Stochastic response analysis. In: Thoft-
Christensen P, Nijhoff Martinus, editors. NATO ASI series: Reliability
theory and its application in structural and soil mechanics. 1983.
p. 103–72.

[13] Vanmarcke EH. On the distribution of the first-passage time for normal
stationary random processes. Journal of Applied Mechanics, ASME 1975;
215–20.

[14] Rice SO. Mathematical analysis of random noise. Bell System Technical
Journal 1944;23:282–332.

[15] Rice SO. Mathematical analysis of random noise. Bell System Technical
Journal 1945;24:146–56.

[16] Lin YK. Probabilistic theory of structural dynamics. New York (NY):
McGraw-Hill; 1967. Huntington (UK): Krieger Pub.; 1976.

[17] Peng B-F, Conte JP. Closed-form solutions for the response of
linear systems to fully nonstationary earthquake excitation. Journal of
Engineering Mechanics, ASCE 1998;124(6):684–94.

[18] Reid JG. Linear system fundamentals: Continuous and discrete, classic
and modern. New York (NY): McGraw-Hill; 1983.

[19] Barbato M, Conte JP. Spectral characteristics of non-stationary stochastic
processes: Theory and applications to linear structural systems. Report
SSR-07-23. La Jolla (CA): University of California at San Diego; 2007.

[20] Madsen PH, Krenk S. Stationary and transient response statistics. Journal
of the Engineering Mechanics Division, ASCE 1982;108(EM4):622–34.

[21] Abramowitz M, Stegun IA. Exponential integral and related functions.
In: Handbook of mathematical functions with formulas, graphs, and
mathematical tables. New York (NY): Dover; 1972. p. 227–33. 9th
printing [Chapter 5].

[22] Lutes LD, Sarkani S. Random vibrations — analysis of structural and
mechanical systems. Burlington (MA): Elsevier Butterworth-Heinemann;
2004.


	Spectral characteristics of non-stationary random processes: Theory and applications to linear structural models
	Introduction
	Central frequency and bandwidth parameters for real-valued stochastic processes
	Spectral characteristics of complex-valued non-stationary stochastic processes
	Spectral characteristics of the stochastic response of SDOF and MDOF linear systems subjected to non-stationary input excitation
	Complex modal analysis
	Non-geometric spectral characteristics of response processes of linear MDOF systems using complex modal analysis
	Response statistics of MDOF linear systems subjected to modulated Gaussian white noise

	Application examples
	Linear elastic SDOF systems
	Three-story shear-type building (linear MDOF system)

	Conclusions
	Acknowledgements
	References


