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Abstract: This paper focuses on the effects upon the design point search of 
gradient discontinuities caused by non-smoothness of material constitutive 
models in the context of finite element reliability analysis. The response 
computation algorithm for the Menegotto-Pinto smooth material constitutive 
model is extended to response sensitivity analysis using the Direct 
Differentiation Method. Response sensitivity and reliability analysis results are 
compared for a structural system modelled using smooth and non-smooth 
material constitutive laws, respectively. Both material and discrete loading 
sensitivity parameters are considered. Structural reliability analyses are 
performed using the First-Order Reliability Method. Implications of using 
smooth versus non-smooth material constitutive models in finite element 
response, response sensitivity and reliability analyses are discussed.  
A sufficient condition on the smoothness of uni-axial material constitutive 
models for obtaining continuous finite element response sensitivities is stated 
and proved for the quasi-static case. The issue of continuity/discontinuity of 
response sensitivities for the dynamic case is discussed within the application 
examples. 
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1 Introduction 

The field of structural reliability analysis has seen significant advances in the last  
two decades (Ditlevsen and Madsen, 1996). Analytical and numerical methodologies 
have been developed and improved for the probabilistic analysis of real  
structures characterised in general by non-linear behaviour, material and geometric 
uncertainties and subjected to stochastic loads (Schueller et al., 2004). Reliability 
analysis methods have been successfully applied to such problems, as the ones 
encountered in civil engineering and typically analysed deterministically through the 
Finite Element Method (FEM) (Der Kiureghian and Ke, 1988). 

Several reliability analysis methods, such as asymptotic methods (First- and  
Second-Order Reliability Methods) (Breitung, 1984; Der Kiureghian, 1996; Der 
Kiureghian and Liu, 1986; Der Kiureghian et al., 1987; Ditlevsen and Madsen, 1996) and 
importance sampling with sampling distribution centred on the design point(s) (Au and 
Beck, 2001a; Au et al., 1999; Melchers, 1989; Schueller and Stix, 1987) are 
characterised by the crucial step of finding the design point(s). In particular, asymptotic 
methods can provide reliability analysis results with a relatively small number of 
simulations (often of the order of 10–100 simulations for First-Order Reliability Method 
(FORM) analysis) and with a computational effort practically independent of the 
magnitude of the failure probability. Furthermore, these methods provide important 
information such as reliability sensitivity measures, as byproduct of the design point 
search (Hohenbichler and Rackwitz, 1986). Other reliability analysis methods, for 
example, subset simulation (Au and Beck, 2001b, 2003) and importance sampling with 
sampling distribution not centred at the design point(s) (Au and Beck, 1999; Ang et al., 
1992; Bucher, 1988), do not use the concept of design point, do not require computation 
of response sensitivities, and therefore are not affected by smoothness or non-smoothness 
of the material constitutive models used. In general, the computational cost of these 
methods increases for decreasing magnitude of the failure probability. Thus, for very low 
failure probabilities, these methods could require a very large number of simulations.  

In general, the design point(s) is(are) found as the solution(s) of a constrained 
optimisation problem, in which the number of variables corresponds to the number of 
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material, geometric and loading parameters modelled as random variables (Ditlevsen and 
Madsen, 1996). The most effective optimisation algorithms for high-dimensional 
problems are gradient-based methods coupled with algorithms for efficient and precise 
computation of response sensitivities to material, geometric and loading parameters  
(Liu and Der Kiureghian, 1991). Moreover, these methods assume some smoothness 
properties of the objective and constraint functions, on which the convergence properties 
are dependent. Constraint function(s) that arise in structural engineering problems often 
do not possess second-order differentiability, as required by gradient-based optimisation 
methods to achieve quadratic convergence rates (Gill et al., 1981). In general, they 
present discontinuities in the first derivatives (e.g. J2 plasticity model, contact problems) 
or even in the response (e.g. crack propagation), and further discontinuities are 
introduced by numerical solution methodologies (e.g. finite element, finite difference, 
numerical integration). 

Significant research efforts have been devoted to the development of smooth  
non-linear material constitutive models, to better describe actual material behaviour. 
Important characteristics such as Baushinger’s effect for steel and hysteresis loops for 
concrete are most accurately described by smooth material models. Other smooth versus 
non-smooth material behavioural properties (e.g. shape of σ − ε relation for concrete in 
tension) may have a negligible effect on simulated structural response, but a significant 
effect on response sensitivities to material parameters. 

This paper describes some features of response sensitivity analysis using smooth and 
non-smooth material constitutive laws. The response sensitivity computation algorithm is 
presented for the Menegotto–Pinto (M–P) smooth constitutive model typically used for 
structural steel (Menegotto and Pinto, 1973). Continuity of finite element response 
sensitivities is analysed and a sufficient condition on the smoothness properties of 
material constitutive models to obtain such continuity is stated and proved for the  
quasi-static case. On the basis of application examples, remarks are made on  
the continuity (or lack thereof) of response sensitivities for the dynamic case, which is 
more difficult to study mathematically. Focus is on the effects upon the design point 
search of gradient discontinuities produced by non-smoothness of material constitutive 
models. The FORM (Ditlevsen and Madsen, 1996) is applied to reliability analysis of a 
structural system modelled with smooth and non-smooth material constitutive laws, 
respectively. Both probabilistic quasi-static pushover and dynamic analyses are 
considered. The Direct Differentiation Method (DDM) (Conte, 2001; Conte et al., 2003; 
Kleiber et al., 1997; Zhang and Der Kiureghian, 1993) is used for finite element response 
sensitivity analysis. The implications of using smooth versus non-smooth material 
constitutive models on finite element response and response sensitivity analyses as well 
as on reliability analysis are discussed. On the basis of the results obtained, conclusions 
are drawn on the need to use existing or develop new inelastic material constitutive 
models with specified smoothness properties both in the monotonic as well as cyclic 
hysteretic behaviour for applications requiring continuous response sensitivities such as 
gradient-based optimisation. 

It is worth mentioning that response sensitivity analysis finds application not only  
in reliability analysis, which is the focus of this paper, but also in structural optimisation, 
structural identification and finite element model updating and any other field in  
which gradient-based optimisation techniques are used. The results presented in this 
paper are general and apply to any situation for which response sensitivity analysis  
is required. 
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2 Finite element reliability analysis and design point search 

In general, the structural reliability problem consists of computing the probability of 
failure Pf of a given structure, which is defined as the probability of exceedance of some 
limit-state (or damage-state) function(s) when the loading(s) and/or structural properties 
and/or parameters in the limit-state functions are uncertain quantities modelled as 
random variables. 

This paper focuses on component reliability analysis, that is, we consider a single 
limit-state function g  = g(r, θ), where r denotes a vector of response quantities of 
interest and θ is the vector of random variables considered. The limit-state function g is 
chosen such that g ≤ 0 defines the failure domain/region. Thus, the time-invariant 
component reliability problem takes the following mathematical form 

( , ) 0
[ ( , ) 0] = ( )d

≤
= ≤ ∫ pf g

P P g
r

r Θθ
θ θ θ  (1) 

where pΘ(θ) denotes the joint Probability Density Function (PDF) of random variables θ. 
Moreover, it is assumed that the limit-state function describes a first-excursion 

problem in one of the following simple forms: 

lim

lim

lim lim

( , );                           (up-crossing problem) 

( , ) ;                           (down-crossing problem)

( , ) , ( 0);    (double-barrier crossing problem)

 −


= −
 − >

u u t

g u t u

u u t u

θ
θ

θ
 (2) 

in which ( , )u tθ  is a scalar displacement response quantity (i.e. nodal displacement) 

computed at = ,t t  where t is an ordering parameter (loading factor in a quasi-static 

analysis or time in a dynamic analysis), t  is a specified value of t (e.g. = max( )t t  in a 
pushover analysis) and ulim is a deterministic threshold. In this case, the time-invariant 
reliability problem reduces to computing 

[ ]
[ ]
[ ]

lim

lim

lim

( , )

( , ) 0 ( , )

( , )
f

P u t u

P P g t P u t u

P u t u

 ≥
= ≤ = ≤
  ≥ 

θ
θ θ

θ
 (3) 

For time-variant reliability problems, an upper bound of the probability of failure, Pf (T), 
over the time interval [0, T], can be found as 

0

( ) ( )d
T

f gP T t tν≤ ∫  (4) 

where vg(t) denotes the mean down-crossing rate of level zero of the limit-state  
function g. An estimate of vg(t) can be obtained numerically from the limit form relation 
(Hagen and Tvedt, 1991) 

[ ]
0

( , ) 0 ( , + ) 0
( ) lim

δ

δ
ν

δ→

> ≤
=

∩
g t

P g t g t t
t

t

θ θ
 (5) 
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The numerical evaluation of the numerator of Equation (5) reduces to a time-invariant 
two-component parallel system reliability analysis. It is clear that the first part of 
Equation (3) represents the building block for the solution of both time-invariant and 
time-variant reliability problems (Der Kiureghian, 1996). 

The problem in Equation (1) is extremely challenging for real-world structures  
and can be solved only in approximate ways. A well established methodology consists  
of introducing a one-to-one mapping/transformation between the physical space of  
variables θ and the standard normal space of variables y (Ditlevsen and Madsen, 1996) 
and then computing the probability of failure Pf as 

( ) 0
[ ( ) 0] = ( )dϕ

≤
= ≤ ∫f G

P P G Yy
y y y  (6) 

where ϕY(y) denotes the standard normal joint PDF and ( ) = ( ( )), ))( (G gy r y yθ θ  is the 

limit-state function in the standard normal space. 
Solving the integral in Equation (6) remains a formidable task, but this new form of 

Pf is suitable for approximate solutions taking advantage of the rotational symmetry of 
the standard normal joint PDF and its exponential decay in both the radial and tangential 
directions. An optimum point at which to approximate the limit-state surface G(y) = 0 is 
the ‘design point’, which is defined as the most likely failure point in the standard normal 
space, that is, the point on the limit-state surface that is closest to the origin. Finding the 
design point is a crucial step for approximate methods to evaluate the integral in 
Equation (6), such as FORM, SORM and importance sampling (Au and Beck, 1999; 
Breitung, 1984; Der Kiureghian et al., 1987). 

The design point, y*, is found as solution of the following constrained optimisation 
problem: 

) = 0T1
arg min (

2

   =   
   

y* y y yG  (7) 

The most effective techniques for solving the constrained optimisation problem in 
Equation (7) are gradient-based optimisation algorithms (Gill et al., 1981; Liu and  
Der Kiureghian, 1991) coupled with algorithms for accurate and efficient computation of 
the gradient of the constraint function G(y), requiring computation of the sensitivities of 
the response quantities r to parameters θ. In fact, using the chain rule of differentiation 
for multivariable functions, we have 

( )∇ = ∇ ⋅∇ ∇ ∇G g gy r yrr +θ θθ θ  (8) 

where ∇ gr θ
 and ∇ g

rθ  are the gradients of limit-state function g with respect to its 

explicit dependency on quantities r and θ, respectively, and usually can be computed 
analytically (e.g. for limit-state function g given in Equation (2)1, we have 1∇ = −gr θ

 

and 0∇ =g
rθ ); the term ∇θr denotes the response sensitivities of response variables r to 

parameters θ, and ∇yθ  is the gradient of the physical space parameters with respect to 

the standard normal space parameters (i.e. Jacobian matrix of the probability 
transformation from the y-space to the θ-space). For probability distribution models 
defined analytically, the gradient ∇yθ  can be derived analytically as well (Ditlevsen and 

Madsen, 1996). 
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For real-world problems, the response simulation (computation of r for given θ) is 
performed usually using advanced mechanics-based non-linear computational models 
developed based on the FEM. Finite element reliability analysis requires augmenting 
existing finite element formulations for response calculation only, to compute the 
response sensitivities, ∇θr, to parameters θ. An accurate and efficient way to perform 
finite element response sensitivity analysis is through the DDM (Conte, 2001; Conte  
et al., 2003; Franchin, 2004; Kleiber et al., 1997; Zhang and Der Kiureghian, 1993; Zona 
et al., 2005). 

3 Material constitutive models 

In this paper, two different material constitutive models typically used to describe the 
behaviour of structural steel are considered: the one-dimensional J2 plasticity model (also 
more commonly known as bilinear inelastic model), for which the sensitivity 
computation algorithm is presented elsewhere (Conte et al., 2003), and the M–P model 
(1973) in the version extended by Filippou et al. (1983) to account for isotropic strain 
hardening, for which the response sensitivity computation algorithm is developed and 
presented in Section 3.2. 

The J2 plasticity model with Von Mises yield surface is a well-known non-smooth 
plasticity model for metallic materials. Its one-dimensional version presents a kink at the 
yielding point of the σ-ε relation, leading to discontinuities in response sensitivities at 
elastic-to-plastic state transition events (Conte, 2001). 

The M–P one-dimensional plasticity model is a computationally efficient smooth 
inelastic model typically used for structural steel, showing very good agreement with 
experimental results, particularly from cyclic tests on reinforcing steel bars. It presents 
two favourable features for finite element response, response sensitivity and reliability 
analyses:  

a the model expresses explicitly the current stress as a function of the current 
strain, so that it is computationally more efficient than competing models such 
as the Ramberg–Osgood model (Ramberg and Osgood, 1943) 

b the constitutive law is smooth and continuously differentiable (with respect to 
strain and constitutive material parameters), therefore producing response 
sensitivities continuous everywhere. 

Furthermore, the M–P model can accommodate modifications to account for local 
buckling of steel bars in reinforced concrete members (Monti and Nuti, 1992), and can 
be used for macroscopic modelling of hysteretic behaviour of structures or substructures 
with an appropriate choice of the modelling parameters. It is also noteworthy that the  
M–P model is a physically motivated model of structural material hysteresis, and its 
performance in representing structural physical behaviour is not undermined by 
mathematical features that can lead to non-physical analysis results. Such non-physical 
results have been documented for widely used models such as the Bouc-Wen hysteretic 
model based on non-linear differential equations (Thyagarajan and Iwan, 1990). Caution 
is needed in the use of such mathematically-based models to avoid non-physical analysis 
results, and preference should be granted to physically-based models such as the  
M–P model used in this paper. 
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3.1 Response computation 

The M–P model is described by the following equations 

( )1/

(1 )

1

εσ ε
ε

∗
∗ ∗

∗

−= +
+

RR

b
b  (9) 

∗ −
=

−
r

y r

ε εε
ε ε

 (10) 

∗ −
=

−
r

y r

σ σσ
σ σ

 (11) 

Equation (9) represents a smooth curved transition from an asymptotic straight line with 
slope E0 to another asymptotic straight line with slope E1, where b = E1/E0; ε

* and σ* are 
the normalised strain and stress, respectively; εy and σy are the coordinates in the  
strain-stress plane of the intersection point of the two asymptotes; εr and σr (initially set 
to zero) are the coordinates in the strain-stress plane of the point where the last strain 
reversal event took place; ε and σ are the current strain and stress, respectively; and R is 
a parameter describing the curvature of the transition curve between the two asymptotes. 
A typical cyclic stress-strain response behaviour is shown in Figure 1. 

Figure 1 Cyclic stress-strain response behaviour of structural steel modelled  
using M–P model 

 

The model is completed by the updating rules for εr, σr, εy, σy and R at each strain reversal 
event. For example, parameter R is obtained as 

1
0

2

a
R R

a

ξ
ξ

= −
+

 (12) 

where R0 is the value of the parameter R during the first loading; a1 and a2 are 
experimentally determined parameters; ξ is the ratio of the maximum plastic strain 

max maxmax= −p
yε

ε ε ε  over the initial yield strain εy0. To account for isotropic hardening, 
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Filippou et al. (1983) proposed a stress shift σsh in the linear yield asymptote depending 
on the maximum plastic strain as 

sh max
3 4

0 0

 
= −  

 y y

a a
σ ε
σ ε

 (13) 

in which a3 and a4 are experimentally determined parameters, εmax is the absolute 
maximum total strain at the instant of strain reversal and σy0 is the initial yield stress. For 
this model, the updating rules at the instant of strain reversal (detected in the time step 
[tn,tn+1]) are 

1 1;ε ε σ σ+ +r,n n r,n n= =  (14) 

max, max, ,

max, 1

,

if  

  otherwise
+

 > −= 
−

p p

p
ε ε ε ε

ε
ε ε

n n n y n

n

n y n

 (15) 

max, 1
1

0

+
+ =

pε
ξ

ε
n

n
y

 (16) 

max, max,

max, 1

if  

            otherwise
+

 >= 


ε ε ε
ε

ε
n n n

n
n

 (17) 

( )sh, 3 max, 1 4 01
max ; 0−σ ε ε++

 =  n yn a a Ε  (18) 

1 0 sh,1 1
n 1

(1 )

( 1)E

σ ε σ σ
ε

++ +
+

 − ± − + 
−

r,n yn nr,
y,

Ε b
=

b
 (19) 

1 0 sh, 11
(1 )σ ε σ σ+ ++
 ± − + y,n y ny,n = bE b  (20) 

In Equations (19) and (20), the ‘+’ sign has to be used for strain inversion from positive 
strain increment (tensile increment) to negative strain increment (compressive 
increment), while the ‘−’ sign is required for strain inversion from negative strain 
increment to positive strain increment. 

3.2  Response sensitivity computation 

Following the DDM, the exact response sensitivities of the discretised material 
constitutive laws are required in finite element response sensitivity analysis. The DDM 
consists of differentiating analytically the space- and time-discretised equations of 
motion/equilibrium of the finite element model of the structural system considered.  
It involves 

a computing the derivatives (with respect to the sensitivity parameters) of the 
element and material history/state variables conditional on fixed nodal 
displacements at the structure level (conditional sensitivities) 
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b forming the right-hand-side of the response sensitivity equation at the  
structure level 

c solving the resulting equation for the nodal displacement response  
sensitivities and 

d updating the unconditional derivatives of all history/state variables 
(unconditional sensitivities). 

For a more detailed explanation of the DDM, the interested reader is referred elsewhere 
(Conte, 2001; Conte et al., 1995, 2003, 2004; Barbato and Conte, 2005; Kleiber et al., 
1997; Zhang and Der Kiureghian, 1993; Zona et al., 2005). The response sensitivity 
computation algorithm affects the various hierarchical layers of finite element response 
calculation, namely the structure, element, section and material levels. This section 
presents the algorithm for computing the response sensitivities of the M–P material 
constitutive model over a single time step. 

a Sensitivity parameters θ :   The material constitutive parameters selected as 
sensitivity parameters are: elastic Young’s modulus (E); initial yield stress (σy0); 
plastic-to-elastic material stiffness ratio (b).  

b Input at time t = tn+1: The input information for response sensitivity computation 
at time t = tn+1 consists of:  

− current strain (εn+1)and stress (σn+1) and history variables h (εr.n+1, σ r.n+1, 

max, 1,ε +
p

n  ξn+1, εmax,n+l σsh,n+l, εy,n+l, σy,n+1) after convergence for the response 

computation at time tn+l 

− unconditional sensitivities at time tn: (dε /dθ)n, (dσ /dθ)n, (dεr /dθ)n,  
(dσr /dθ)n, (d maxε p  /dθ)n, (dξ /dθ)n, (dεmax /dθ)n, (dσsh /dθ)n, (dεy /dθ)n,  

(dσy /dθ)n. 
c Algorithm: 

IF strain reversal took place in time step [tn,tn+1], 

THEN compute the sensitivities of all history variables, (dh/dθ)n+1, consistently 
with the constitutive law integration scheme, that is,  

1 1

d dd d
;

d d d d

ε σε σ
θ θ θ θ+ +

      
      
      

r r

n nn n

= =  (21) 

max
max, ,

max

1
,

d
                        if  

dd

d dd
sign( )  otherwise 

d d
+

 
> − 

   
=  

      − −        

p
p

p

ε ε ε ε
θε

θ εεε ε
θ θ

n n y n
n

yn
n y n

n n

 (22) 

( ) ( )max 0 max, 1 0
1

2
1 0

d d d d
d

d

ε θ ε ε ε θ
ξ
θ ε

+
+

+

−
  = 
 

p p
y n y

n

n y

 (23) 

max
max,

max

1

d
    if  

dd

d d
sign( )  otherwise 

d

ε ε ε
θε

θ εε
θ

+

  > 
   =  
   

   

n n
n

n
n

n

 (24) 
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( ) 0max
3 max, 1 4 0 4 shsh

1
1

> 
ddd

if 0d
d d

d
0;                     otherwise

+
+

+

+ −
     
     =          


−
εεΕε ε Ε σσ

θ θ θ
θ

y
n y

n
n
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d  (25) 

( ) ( ) ( ) ( ) ( ) ( )

{ } ( ) ( )

1 0 sh0n 1 1 1

1 1 0 sh, 1

1

2 2

d d d d d d (1 ) d d d dd

d ( 1)

(1 ) d d (1 )

(1 )

d d

d d

σ θ ε θ ε θ σ θ σ θε

θ

σ ε σ σ θ

σ θ

θ

++ + +

+ + +

− − ± − − +

−+

− ± − + − −

−
−

    
 
 

     

r,n yn n

r,n r,n y n

r ry

n

E E b by
=

b E

E b E b b

b E

E

(26) 

1 1

1

0

0

1

1

d dd d

d d d d

d dd
(1 )

d d d

+ +

+

+

+

− − +

   
+ +   

   

  ±   
  

sh

σ ε
ε ε

θ θ θ θ

σ σσ
θ θ θ

y,n y,n

n

y
y

n

y y

n

b E= E b bE

bb

 (27) 

In Equations (26) and (27), the ‘+’sign has to be used for strain inversion from 
positive strain increment (tensile increment) to negative strain increment 
(compressive increment), while the ‘−’ sign is required for strain inversion from 
negative strain increment to positive strain increment. 

ELSE (dh/dθ)n+1 = (dh/dθ)n (as all the above history variables h remain fixed 
between two consecutive strain reversal events). 

END IF 
COMPUTE 

( )
1 2

2
1 1 2 1

d d

d d

ξ
θ θ ξ+ + +

   = −   
    +

a aR

an n n

 (28) 

( ) ( )

( ) ( ) ( )
( )

1 1

, +1 , +11

+1 , +111

2
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d / d d / dd
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d /d d /d

∗
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−
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ε θ ε θε
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ε θ ε θ ε ε
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( ) ( )

+1
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+1

+1
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11 11
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+1 +11 1
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1 1 1 +11 1
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1
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ln 1lnd / dd
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d 1
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1
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εε
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The DDM requires computing at each analysis step, after convergence is achieved for the 
response calculation, the structure resisting force sensitivities for nodal displacements 
kept fixed (i.e. conditional sensitivities). At the material level, the required conditional 
sensitivities (for εn+1 fixed) can be obtained from Equations (28) to (31) after setting 
(dε/dθ)n+1 = 0. 

4 Application example 

A three-story one-bay steel shear-frame is considered as application example in this 
paper (Figure 2). The structure has been chosen simple enough to allow for closed-form 
computation of the design point (for pushover analysis and in the case of J2 plasticity), 
yet realistic and complex enough to illustrate the main features and difficulties 
encountered in the general class of problems under study. A key objective of this paper is 
to show clearly the detrimental effects that discontinuities in finite element response 
sensitivities could have on the search for the design point(s). More complex examples or 
more complete and advanced reliability analyses would not achieve this objective as 
simply and as clearly. In fact, problems of dimension higher than two in the parameter 
space do not allow simple visualisation of the limit-state function and limit-state surface 
(visualisation is still possible for limit-state surfaces of three parameter problems). 
Moreover, other not easily recognisable difficulties for the design point search could  
be superimposed to the detrimental effects of response sensitivity discontinuities  
(e.g. multiple design points, saddle points). 

Figure 2 Shear-frame structure: geometry, floor displacements and quasi-static  
horizontal loads 

 

The shear-frame has three stories of height H = 3.20 m each, and one bay of length  
L = 6.00 m. The columns are European HE340A steel columns with moment of inertia 
along the strong axis I = 27690.0 cm4. The steel material has a Young’s modulus  
E = 2 ×105 N/mm2 and an initial yield stress fy0 = 350 N/mm2. The initial yield moment of 
the columns is My0 = 587.3 kN-m. The beams are considered rigid to enforce a typical  
shear-building behaviour. Under this assumption, the initial yield shear force for each 
story is Fy0 = 734 kN.  



   

 

   

   
 

   

   

 

   

   14 M. Barbato and J.P. Conte    
 

    
 
 

   

   
 

   

   

 

   

       
 

The frame described above is assumed to be part of a building structure with a 
distance between frames L’ = 6.00 m. The tributary mass per story, M, is obtained 
assuming a distributed gravity load of q = 8 kN/m2, accounting for the structure own 
weight, as well as for permanent and live loads, and is equal to M = 28.8 × 103 kg. The 
fundamental period of the linear elastic undamped shear-frame is T1 = 0.38 sec. Natural 
frequencies, natural periods and effective modal mass ratios for the undamped structure 
are given in Table 1. Viscous damping in the form of Rayleigh damping is assumed with 
a damping ratio ξ = 0.05 for the first and third modes of vibration. 

Table 1 Modal analysis results for the linear elastic undamped three-story  
one-bay shear-frame 

Mode # Natural circular frequency  
ω (rad/s) 

Natural period T (s) Effective modal 
mass ratio (%) 

1 16.70 0.38 91.41 

2 46.80 0.13 7.49 

3 67.62 0.09 1.10 

The story shear force – interstory drift relation is modelled using three different 
hysteretic models, which have in common the initial stiffness K = 40.56 kN/mm, the 
initial yield force Fy0 = 734 kN and the post-yield stiffness to initial stiffness ratio  
b = 0.10. The three models are: 

a M–P model with parameters R0 = 20, a1 = 18.5, a2 = 0.15, a3 = a4 = 0, denoted as 
‘M–P (R0 = 20)’ in the sequel 

b M–P model with parameters R0 = 80, a1 = 18.5, a2 = 0.15, a3 = a4 = 0, denoted as 
‘M–P (R0 = 80)’ hereafter 

c uniaxial J2 plasticity model with Hkin = K/9 = 4.057 kN/mm (kinematic 
hardening modulus), Hiso = 0 kN/mm (isotropic hardening modulus), and  
α0 = 0 kN/mm (initial back-stress), denoted as ‘J2 plasticity’ hereafter. 

The M–P (R0 = 20) model is characterised by typical values of the parameters used for 
common structural steel, while the M–P (R0 = 80) model is used only for the purpose of 
reproducing as closely as possible with a smooth inelastic model the behaviour of the 
non-smooth J2 plasticity model. 

In the following examples, finite element response and response sensitivity analyses 
are performed using the general-purpose non-linear finite element structural analysis 
programme FEDEASLab (Filippou and Constantinides, 2004). FEDEASLab is a Matlab 
(The Mathworks, 1997) toolbox suitable for linear and non-linear, static and dynamic 
structural analysis, which also incorporates a general framework for parameterisation of 
finite element models and for response sensitivity computation using the DDM 
(Franchin, 2004). Reliability analysis is performed using the Matlab-based software 
FERUM (Haukaas, 2001). The optimisation problem to find the design point(s) is solved 
using three different optimisation algorithms:  

a the (improved) Hasofer-Lind Rackwitz-Fiessler (HL-RF) algorithm  
(Der Kiureghian and Liu, 1986; Rackwitz and Fiessler, 1978), available in 
FERUM 
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b the function FMINCON of the Matlab Optimisation Toolbox (The Mathworks, 
2004) and 

c the non-linear programming code SNOPT (Gill et al., 2002, 2005). 

While the improved HL-RF algorithm is a gradient-based iterative method specialised  
for structural reliability problems (Liu and Der Kiureghian, 1991), FMINCON and 
SNOPT are general-purpose optimisation routines based on Sequential Quadratic 
Programming (SQP) (Gill et al., 1981). The algorithms used by FMINCON and  
SNOPT are similar for small-scale dense problems (as the ones examined in this paper), 
with differences involving mainly efficiency and robustness issues. In this paper, the 
above three different optimisation methods are used to reach a higher confidence level on 
the results obtained. Research is currently underway to assess the relative performance 
characteristics of these optimisation methods when applied to structural reliability 
problems of increasing complexity and dimensionality. 

4.1 Finite element response sensitivity analysis 

Response sensitivity analysis can be used to gain insight into the effects and relative 
importance of the loading and material parameters θ on the response behaviour of a 
structural system. The example structure presented above is subjected to a response and 
response sensitivity analysis for quasi-static cyclic loading and dynamic loading in the 
form of seismic base excitation. Some response quantities and their sensitivities to 
various material and loading parameters are presented and carefully examined below. 

In the quasi-static analysis, horizontal loads are applied at floor levels with an upper 
triangular distribution, with a maximum load P = Pmax at roof level and a total horizontal 
load (= total base shear) Ptot = 2P (Figure 2). The loading history is presented in the inset 
of Figure 3. 

Figure 3 Total base shear, P
tot

, versus roof displacement, u
3
, for quasi-static cyclic  

loading and different constitutive models 
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In the main part of Figure 3, the relation between the total base shear Ptot and the roof 
horizontal displacement u3 is plotted for the three constitutive models considered. After 
the first unloading (point B), the response of the M–P (R0 = 20) model deviates 
significantly from the responses corresponding to the J2 plasticity and M–P (R0 = 80) 
models. 

Figures 4 and 5 display the normalised sensitivities of the roof displacement u3 to the 
initial yield force Fy0 and the load parameter Pmax, respectively. The normalised 
sensitivities are obtained by multiplying the response sensitivities with the nominal value 
of the corresponding sensitivity parameters and dividing the results by one hundred. 
Thus, these normalised sensitivities represent the total change in the response quantity of 
interest due to 1% change in the sensitivity parameter value and can be used for assessing 
quantitatively the relative importance of the sensitivity parameters in the deterministic 
sense. Similar to the response results, the response sensitivities obtained from the  
J2 plasticity model are very close to the ones produced by the M–P (R0 = 80) model and 
quite different from the ones given by the M–P (R0 = 20) model. It is important to note 
that, while the response sensitivities for the J2 plasticity model are discontinuous at 
elastic-to-plastic material state transition events, the response sensitivities produced by 
the M–P models are continuous everywhere (see for example the inset in Figure 4, 
corresponding to point A in Figure 3). These conclusions are consistent with previous 
findings of other researchers (Haukaas and Der Kiureghian, 2004). 

Figure 4 Normalised sensitivity of roof displacement u
3
 to initial yield force F

y0
  

(quasi-static cyclic loading) 

 

The absence of discontinuities in the response sensitivities for all three constitutive 
models at unloading events is noteworthy (see for example the inset in Figure 5, 
corresponding to point B in Figure 3). It has been proven (Haukaas and Der Kiureghian, 
2004) that no discontinuities arise from elastic unloading events. This proof assumes 
explicitly a linear elastic unloading branch in the material constitutive law (as for  
the uniaxial J2 plasticity model considered herein) and implicitly that the entire structure  
(i.e. all yielded integration points) undergoes elastic unloading at the same load/time 
step. The M–P model presented herein does not have a linear elastic unloading branch; 
nevertheless, it does not exhibit discontinuities at unloading events as well. It can be 
proven (see Appendix) that, if only one-dimensional constitutive models are employed, 
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unloading events in quasi-static finite element analysis do not produce response 
sensitivity discontinuities provided that the unloading branches of the material 
constitutive laws can be expanded in Taylor series about the unloading points. A physical 
explanation of this statement is that any material unloading event can be seen as 
connecting two stress-strain points on the same (unloading) branch of the constitutive 
model, as opposed to a material yielding event which connects two stress-strain points 
belonging to two different branches in the case of a non-smooth constitutive model  
(see Figure 6). 

Figure 5 Normalised sensitivity of roof displacement u
3
 to loading parameter P

max
  

(quasi-static cyclic loading) 

 

Figure 6 Examples of branches of material constitutive models: (a) loading branch with  
elastic-to-plastic material state transition (discontinuous response sensitivities)  
and (b) smooth loading and unloading branches at unloading event (continuous 
response sensitivities) 

 

The same example structure is subjected to finite element response and response 
sensitivity analyses for dynamic seismic loading. The balanced 1940 El Centro 
earthquake record scaled by a factor 3 is taken as input ground motion with a resulting 

peak ground acceleration ( ),max max ( ) 0.96 .= =��u gg gta t  The structure is modelled with 

the J2 plasticity, the M–P (R0 = 20) and the M–P (R0 = 80) constitutive law, respectively. 
Time integration is performed using the constant average acceleration method (special 
case of the Newmark-beta family of time stepping algorithms that is unconditionally 
stable, see Appendix for more details). The computed time histories of the roof 
displacement u3 are plotted in Figure 7. The results corresponding to the M–P (R0 = 80) 
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model are not shown, being very close to the ones obtained from the J2 plasticity model. 
For all three constitutive models, the structure undergoes large plastic deformations as 
shown in Figure 7 by the non-zero centred oscillations of the response. 

Figure 7 Response histories of roof displacement u
3
 for different constitutive models  

(dynamic analysis) 

 

Figures 8 and 9 display the time histories of the normalised sensitivities of the roof 
displacement u3 to the initial yield force Fy0 and the peak ground acceleration ag,max, 
respectively. Again, the results for the M–P (R0 = 80) model are very similar to those for 
the J2 plasticity model and are not shown in Figures 8 and 9. Even a close inspection of 
these time histories does not reveal any discontinuities in the response sensitivities along 
the time axis. In fact, both the smoothing effect of the inertia terms in the sensitivity 
equation of the structure (Haukaas and Der Kiureghian, 2004) and the oscillatory 
behaviour of the sensitivities contribute to hide discontinuities of small magnitude. 

Figure 8 Normalised sensitivity of roof displacement u
3
 to initial yield force F

y0
  

(dynamic analysis) 
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Figure 9 Normalised sensitivity of roof displacement u
3
 to peak ground acceleration a

g,max
 

(dynamic analysis) 

 

However, examining response sensitivity results along the sensitivity parameter  
axis (for a fixed time step ∆t sufficiently small, herein ∆t = 0.001 sec) reveals  
a very different behaviour: discontinuities arise clearly in the response  
sensitivities obtained from the non-smooth J2 plasticity model, while the M–P  
models response sensitivities are smooth along the parameter axis, as shown in  
Figure 10. Figures 11 and 12 plot the time histories (for 0 ≤ t ≤ 5 sec) of the  
displacement u3 for fixed peak ground acceleration ag,max and variable initial yield  
force Fy0 obtained using the M–P (R0 = 20) model and the J2 plasticity model, 
respectively, and the integration time step ∆t = 0.001 sec. It is observed that the  
response surfaces are continuous in both time and parameter Fy0 and present small 
differences overall between the two different constitutive models. Figures 13 and 14 
show the time histories (for 0 ≤ t ≤ 5 sec) of the normalised sensitivities of the 
displacement u3 to the initial yield force Fy0 for fixed peak ground acceleration ag,max  
and variable initial yield force Fy0 obtained using the M–P (R0 = 20) model and  
the J2 plasticity model, respectively, and the integration time step ∆t = 0.001 sec.  
The response sensitivity surface obtained for the M–P (R0 = 20) constitutive model  
is continuous in both time and parameter Fy0, whereas the response sensitivity  
surface obtained using the J2 plasticity model exhibits clear discontinuities along  
the parameter axis. It is important to notice that continuity along the parameter axis  
is obtained only for a sufficiently small integration time step ∆t (see Appendix). If the 
time step used to integrate the equations of motion of the system is not small  
enough, spurious discontinuities can be introduced by the time stepping scheme 
employed, as illustrated in Figure 15, which shows the surface of the normalised 
sensitivities of the displacement u3 to the initial yield force Fy0 for fixed peak  
ground acceleration ag,max and variable initial yield force Fy0 obtained using the M–P  
(R0 = 20) model and the integration time step ∆t = 0.02 sec. 
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Figure 10 Normalised sensitivity of roof displacement u
3
 to initial yield force F

y0
 at  

time t = 1.66 sec with fixed peak ground acceleration a
g,max

 

 

Figure 11 Time histories (for 0 ≤ t ≤ 5sec) of displacement u
3
 for fixed peak ground  

acceleration a
g,max

 and variable initial yield force F
y0
: dynamic analysis using  

the M–P (R
0
 = 20) model and ∆t = 0.001 sec 

 

Figure 12 Time histories (for 0 ≤ t ≤ 5 sec) of displacement u
3
 for fixed peak ground  

acceleration a
g,max

 and variable initial yield force F
y0
: dynamic analysis using  

the J
2
 plasticity model and ∆t = 0.001 sec 
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Figure 13 Time histories (for 0 ≤ t ≤ 5 sec) of normalised sensitivities of the displacement u
3
 to 

initial yield force F
y0 

for fixed peak ground acceleration a
g,max

 and variable initial yield 
force F

y0
: dynamic analysis using the M–P (R

0
 = 20) model and ∆t = 0.001 sec 

 

Figure 14 Time histories (for 0 ≤ t ≤ 5 sec) of normalised sensitivities of the displacement u
3
 to 

initial yield force F
y0 

for fixed peak ground acceleration a
g,max

 and variable initial yield 
force F

y0
: dynamic analysis using the J

2
 plasticity model and ∆t = 0.001 sec 

 

Figure 15 Time histories (for 0 ≤ t ≤ 5 sec) of normalised sensitivities of the displacement u
3
 to 

initial yield force F
y0 

for fixed peak ground acceleration a
g,max

 and variable initial yield 
force F

y0
: dynamic analysis using the M–P (R

0
 = 20) model and ∆t = 0.02 sec 

 

In finite element reliability analysis, response sensitivity discontinuities in the parameter 
space can be detrimental to the convergence of the computational optimisation procedure 
to find the design point(s). Therefore, the use of smooth constitutive laws is also 
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beneficial in the dynamic case for avoiding discontinuities in the response sensitivities 
along the parameter axes, provided that the integration time step is small enough.  

4.2  Time-invariant reliability analysis: probabilistic pushover analysis 

In this section, the same example structure is subjected to a probabilistic pushover 
analysis based on the same upper triangular distribution of horizontal loads defined in the 
previous section (Figure 2). The load variable P increases monotonically from zero  
to Pmax. The load parameter Pmax and the initial yield shear force Fy0 are modelled as 
random variables and a limit-state function g is defined in terms of the maximum roof 
displacement u3 up-crossing the threshold level ulim as 

( )3 0 max,lim= − yu u F Pg  (32) 

For the given shear-frame structure with the story shear behaviour modelled using the  
J2 plasticity model, the above limit-state function can be obtained in closed-form from 
structural analysis principles. The limit-state function consists of the union of four planar 
surfaces (in the Pmax−Fy0 −g space), each surface corresponding to a different number of 
yielded stories of the shear frame. For the same structure modelled using the  
M–P constitutive model, a closed-form expression of the limit-state function is not 
available and the function g can only be evaluated numerically.  

The two uncertain/random parameters Pmax and Fy0 are assumed to be independent 
Gaussian random variables with mean and standard deviation 

maxpµ  = 424 kN, 
maxpσ  = 

42.4 kN for Pmax and 
0yFµ = 734 kN, 

0yFσ = 36.7 kN for Fy0, respectively. The choice of 

Gaussian distributions allows to conveniently keep the piecewise linear geometry of the 
limit-state function in the transformation from the physical parameter space (Fy0, Pmax,) to 
the standard normal space (

0 max
, 

yF PU U ).  

The limit-state function in the standard normal space for the J2 plasticity model can 
again be obtained in closed-form as a linear transformation of the limit-state function in 
the physical space. For any specified value of ulim, the limit-state surface is piecewise 
linear as the response function u3 is a surface obtained as the union of planar surfaces 
joined by straight lines corresponding to the yield points of the shear-frame stories 
(Figure 16(a)). Figure 16(b) shows the response surface for quasi-static pushover of the 
example structure modelled using the M–P (R0 = 20) smooth constitutive model. 

For the example structure modelled using the J2 plasticity constitutive law, the design 
point in the standard normal space, 

0 max
( ),∗

y

* *
F P= U ,UU  can also be found in closed-form 

as function of the threshold level ulim as 

y0 max

y0 max

y0 max
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F

F

F

F

P lim lim

lim P lim lim
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in which ulim is expressed in mm. Figure 17 shows the locus of the design point for 
variable ulim, when the structure is modelled using the J2 plasticity model, in the domain 

0 max
2 2; 2 2 − ≤ ≤ − ≤ ≤ yF PU U  (thick black line). On the same figure, the projections of 

the lines on the limit-state function corresponding to yielding of the first and second 
stories are plotted together with some representative limit-state surfaces corresponding to 
specified values of ulim, namely,  

a ulim = 41.46 mm (design point on the first branch of the locus of the  
design point) 

b ulim = 42.50 mm (design point on the second branch of the locus of the  
design point) 

c ulim = 80.14 mm (design point on the third branch of the locus of the  
design point) and 

d ulim = 100.00 mm (design point on the fourth branch of the locus of the  
design point). 

Figure 16 Response surfaces for quasi-static pushover analysis of example structure  
modelled using: (a) J

2
 plasticity model and (b) M–P (R

0
 = 20) model 

 

Figure 17 Locus of the design points for varying u
lim

, when the example structure is  
modelled using the J

2
 plasticity model (probabilistic pushover analysis) 
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Furthermore, it can be readily shown that, if the structure is modelled using the J2 
plasticity model, in the range 42.22 mm ≤ ulim ≤ 43.07 mm (second branch of the locus of 
the design point), the design point is located at a kink of the limit-state surface, and is not 
an origin projected point. In this case, the design point cannot be found with a  
gradient-based optimisation algorithm. For values of the threshold level outside this 
range, the design point is located on one of the linear branches of the limit-state surface 
and its search is not hampered by non-smoothness of the material constitutive model.  

The same probabilistic pushover analysis is performed on the example structure 
modelled using the M–P constitutive model (with R0 = 20 and R0 = 80) with  
ulim = 42.5 mm (value for which a gradient-based optimisation algorithm fails to converge 
to the design point in the case of the J2 plasticity model). This unrealistically low 
threshold is chosen for illustrating aspects of convergence to the design point(s) that 
could also apply to more realistic cases. In this case, using the improved Hasofer-Lind 
Rackwitz-Fiessler (HL-RF) algorithm (Liu and Der Kiureghian, 1991) for the design 
point search, the design point is found in seven iterations and the corresponding 
reliability index is β = −1.29. The same results are obtained using FMINCON and 
SNOPT, with a similar number of function evaluations. 

A comparison between Figure 16(a) and (b) indicates that the response surfaces  
for the J2 plasticity and M–P (R0 = 20) constitutive model, respectively, are numerically 
very close, but only the one corresponding to the M–P model is smooth and continuously 
differentiable everywhere. In Figure 18, the sensitivities of the roof displacement  
u3 to the initial yield force Fy0 (normalised with the mean value of the sensitivity  
parameter µFy0) are shown for both: 

a the J2 plasticity and 

b the M–P (R0 = 20) models. 

Figure 18 Normalised sensitivities of roof displacement u
3
 to initial yield force F

y0
 for  

varying F
y0
: (a) J

2
 plasticity model and (b) M–P (R

0
 = 20) model 

 

Again, the response sensitivities for the J2 plasticity model are discontinuous, whereas 
the M–P model produces continuous (and smooth) sensitivities. 

The numerical results of the three probabilistic pushover analyses (for the three 
constitutive models) are summarised in Table 2 and the corresponding limit-state 
surfaces and design points are shown in Figure 19. The limit-state surface for the J2 
plasticity model is piecewise linear and made of four branches. The probability of failure 
for the structure modelled with the J2 plasticity constitutive law is evaluated numerically 
from the exact solution considering the problem as a four component series system 
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(requiring computation of a four-variate standard normal cumulative distribution 
function). It is noteworthy that the approximate solution obtained considering only the 
two of the four components with lower absolute value of the reliability index  
βi (i = 1,2,3,4) practically coincides with the exact solution (Pf = 0.9101), whereas the 
value for the probability of failure obtained using a FORM approximation based only on 
the distance β  of the design point from the origin ( ,FORM  ( ) 0.9022,β= Φ − =fP  where 

Φ denotes the uni-variate standard normal cumulative distribution function) is less 
accurate. Obviously, in the present case, accuracy is not a real concern because of the 
unrealistically high value of the probability of failure. However, for other applications it 
may be necessary to have accurate evaluation of the probability content of the safe 
domain (e.g. when solving a mean-outcrossing rate problem as a two-component parallel 
system).  

Table 2 Reliability analysis results for quasi-static pushover with u
lim

 = 42.5 mm 

 J
2
 plasticity model 

Exact solution 
M–P (R

0
 = 20) model 

FORM 
M–P (R

0
 = 80) model 

FORM 

β −1.2943 −1.4415 −1.3224 

P
f
 0.9101 0.9253 0.9070 

P
max

* (kN) 369.41 362.88 367.93 

F
y0

* (kN) 738.81 741.51 740.42 

# of iterations – 7 11 

Figure 19 Limit-state surfaces (l-s. s.) and design points (d. p.) for u
lim

 = 42.5mm  
(probabilistic pushover analysis) 

 

It is important to report that the improved HL-RF algorithm is not able to converge to the 
design point in the case of the example structure modelled with the J2 plasticity 
constitutive law; after about ten iterations, it enters an infinite iteration cycle (i.e. cycling 
over the same set of three points). Failure to converge to the design point in this 
particular case is due to the response sensitivity discontinuity exactly located at the 
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design point (see Figure 19). The same convergence difficulties are encountered using 
FMINCON and SNOPT and are typical of any gradient-based optimisation technique 
when discontinuities are located near the searched local optimum. 

4.3 Time-variant reliability analysis: mean out-crossing rate computation 

An analysis for computing the mean down-crossing rate of the roof displacement u3 
below the threshold ulim = −33 mm at time t = 1.66 sec was performed on the  
same example structure. Both the threshold value and the time were selected for 
convenience purposes. The input ground motion was taken as the balanced 1940  
El Centro earthquake record scaled by a factor 3. The peak ground motion acceleration 
ag,max and the initial yield force Fy0 are modelled as  statistically independent Gaussian 
random variables with mean and standard deviation µa = 9.38 m/s2, σa = 0.938 m/s2 for 
ag,max and 

y0Fµ  = 734 kN, 
y0Fσ  = 36.7 kN for Fy0, respectively. 

In Figure 20, the response surfaces of the roof displacement u3 at time t = 1.66 sec, 
obtained from deterministic dynamic analyses varying parameters ag,max and Fy0 (over a 
fine grid) are plotted for the structure modelled with the: 

a J2 plasticity model and  

b M–P (R0 = 20) constitutive model, respectively. 

Figure 20 Response surfaces at time t = 1.66 sec for dynamic analysis of example structure 
modelled with: (a) J

2
 plasticity model and (b) M–P (R

0
 = 20) model 

 

Figure 21 shows the limit-state surfaces and the design points for the three constitutive 
models considered and for the threshold ulim = −33 mm. For each constitutive model, 
computation of the mean out-crossing rate at a prescribed time t requires two design 
point searches corresponding to the limit-state surfaces at times t and t + δt, respectively 
(here δt = 10−4 sec). 

For this dynamic example, no closed-form expression is available for the response of 
the structure with the J2 plasticity model. Therefore, no closed-form solutions are 
available for the limit-state surface and its kinks, the design point (shown in Figure 21) 
and mean out-crossing rate. As for the quasi-static case in Section 4.2, the modified  
HL-RF (gradient-based) algorithm is not able to provide a converged numerical estimate 
of the design points. However, no difficulties are encountered in the design point search 
for the M–P constitutive models, for which the FORM approximation of the mean  
down-crossing rate 

3
ν u  of the roof displacement u3 below the threshold ulim = −33 mm at 

time t = 1.66 sec is 21.07 s−1 (R0 = 20) and 57.72 s−1 (R0 = 80), respectively. The high 
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values obtained for the instantaneous mean down-crossing rates are due to the 
deterministic shape of the input ground motion. In fact, crossings of a deterministic 
threshold are more likely to occur in correspondence with peaks and valleys in the time 
history of the response quantity considered, while they have a very low probability of 
occurrence elsewhere. Thus, the time history of the mean up/down/out-crossing rate 
consists of a sequence of very narrow peaks, usually well spaced along the time axis. 

Figure 21 Limit-state surfaces (l-s. s.) and design points (d. p.) for u
lim

 = −33 mm at  
time t = 1.66 sec (dynamic analysis) 

 

In general, for both quasi-static and dynamic analysis, gradient-based optimisation 
algorithms do not ensure convergence to a (local) optimum of the objective function 
subject to the given constraints (expressed in terms of structural response quantities)  
if response sensitivities are discontinuous. Typically, non-convergence to an existing 
optimum happens if discontinuities in the gradient of the limit-state function  
(i.e. response sensitivity discontinuities) occur in a neighborhood of the optimum  
itself. Even in cases when convergence can be achieved, gradient discontinuities could  
be detrimental to the convergence rate of the optimisation procedure. In theory,  
gradient-based optimisation algorithms can reach (locally) a quadratic convergence rate, 
when the Lagrangian function associated with the given problem is second-order 
differentiable and its exact Hessian is available (Gill et al., 1981). However, this is not 
the case for structural reliability problems, for which at most first-order response 
sensitivities are available. It can thus be concluded that, for general/practical purposes in 
finite element reliability analysis, requiring at least continuous finite element response 
sensitivities is a good compromise between convergence rate and computational cost. 

5 Conclusions 

Insight is gained into the analytical behaviour of finite element response sensitivities 
obtained from smooth (M–P) and non-smooth (J2 plasticity) material constitutive  
models. The response sensitivity computation algorithm for the M–P uniaxial  
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material constitutive model is developed and presented. Focus is on continuity  
(or discontinuity) of finite element response sensitivities. In particular, important 
response sensitivity discontinuities are observed along the axes of both pseudo-time and 
sensitivity parameters when using non-smooth material models in quasi-static finite 
element analysis. A sufficient condition is stated and proved on the smoothness 
properties of material constitutive laws for obtaining continuous response sensitivities in 
the quasi-static analysis case. These results about response sensitivity continuity are 
illustrated using the M–P material constitutive law to model a simple inelastic steel  
shear-frame. Comparisons are made between response and response sensitivities 
obtained using the smooth M–P and the non-smooth uniaxial J2 plasticity material 
constitutive law to model the same example structure. Response and response sensitivity 
computations are also examined in the dynamic analysis case using both the M–P and  
J2 plasticity models. It is found that the linear inertia and damping terms in the equations 
of motion have significant smoothing effects on the response sensitivity results along the 
time axis. Nevertheless, discontinuities along the parameter axes are observed for both 
non-smooth and smooth constitutive models, if the time discretisation of the equations of 
motion is not sufficiently refined. Important remarks and observations are made about 
the dynamic analysis case, which suggest that response sensitivity discontinuities can be 
eliminated by using smooth material constitutive models and refining the time 
discretisation of the equations of motion. Some of the discontinuities in dynamic 
response sensitivities obtained using non-smooth material constitutive models are 
inherent to the constitutive models themselves and cannot be eliminated by reducing  
the integration time step. Response sensitivity results are presented in support of these 
conclusions. 

The importance of the continuity of response sensitivities for the design point  
search using gradient-based optimisation algorithms is highlighted with an example  
of probabilistic pushover analysis and an example of mean out-crossing rate  
computation performed on a simple inelastic steel shear-frame. It is observed that, when 
discontinuities are present in the response sensitivities, convergence to a (local) design 
point cannot be ensured by gradient-based optimisation techniques.  

The limit-state function visualisation provided for the relatively simple example  
with a two-dimensional random parameter space considered in this paper needs to  
be generalised to higher dimensional parameter spaces in which ‘kink-points’ (observed 
in the example herein) generalise to ‘kink-hypersurfaces’. More insight about the 
topology of the failure domains for both quasi-static and dynamic problems (with 
uncertain/random loading and system parameters) may lead to new, more robust and 
more efficient algorithmic approaches for finite element reliability analysis.  
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Appendix 

Continuity is a very desirable property of finite element response sensitivities for 
applications involving the use of gradient-based optimisation algorithms. Herein, a 
theorem giving a sufficient condition for continuity to hold is stated and proved for the 
case of quasi-static finite element analysis. Remarks and observations are made for  
the more complicated dynamic analysis case. In the sequel, the symbol 

b
a  indicates that 

the quantity ‘a’ has been computed considering the quantity ‘b’ as a constant  
(i.e. b fixed), and the symbol 

=b b
a  indicates that the quantity ‘a’ is evaluated for variable 

‘b’ equal to the value ‘ b ’. 

Theorem: Given a finite element model of a structural system, the sensitivities v of the 
response quantities r to sensitivity parameter θ, ( , ) = ( , )/rv t d t dθ θ θ , are continuous 

everywhere as functions of both the ordering parameter t (pseudo-time) of a quasi-static 
analysis and the sensitivity parameter θ, if the following conditions are satisfied: 

a All the material constitutive models used for representing the structural 
behaviour are uniaxial constitutive laws, that is, ( )σ σ ε= , in which σ and  

ε  denote a scalar stress or stress resultant quantity and a scalar strain or strain 
resultant quantity, respectively. 

b All the branches of the material constitutive models can be expanded in Taylor 
series about any of their points, that is, / ε εσ εj j

=
d d |  exists and is finite for any  

ε  and j = 1,2,... . 

c The material constitutive models are continuously differentiable with respect to 
the sensitivity parameter θ, that is, ( , ) εσ ε θ θ∂ ∂/ |  exists and is a continuous 

function of θ. 

d The components of the external nodal loading vector, F(t,θ), are continuous in 
terms of the ordering parameter t and continuously differentiable with respect 
to the sensitivity parameter θ. 

Proof: Without lack of generality, the proof will be presented for r = u, where u denotes 
the nodal displacement vector, and will refer to a single analysis step (i.e. load or 
displacement increment) after convergence (within a small specified tolerance) is 
achieved for response calculation. 

For quasi-static analysis, the equilibrium equation for the space-discretised system at 
t = tn+1 is expressed as 

1 1 1( ( ), ) ( )n n nθ θ θ+ + +=R u F  (A1) 

in which ( ( ), )θ θ=R R u  and F(θ) denote the internal and external nodal force vectors, 

respectively, and where their dependence on the sensitivity parameter θ is shown 
explicitly; the subscript n + 1 indicates the load/time step number (i.e. the quantity to 
which it is attached is computed at t = tn+1). 

The response sensitivity equation at the structure level is obtained from  
Equation (34) using the chain rule of differentiation as 

1

1 1 1
1

d d

d dθ θ θ
+

+ + +
+

∂
= −

∂ u

u F R
K

n

n n n
n  (A2) 
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where K denotes the structure (consistent) tangent stiffness matrix. From Equation (A2), 
it follows that 

1

1

1

11 1 1

d d

d d

d d

d d

θ θ θ

θ θ θ+

+

−

−+ + +

  ∂
 = −  ∂  


  ∂
= −   ∂  

u

u

u F R
K

u F R
K

n

n

n

n

n n n

n n n

 (A3) 

Three different cases must be considered: 

1 Continuity of response sensitivity, du/dθ, with respect to the ordering  
parameter t for a load step [tn, tn+1] in which the strain rate does not change sign, 
with θ kept fixed and equal to its nominal value θ0. 

We need to prove that 

1

1d d
lim

d dθ θ+

+

→

 − = 
 

u u
0

tn n

n n

t
 (A4) 

The assumed smoothness/continuity properties of the material constitutive 
models and the external loading functions (assumptions (b), (c) and (d) above) 
together with Equation (A1) imply that 

1

1

1
1

1

1

1

1

1

lim

lim

lim

d d
lim

d d

θ θ

θ θ

+

+

+
+

+

+→

+→

+

→

+

→

=

 =

 ∂ ∂ = ∂ ∂



=

u u

u u

K K

R R

F F

n n

n n

n n
n n

n n

n nt t

n nt t

n n

t t

n n

t t

 (A5) 

Thus Equation (A4) is proved by substituting Equation (A3)1,2 in its left-hand-
side and using Equation (A5)2,3,4.  

2 Continuity of response sensitivity, du/dθ, with respect to ordering parameter t 
for a load step  [tn, tn+1] in which the strain rate changes sign (i.e. tn corresponds 
exactly to an unloading point), with θ kept fixed and equal to its nominal  
value θ0. 

We need to prove Equation (A4) again. In this subcase, Equation (A5)2 is not 
satisfied as, in general, 

1
1 ,unloading ,loadinglim

+
+→

= ≠K K K
n n

n n nt t
 (see Figure 6(b)). The 

internal and external nodal force vectors at t = tn+1 can be written in incremental 
form as 

1 1

1 1

+ +

+ +

= + ∆
 = + ∆

R R R

F F F
n n n

n n n

 (A6) 

Equilibrium as expressed in Equation (A1) requires also that 
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1 1+ +

=
∆ = ∆

R F

R F
n n

n n

 (A7) 

Taylor series expansion of the internal nodal force vector R (considered as 
function of the nodal displacement vector u) about u = un+1 is expressed  
at u = un as 

( ){ }
1

T

1 1
1

1
( ) ( ) ( )

!
+

∞

+ +
= =

 = + − ∇ ∑ u
u u

R u R u u u R u
n

p

n n n n
p p

 (A8) 

in which 1[( / ) ( / )] ,∇ = ∂ ∂ ∂ ∂" Tu uNu  N denotes the number of degrees of 

freedom of the system, and the superscript T represents the vector/matrix 
transpose operator. Considering that ( ) =R u Rn n  and 1 1( )+ +=R u Rn n , we can 

also write 

( ) ( ){ }
1

T

1 1
1

1
( )

!
+

∞

+ +
= =

−  = − − ∇ ∑ u
u u

R R u u R u
n

p
p

n n n n
p p

 (A9) 

Differentiating Equation (A9) with respect to parameter θ at θ = θ0, and 
recognising that ,

1
/ ( ( ) / | )θ

+=∂ ∂ ∂ ∂ =
niu u uR u 0  i = 1, …, N (since ( ) /∂ ∂ iuR u  

depends on θ only implicity through u(θ) and the operation 
1

( ) |
+="
nu u  removes 

any dependence on θ since un+1 has been computed for θ = θ0), we obtain 

( )
( ) ( )

1

1
1

1 1
1

1

1d d d d
( )

d d 1 ! d dθ θ θ θ
+

+∞ −
+ +

+
=

=

  −     = + − ∇ − ∇    −      
∑ u u

R R u u
u u R u

T
T

n

p
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n n n n
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 (A10) 

From Equation (A10), we obtain the conditional derivative 
11 / |θ

++∂ ∂ uR
nn  as  

( )
( ) ( )

1
1

T
1T1

1
1

1 d
( )

1 ! dθ θ θ
+

+

∞ −
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+
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∑ u u
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recognising that 
1

/ | d / dθ θ
+

∂ ∂ =uR R
nn n  (since d / dθRn  is independent of the 

response un+1 computed at a subsequent analysis step) and 
11 / | .θ

++∂ ∂ =uu 0
nn  For 

un+1 sufficiently close to un, the terms in Equation (A11) that are multiplied by 

, 1( )+ − j
i n i,nu u  ( 1, , ; 1= ≥…i N j ) are negligibly small (i.e. infinitesimal 

quantities) due to assumption (b) which implies that the quantities 

1

11
1

( ) / | ( 1,2,  ... and )u u
+=

=

∂ ∂ ∂ = =∑… N

n

N
jjj
N k

k
j j ju uR u  exist and are finite. Thus, 

discarding infinitesimal quantities in Equation (A11), we obtain that  

( )
1

1
1

1
1

d d d d
lim

d d d dθ θ θ θ θ+
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in which the equivalence between consistent tangent moduli and continuum 
tangent moduli for uniaxial material constitutive models is used (assumption (a); 
Simo and Hughes, 1998; Conte et al., 2003). Finally, substituting Equation 
(A3)2 in Equation (A4) and making use of Equations (A11), (A5)1 and (A12) (in 
this order), we obtain 

n
1

1 1
1

1
1

11 1 1

1 1

d d d d
lim lim

d d d

d d d d
lim

d d d d

θ θ θ θ θ

θ θ θ θ

+
+ +

+

+
+

−+ + +

→ →

− +

→

  ∂   − = − −    ∂     
  = − + − =  

  

u

u u F uR
K

F R u u
K 0

dn
n n n n

n

n
n n

n n n n

t t t t

n n n n

t t

 (A13) 

in which we used the relation 

1

1d d d
lim

d d dθ θ θ+

+

→
= =

F F R
n n

n n n

t t
 

obtained by differentiating Equation (A7)1 and combining the result with 
Equation (A5)4.  

3 Continuity of response sensitivity, d dθu/ , with respect to sensitivity  
parameter θ (for 1+= nt t  fixed) . 

Let us consider a perturbed value θ�  of the sensitivity parameter, that is, 

0θ θ θ= + ∆� , in which θ0 denotes the nominal value of the parameter and ∆θ is 

a small but finite perturbation of it. Let ( , )θ= tf f  denote a response or 

response sensitivity vector quantity as function of both the ordering parameter t 

and sensitivity parameter θ and let 
0

( , ) |θ θθ == tf f  and ( , ) |θ θθ == �
� tf f , 

respectively. We need to prove that 

0

1 1 1 1

0

d d d d
lim lim

d d d dθθ θ θ θ θ θ
+ + + +

∆ →→

   − = − =   
   

u u u u
0

�

� �n n n n  (A14) 

From the continuity of the response and the loading function(s) with respect to 
the sensitivity parameter θ (assumptions (c) and (d)), it follows that 

1 10

1 10

1 10

1 10

lim

lim

lim

lim

θ

θ

θ

θ

+ +∆ →

+ +∆ →

+ +∆ →

+ +∆ →

=


=
 =
 =

u u

K K

R R

F F

�
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�

�

n n

n n
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 (A15) 

Making use of the static equilibrium Equation (A1) and assumption (d), we have 

1 1 1 1

0 0

d d d d
lim lim

d d d dθ θθ θ θ θ
+ + + +

∆ → ∆ →
= = =

R F F R� �
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From the chain rule of differentiation applied to the internal force vector R 
expressed as function of parameter θ (i.e. ( ( ), )θ θ=R R u ), we also have 

1

1

1 1 1
1

1 1 1
1

d d

d d

d d

d d

θ θ θ

θ θ θ

+

+

+ + +
+
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∂ = + ∂
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u
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 (A17) 

Furthermore, from assumption (c), it follows that 
0

lim / | / |
θ

θ θ
∆ →

∂ ∂ = ∂ ∂u uR R� , 

which when combined with Equation (A15)1 gives 

11

1 1

0
lim
θ θ θ

++

+ +

∆ →

∂ ∂
=

∂ ∂ uu

R R

�

�

nn

n n  (A18) 

From Equation (A17) and using Equations (A16), (A15)2 and (A18), it follows 
that 

1 1

0
lim
θ θ θ

+ +

∆ →
=

u u�d d

d d
n n  (A19) 

Remarks on the sufficient conditions for response sensitivity continuity 

The sufficient conditions required by the above theorem are easy to satisfy. In particular, 
condition (b) (requiring that all branches of the material constitutive models used be 
expandable in Taylor series) is in general satisfied by common smooth material models, 
provided that branches with infinite stiffness are avoided. 

The only condition that actually restricts the application of the above theorem is 
condition (a) (all material constitutive models need to be uniaxial), which is required by 
Equation (A12), where the identity between continuum and consistent tangent moduli for 
uniaxial constitutive models is used. Other researchers (Haukaas and Der Kiureghian, 
2004) found that continuity of finite element response sensitivities can be obtained by 
using smooth multiaxial constitutive models. Thus, it appears that the above theorem 
may be extendable to multiaxial material constitutive models. 

Remarks and observations for the dynamic analysis case 

The proof of the above theorem for quasi-static analysis cannot be easily extended to the 
case of dynamic analysis. The space and time discretised equations of motion of a 
structural system subjected to dynamic loads can be written as 

[ ]1 1 5 1 1 1 1( ) ( ) ( ) ( ) ( ( ), ) ( )θ θ θ θ θ θ θ+ + + + ++ + =M u C u R u Fn n n n na a  (A20) 

in which 

( )
( )

1 1 2 3 4

6 7 8

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

θ θ θ θ θ θ

θ θ θ
+ += − + +

− θ + +
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C u u u
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 (A21) 
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and the following general one-step time integration scheme is used (Conte et al., 1995; 
Conte 2001; Conte et al., 2003, 2004; Haukaas and Der Kiureghian, 2004; Barbato and 
Conte, 2005) 

1 1 1 2 3 4

1 5 1 6 7 8

+ +

+ +

= + + +
 = + + +

u u u u u

u u u u u

�� � ��
� � ��
n n n n n

n n n n n

a a a a
a a a a

 (A22) 

The above family of time stepping schemes includes well-known algorithms such as the 
Newmark-beta family of methods (e.g. constant average acceleration method, linear 
acceleration method, Fox-Goodwin method, central difference method) and the  
Wilson-theta method (Hughes, 1987). 

Differentiating Equation (A20) with respect to the sensitivity parameter θ yields the 
following sensitivity equation: 
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 (A23) 

in which the terms 1( / )θ +F dynd d n  and 1+Kdyn
n  are defined as  
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 (A24) 

1 1 5 1+ += + +K M C Kdyn
n na a  (A25) 

Equation (A23) is formally identical to Equation (A2). Therefore, if we assume  
(in addition to the hypotheses of the theorem presented above) that: 

1 the mass matrix, M, and the damping matrix, C, are time-invariant and 

2 the term ( ) 1
d dθ +F dyn

n  is continuous as a function of θ , 

we could prove the continuity of the response sensitivities d dθu , d dθu� , and d dθ��u  

in a way that is similar to the one used for the quasi-static case. 
Unfortunately, while assumption (1) is generally satisfied for civil structures (i.e. 

inertial properties remain usually constant within a dynamic load event, and damping 
properties are typically modelled through a time-invariant viscous damping mechanism), 
it was found through application examples such as the one shown in Figure 15 that 
assumption (2) is not true in general. 

Assuming the same smoothness hypotheses (i.e. assumptions (b), (c) and (d)) used in 
the above theorem for quasi-static problems, intuition would suggest that response 
sensitivities are also continuous in the dynamic case that further benefits from the 
‘linearisation’ (and smoothing) effects of the linear inertial and damping terms (Haukaas 
and Der Kiureghian, 2004). The fact that discontinuities are hard to detect in response 
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sensitivity histories (i.e. along the time axis for θ fixed), as illustrated by Figures 8 and 9, 
further reinforces this intuitive argument. However, finite element response sensitivities 
computed from the space and time discretised equations of motion, Equation (A20), and 
the corresponding sensitivity equations, Equation (A23), are not continuous in general. 
This statement is clearly illustrated in Figure 15 which clearly shows, for the example 
structure presented in this paper and modelled using the smooth M–P (R0 = 20) material 
constitutive law, discontinuities in the response sensitivities along the parameter (Fy0) 
axis, even though discontinuities cannot be visually observed along the time axis (for a 
given value of Fy0). Discontinuities in the response sensitivities along the parameter axes 
are of highest interest, as they can have detrimental effects on the convergence of 
gradient-based optimisation algorithms such as the ones used for the design point search 
in structural reliability analysis (see Section 4.3). 

Analytical treatment of the observed discontinuities along the parameter axes for  
the dynamic analysis case and for a smooth material constitutive model (such as the  
M–P model) is very challenging and is outside the scope of this paper. There are some 
fundamental differences between the quasi-static case (treated in the above theorem) and 
the dynamic case discussed here.  By comparing the response sensitivity equations for 
the quasi-static case, Equation (A2) and the dynamic case, Equation (A23), we notice the 
following two significant changes. 

a In the dynamic case, the term 1(d / d )θ +F dyn
n  on the right-hand-side of the 

sensitivity Equation (A23) depends on both the response and response 
sensitivity histories up to the current time step as shown in Equation (A24), 
which is not the case for the corresponding term 1d / dθ+Fn  on the  

righ-hand-side of the sensitivity Equation (A2) for the quasi-static case.  

b The term 1(d / d )θ +F dyn
n  and the dynamic tangent stiffness matrix, 1+Kdyn

n , depend 

explicitly on the time step length ∆t as shown by Equations (A24) and (A25). 

Indeed, the time stepping algorithm in Equation (A22) assumes a finite (and fixed) ∆t  
and coefficients ai (i = 1,…, 8) are, in general, dependent on ∆t, that is, ( )= ∆i ia a t   

(i = 1,…, 8). For example, if the Newmark-beta algorithm is used, we have 

( )2

1 21 β = ∆ = − a t a , ( )3 1 β= − ∆a t , ( )4 1 1 2β= −a , ( )5 6α β= ∆ = −a t a , 

7 1 α β= −a , ( )8 1 2α β = − ∆ a t , in which α  and β  are parameters controlling the 

accuracy  and stability of the numerical integration scheme (for the constant average 
acceleration method used in this paper, 1 2α =  and 1 4β = ).” 

1 1

0

d d
lim

d dθ θ θ
+ +

∆ →
∆ ∆

 
≠ 

 

�u un n

t t

 (A26) 

Convergence studies of response sensitivities suggest that such discontinuities expressed 
in Equation (A26) tend to spread (reduce in size and increase in number) for decreasing 
∆t. A comparison between the results presented in Figure 15 (large discontinuities)  
and the results shown in Figure 13 (small discontinuities, not visible at the given scale) 
shows clearly the effect of reducing the time step length ∆t  from 0.02sec to 0.001sec  
upon the computed response sensitivities for the smooth M–P (R0 = 20) material 
constitutive law. 
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On the basis of the application examples performed, it can be safely concluded that 
the response sensitivity discontinuities shown in Figure 15 are largely due to the 
discretisation in time of the equations of motion, Equation (A20). The solution of  
the time-continuous problem for smooth material constitutive models (satisfying the 
hypotheses of the theorem presented above) appears to have continuous response 
sensitivities, as suggested by intuition, that is, 

1 1

0 0 0

d d
lim lim lim

d dθ θ θ
+ +

∆ → ∆ → ∆ →

    =    
    

u u� n n

t t
 (A27) 

For practical purposes and finite element applications, the result expressed by  
Equation (A27) requires a fine time discretisation in integrating the equation of motion to 
obtain continuous (and therefore converged with respect to ∆t) response sensitivities  
(see Figure 13 for converged results and Figure 15 for non-converged results). Previous 
studies show that convergence requirements (with respect to ∆t) for response sensitivity 
computation are stricter than those for response computation only (Gu and Conte, 2003). 
It is noteworthy that non-smooth material constitutive models (such as the J2 plasticity 
model considered in this paper) present discontinuities along the parameter axes that are 
due to the physics of the problem (material state transition from elastic to plastic at 
integration point(s)), and thus cannot be eliminated through reducing ∆t (see Figure 14). 


